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Abstract

Current visual recognition algorithms are “hungry” for
data but massive annotation is extremely costly. Therefore,
active learning algorithms are required that reduce labeling
efforts to a minimum by selecting examples that are most
valuable for labeling. In active learning, all categories oc-
curring in collected data are usually assumed to be known
in advance and experts should be able to label every re-
quested instance. But do these assumptions really hold in
practice? Could you name all categories in every image?

Existing algorithms completely ignore the fact that there
are certain examples where an oracle can not provide an
answer or which even do not belong to the current prob-
lem domain. Ideally, active learning techniques should be
able to discover new classes and at the same time cope with
queries an expert is not able or willing to label.

To meet these observations, we present a variant of the
expected model output change principle for active learn-
ing and discovery in the presence of unnameable instances.
Our experiments show that in these realistic scenarios, our
approach substantially outperforms previous active learn-
ing methods, which are often not even able to improve with
respect to the baseline of random query selection.

1. Introduction
Visual data is omnipresent and a flood of free digital data

became available with the existence of smart phones, cheap
cameras, and internet sharing platforms. While advanta-
geous in several aspects, the resulting data is often unstruc-
tured and with none or wrong annotations. As an illustra-
tive example, consider the amount of video data uploaded
to YouTube, which currently is about 100 hours of video
data per minute [36]. While computer vision systems would
greatly benefit from using these massive amounts of unla-
beled data resources, manual annotation is costly. Thus,
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The following object proposals are given,
label all office objects with their category!

i

Figure 1: The answers of an annotator are likely to be: (a)
laptop (b) what the heck is that? (c) no object! (d) some toy
figure (e) no idea (f) cat (g) cup (h) keyboard (i) cup. In an
active learning and discovery scenario, an annotator might
reject examples that do not show valid objects, that cannot
be identified, or that are not part of the problem domain,
which should be considered when requesting annotations.

only a fraction of the data is actually available for super-
vised training of object classification systems.

Not surprisingly, researchers have been interested in un-
derstanding what makes individual examples informative
for a given task. Given that knowledge, we could automat-
ically select a small, unlabeled subset containing as much
information as possible which is then labeled by an expert
and still stays within a specified labeling budget. This field
of research is known as active learning and gained popu-
larity within the computer vision community over the last
years [20, 17, 21, 35, 22, 10, 25, 11].

Existing active learning algorithms assume that an an-
notator always knows an answer, e.g., the requested la-
bel of a given image. From our experience, this assump-
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tion does not hold in practice and annotators are likely to
reject labeling in two scenarios: either the sample does
not belong to a valid category (e.g., lens artifacts, mo-
tion blur, or segmentations covering parts of multiple ob-
jects) or the sample is categorial, but unknown to the an-
notator or unrelated to the current labeling task. A visual
example is given in Fig. 1. We therefore present an ac-
tive learning technique that allows for rejecting an exam-
ple and for providing answers like “I can not name the ob-
ject.”, “This is not a real object.”, or “This object is not
of interest.”. The latter is especially crucial in the case of
an increasing number of categories in the unlabeled data
in order to avoid learning unrelated concepts. In general,
we consider active learning in open set multi-class scenar-
ios and we are therefore not restricted to binary classifi-
cation [24, 4, 34, 21, 28, 5, 11] and also not restricted to
multi-class classification scenarios with a pre-defined set of
classes as assumed by [32, 26, 20, 17, 22, 35, 25]. Thus,
we are studying a more realistic active and life-long learn-
ing scenario in which not all categories are given in advance
and the expert is allowed to refuse the labeling.

The remainder of the paper is organized as follows. We
start with a detailed introduction to active learning from the
theoretical perspective of risk minimization in Section 2.
Given these concepts, we put existing approaches into per-
spective and highlight resulting drawbacks. Our multi-class
technique for active learning, which circumvents these bur-
dens, is introduced in Section 3, and we extend it for han-
dling unnameable instances in Section 4. After a brief re-
view of related work in Section 5, results in several appli-
cation areas, including face identification, digit recognition,
and object classification, are presented in Section 6. The
results obtained show that our approach substantially out-
performs previous active learning methods.

2. Active learning: goals and problems
To better understand active learning tasks and occurring

problems, we start in this section from the ultimate goal
in active learning. We then figure out resulting drawbacks,
explain how common methods tackle these issues, and why
they are inappropriate in realistic scenarios.

2.1. Active learning: seeking for the smallest risk
From the most general point of view, our goal is to train

models f : Ω → Y that result in highest classification ac-
curacy or, similarly, in the smallest riskR(f):

R(f) =

∫
Ω

∫
Y
L (y, f (x)) p(x, y) dy dx , (1)

where the loss function L : Y × Y → R penalizes mis-
matching outputs. Since the joint probability p(x, y) for
evaluating Eq. (1) is not available in practice, collected la-
beled data L = {(x1, y1), . . . , (xN , yN )} ⊂ Ω×Y is used
and assumed to be representative

Remp(f) =
1

|L|
∑

(xi,yi)∈L

L (yi, f (xi)) , (2)

which is known as empirical risk. In active learning, our la-
beled set L is usually small, since annotations are assumed
to be costly. However, we can access an additional unla-
beled dataset U ⊂ Ω and we are allowed to select a subset
for labeling. Thus, for active learning, Eq. (2) translates to
selecting a subset S∗ ⊂ U with highest decrease in risk:

S∗ = argmax
S′⊂U with cost(S′)<ξ

∆Remp (L, (S′,y′)) , (3)

∆Remp (L, (S′,y′)) = Remp (fL)−Remp (fL′) , (4)

where fL′ is the model f trained on the labeled set L′ =
L ∪ (S′,y′). The cost(S′) reflects label costs induced by
S′ which should be less than a pre-defined maximum ξ and
which are mostly measured in terms of the number of labels
requested, i.e., number of examples in S′.

2.2. Substantial problems in active learning
Starting from Eq. (2)-(4), we observe three drawbacks

preventing us from implementing an optimal active learner:

(P1) the labeled set L is too small for being representative,1

thus, replacingR byRemp in Eq. (2) is cumbersome,

(P2) exponentially many subsets S′ ⊂ U in Eq. (3) make
optimization computationally intractable,

(P3) the absence of labels y′ for samples in U makes evalu-
ating Eq. (4) impossible.

The first drawback (P1) can be tackled by leveraging the
unlabeled set U, and we will see possible solutions in Sec-
tion 2.3. With respect to computational tractability (P2), a
common approximation is to perform an iterative optimiza-
tion by selecting one example at a time, i.e., |S′| = 1, which
is known as myopic learning. The third problem (P3) of
missing labels, however, is among the most crucial aspects
and prevents from reliably judging the informativeness of a
selected subset with respect to Eq. (4).

2.3. Approximating the expected information gain

An ad-hoc solution for tackling the first problem (P1)
mentioned in Section 2.2 is to include unlabeled examples
in Eq. (2) to obtain a large and representative dataset D =
L∪U. Missing labels can be estimated using outputs of the
current model (compare with Eq. (2))

RE(fL) =
1

|D|
∑
x∈D

∑
y∈Y
L (y, fL (x)) p(y|fL (x)) , (5)

which is called estimated empirical risk. Intuitively, the
same label estimates can also be applied to tackle (P3).

1If a representative labeled dataset was available, we would not need
to query new examples.



Thus, we replace in Eq. (4) the empirical risk Remp (see
Eq. (2)) with its estimated pendantRE from Eq. (5):

∆RE (x′) =
∑
y′∈Y

p(y′|f (x′)) · 1

|D|
·
∑
x∈D

∑
y∈Y

. . . (6)

(
L (y, f (x)) p(y|f (x))− L (y, f ′ (x)) p(y|f ′ (x))

)
,

where we introduced short-hands f = fL and f ′ =
f(L∪(x′,y′)) for referring to the model before and after in-
cluding (x′, y′) as additional training example. For active
selection, this results in expected loss reduction for the 0/1-
loss [32, 33] or expected entropy minimization for the log-
loss [32, 22, 33, 35, 25].

Unfortunately, reliable estimates of class labels are cru-
cial, which is an ill-posed problem when labeled data for
model training is rare and thus prone to errors. Given
poor label estimates, samples are selected that change the
model’s decisions towards the assumed-to-be correct direc-
tion or towards the direction with assumed-to-have small
entropy, respectively, although estimations of correct direc-
tions are hardly reliable. In our recent paper [11], we meet
this observation by proposing to instead select samples that
are likely to change model outputs in any direction. In com-
parison with Eq. (6), the resulting expected model output
change (EMOC) criterion can be expressed by

∆f(x′)=
∑
y′∈Y

p(y′|f (x′))· 1

|D|
∑
xj∈D

L (f(xj), f
′(xj)) . (7)

A sample that induces large changes should be preferred for
being labeled. From a theoretical point of view, this max-
imizes an upper bound on error reduction [11] and thereby
guarantees that the possible gain in accuracy is not limited
in advance by a poor query selection.

2.4. Model output changes for binary scenarios

While we introduced the EMOC principle in [11] for ar-
bitrary classification and regression settings (see Eq. (7)),
we were only able to propose a concrete algorithm for bi-
nary classification scenarios, which uses Gaussian process
(GP) regression as a model with continuous outputs to-
gether with label regression for performing classification.
In [11], we suggested the absolute difference of continuous
model outputs as a suitable loss function

L|·| (f (x) , f ′ (x)) = |f (x)− f ′ (x) | (8)

rather than differences of resulting classification decisions
which, thus, circumvents estimation of classification thresh-
olds. Although working with continuous outputs, the a-
priori knowledge of an underlying binary classification task
Y = {−1, 1} allows for marginalization over unknown
labels y′ by simply evaluating the expected model output

change for y′ = 1 and y′ = −1. As an estimate for the
label probability, the probit model of Gaussian process re-
gression is used [11]:

p(y′ = 1|f (x′)) =
1

2
− 1

2
· erf

(
−f(x′)/

√
2σ2

f

)
, (9)

where the error function erf(z) represents the cumulative
Gaussian noise model for binary classification with Gaus-
sian process models as presented in [30]. The predictive
variance σ2

f of f evaluated on x′ is given as part of the
Gaussian process regression prediction and reflects uncer-
tainty in model decisions. Since our application scenario
requires a multi-class system, we show how to extend the
EMOC principle in the following section.

3. Multi-class expected model output change
In the previous section, we reviewed the EMOC princi-

ple for approximating the information gain in binary classi-
fication as proposed by [11]. Extending this to multi-class
scenarios with labels y ∈ Y = {1, . . . , C} requires: (1) the
definition of a proper loss function L and (2) the estima-
tion of multi-class probabilities p(y′ = c|x′). We introduce
techniques for both aspects in the following.

Model output loss function for one-vs-all classifiers For
multi-class classification, we use Gaussian process regres-
sion with the one-vs-all principle [21], since it allows for
efficient computation of model updates and it is strongly re-
lated to one-vs-all SVM, which is the most prominent tech-
nique for multi-class classification. However, also other su-
pervised classification techniques could be used in general.
The difference between GP regression and SVM boils down
to using the hinge loss in the SVM case and a quadratic loss
in the GP regression case [21].

Since we use the one-vs-all technique, we learnC binary
classifiers fc with GP regression when a classification prob-
lem with C classes is given. Each of the classifiers gives a
continuous classification score fc(x) ∈ R, which is used to
perform classification decisions according to:

ȳ(x) = argmax
c=1...C

fc(x) . (10)

To measure the model output change, we use the L1-loss on
the class-specific scores:

L|·| (f (x) , f ′ (x))) =

C∑
c=1

|fc(x)− f ′c(x)| . (11)

We also experimented with other multi-class losses, e.g.,
number of label-flips L0/1 (ȳ(x), ȳ′(x)) = 1 − δȳ(x),ȳ′(x)

where δ·,· is the Kronecker delta, but we did not observed
superior performance2.

2Due to the lack of space, we add a small experimental comparison of
loss functions and probability estimates in the supplementary material.



Multi-class classification probabilities Let
yc ∈ {−1, 1} be the random variable for the binary
label yc = 1 − 2 · δy,c for class c ∈ {1, . . . , C}.
Naively computing multi-class classification probabilities
p(y = c|x) could be done by computing probabilities
p(yc = 1|x) for each binary classification problem as
done in Eq. (9). However, these probabilities are derived
from the binary problems and not sufficiently normalized.
Furthermore, normalizing them afterwards often leads to
poor results due to imbalanced scores [29]. A very common
alternative is a multi-class logistic regression model:

p(y = c|x) ∝ exp(αc · fc(x) + βc) (12)

with class-specific parameters αc and βc estimated from
training data [6]. In our case, we can even make use of
leave-one-out estimates to learn the parameters [30].

A disadvantage of the method of [6] is that the predic-
tive variance of the test example is not taken into account.
Therefore, we compute multi-class probabilities directly de-
rived from uncertainty estimates [12], which leads to higher
performance in our experiments2. The underlying idea of
the uncertainty technique is that for label regression with
Gaussian processes [21], we do not only have the model
prediction fc(x) but rather the whole posterior distribu-
tion N (fc(x), σ2(x)) independently for each classification
score. The probability of class c achieving the maximum
score in Eq. (10) can therefore be expressed by

p(ȳ(x) = c|x) = p

(
c = argmax

c′=1...C
fc′(x)

)
. (13)

To estimate the probabilities, we apply a Monte-Carlo tech-
nique and sample Z times from allC Gaussian distributions
N (fc(x), σ2(x)) and estimate the probability of each class

p(y = c|x) = p(ȳ(x) = c|x) ≈ Zc
Z

, (14)

with Zc denoting the number of times where the draw from
the distribution of class c was the maximum value. A large
variance σ2, i.e., a high uncertainty of the estimate, leads
to a nearly uniform distribution p(y = c), whereas a zero
variance results in a distribution which is equal to one for
the class which corresponds to the highest posterior mean.

We now have everything properly defined to apply the
EMOC principle in multi-class classification problems.

4. Active learning with unnameable instances
Problem setting A very common assumption in active
learning is that the oracle (e.g., a human annotator) can
provide a label for every instance of the set of unlabeled
examples. Especially for tasks that involve a large set of
categories, this assumption is not reasonable. Therefore,
we have to deal with cases where the oracle rejects to label

the example that the active learning algorithm just selected.
From our experience, there are basically two main scenarios
in which a rejection can possibly happen:

1. Rejection of non-categorial examples: The unla-
beled example does not show a valid object. Possible
reasons are noise during image acquisition (e.g., sensor
noise, motion blur, or JPEG artifacts), segments cover-
ing multiple objects, or background regions. Examples
are bounding boxes (b) and (c) in Fig. 1.

2. Rejection of categorial examples: The unlabeled ex-
ample is a valid object, but the annotator is not able to
name it or he decides that it is not part of the problem
domain. Examples are bounding boxes (d), (e), and (f)
in Fig. 1.

Both cases need to be considered during active learning and
we present solutions and adaptations of the EMOC principle
for each of them in the following.

Dealing with non-categorial rejections (GP-EMOCPDE)
The number of images showing no valid objects is vast.
However, it is unlikely that during dataset acquisition and
proposal generation, the same non-object sample is ob-
tained several times. Thus, samples that do not show valid
objects are characterized by a low data density.3 In contrast,
samples from object categories should cluster since differ-
ent samples from the same category are likely to be recorded
over time. Therefore, the examples we query should be in
a high density region to ensure a high impact on examples
nearby. However, our previous work [11] (see Section 2.3)
followed the idea behind empirical risk estimation by ex-
ploiting the empirical density using the Dirac function δ (·):

pδ (x) =
1

|D|
∑
xj∈D

δ(x− xj) , (15)

induced by all available samples (second term in Eq. (7)).
Thus, EMOC values of each example are not taking the lo-
cal data density into account. In contrast, we propose to use
the local data density p(x′) obtained with a Parzen estimate

pPDE (x′) ∝ 1

|D|
∑
xj∈D

K (xj ,x
′) , (16)

where K is a kernel function measuring sample similarity.
The resulting GP-EMOCPDE can then be expressed by

∆f(x′) =
∑
y′∈Y

p(y′|f (x′)) · pPDE (x′)

·
( ∑
xj∈D

L (f(xj), f
′(xj))

)
.

(17)

3A low data density for non-objects is reasonable, e.g., sensor noise
should happen rarely, or segment proposals should by algorithmic design
favor objects over non-objects.



This is essential in order to focus on examples in high-
density regions rather than on less frequent non-categorial
samples. Interestingly, it turns out that integrating the data
density is sufficient for allowing to discover new categories.
This is reasonable since examples of new categories are
located in high density areas and lead to a high expected
model output change for similar samples. We also experi-
mented with explicitly incorporating the possibility of new
classes into Eq. (17), but found no superior behavior.

Dealing with categorial rejections (GP-EMOCPDE+R)
It can also be the case that some of the unlabeled exam-
ples belong to unknown or unrelated categories. These
examples are referred to as “blind spots” by [8] and we
model them as one big class r. In particular, y′ = r de-
notes the event when an annotator would reject the exam-
ple x′ and we need to take this into account when comput-
ing the EMOC scores. We make use of the fact that we
would not get an additional training example in this case.
Thus, the classification model would simply not change,
i.e., ∀x : f ′(x) = f(x), which results in zero expected
model output change for the case of y′ = r. The EMOC
value for an example x′ under the assumption that there ex-
ists a rejection class r is therefore given by:

∆fr(x′) = Ey′∈Y∪{r} Ex∈Ω (L (f(x), f ′(x)))

= p(y′ 6= r|x′) ·∆f(x′) + p(y′ = r|x′) · 0
= (1− p(y′ = r|x′)) ·∆f(x′) . (18)

In practice, we estimate the probability p(y′ = r|x′) of
an example x′ being an unnameable instance by using a
GP regression classifier learned with previously rejected
instances as positive examples and all samples of known
classes as negatives. The classification score predicted by
the classifier is transformed into a valid probability value
using the probit model of Eq. (9) with the binary classifier
corresponding to class r. As a byproduct, this allows to
also model rejections for non-categorial samples. In ad-
dition, we also add all rejected examples as negatives to
each of the one-vs-all binary classifiers, a strategy that has
shown to be valuable also for task adaptation with large-
scale datasets [18].

Before we experimentally validate our introduced tech-
niques on several applications in Section 6, we give a short
overview on related work in the following section.

5. Related work on active learning

Active learning is a well-known field of research for sev-
eral years. Thus, a large variety of techniques has been
developed to estimate the information of unlabeled data to
then select most informative samples. We briefly review es-
tablished approaches and put our work into perspective.

Existing criteria are often based on intuitive assump-
tions about what makes a sample informative. Focusing on
a rapid exploration of feature space is one prominent ex-
ample [2, 21], or selecting samples which likely result in
changes of model parameters [33, 10, 3]. A completely dif-
ferent field approaches active learning by selecting samples
the current model is most uncertain about, known as un-
certainty or entropy sampling [24, 4, 34, 17, 20, 21, 9, 5].
Implications on changes in classification accuracy are taken
into account in expected error reduction or expected entropy
minimization [32, 22, 33, 35, 25]. Finally, combinations of
multiple strategies are investigated in [2, 15, 7].

While estimated error- and entropy-reduction techniques
require reliable label estimates, we proposed a less strin-
gent alternative based on expected model output changes
(EMOC) in [11]. The approach prefers samples that likely
result in any change of classification decisions, even if ex-
pected errors given current model estimates would be in-
creased. The resulting technique in [11], however, is re-
stricted to binary classification scenarios. In this paper, we
extend the EMOC principle to multi-class active learning
settings and discovery of new classes. For dealing with
noisy oracles in crowd-sourcing, [28] combine the maxi-
mum entropy framework with estimates about expected la-
beling quality. In contrast, we assume experts to be correct,
but with the additional option of rejecting examples during
labeling. Similar in spirit is the work in [8], which mod-
els the possibility of oracle rejections in binary classifica-
tion scenarios. Their assumption of zero classification en-
tropy for rejected samples however is likely to fail in prac-
tice. Therefore, we differ both in tackling the more gen-
eral multi-class setting and a sound theoretical model for
selective oracles. Closest in terms of targeted application
is the inspiring work of [14] which introduces a framework
for joint active learning and class discovery. Unfortunately,
their approach does not scale to applications with several
thousands of dimensions and unlabeled samples (see Sec-
tion 6.3). In addition, we empirically show that no explicit
modeling of unknown classes is required when incorporat-
ing data density instead.

6. Experiments
In this section, we evaluate our approach on three

datasets, including face identification, digit recognition, and
object classification, and compare against several baselines.
Our proposed methods are the following:

1. GP-EMOCMC (see Eq. (7)) is our multi-class extension
of the EMOC principle,

2. GP-EMOCPDE (see Eq. (17)) incorporates the data
density for resistance to far-off non-categorial samples,

3. GP-EMOCPDE+R (see Eq. (18)) additionally models
possible rejections of unnameable instances.



6.1. Baselines and general setup

For evaluating our active learning criterion, we used the
source code of [11], and we extended it to multi-class sce-
narios with unnameable instances4. We compare our ap-
proach with the predictive variance (GP-var) as well as un-
certainty (GP-unc) of Gaussian processes [21], the best-vs-
second-best strategy (1–vs–2) proposed in [20], the multi-
class query strategy based on probabilistic KNN classifiers
(PKNN)5 [17], the empirical risk minimization approach
of [32] applied to GP (ERM), and the Dirichlet process ex-
pected accuracy (DPEA)6 [14]. Furthermore, we also in-
clude the baseline of random querying.

In all our experiments, we start with an initial set of 2
known classes and 5 training samples per class, both ran-
domly selected but identical for each method. We randomly
select 10 tasks by splitting classes in known and unknown,
and each task is randomly initialized 10 times, resulting in
100 individual test scenarios to average over. After query-
ing and labeling a sample, the classification model is up-
dated and evaluated on a held out test set of 30 samples per
class. Note that in the beginning, the test set also contains
samples of classes that are not known to the system since the
total number of classes is larger than the number of classes
in the initial training set.

All samples that are neither in the test set nor in the initial
training set are treated as the unlabeled pool. Furthermore,
unnameable samples are added individually to each dataset
as described in the following sections and are additionally
cross-checked by human annotators. In all settings, we are
interested in fast discovery of all classes as well as high
recognition accuracy. Further experiments with a focus on
labeling times and qualitative evaluations can be found in
the supplementary material.

6.2. Proof-of-Concept on USPS

For a proof-of-concept, we use the well known USPS
dataset [1] which results in recognizing handwritten digits.

Dataset and unnameable instances The USPS dataset
contains 16×16 grayscale images of handwritten digits
(0−9). Features are extracted by concatenating gray values
which are quantized into levels between 0 and 16 and an
RBF-kernel serves as ad-hoc measure of similarity. In addi-
tion to the unlabeled samples that come from the setting de-
scribed in Section 6.1, unnameable samples are artificially
created by randomly rearranging gray values of every sec-
ond image and including them in the unlabeled pool.

4Source code available at https://github.com/cvjena/.
5Source code obtained from http://research.microsoft.com/

en-us/um/people/akapoor/cvpr2009/
6Source code obtained from http://www.eecs.qmul.ac.uk/˜tmh/

Table 1: Experimental results for USPS [1], LFW [16], and
COCO [27] showing accuracy (in %) after 100 queries aver-
aged over 100 experiments. (∗) not possible due to excessive
memory demand. See text for further details.

Strategy USPS [1] LFW [16] COCO [27]

Random 87.27 62.01 41.27
GP-Var [21] 19.35 33.45 42.94
GP-Unc [21] 24.94 34.74 39.49
1-vs-2 [20] 49.54 80.58 37.87
PKNN [17] 53.26 78.88 41.03

DPEA [14] 92.20 −(∗) −(∗)

ERM [32] 24.49 33.21 42.98

GP-EMOCPDE+R 93.21 87.79 50.48

Evaluation The results in terms of discovered classes and
change in classification accuracy are shown in Fig. 2a and
Table 1. We clearly observe that all EMOC strategies
rapidly discover unknown classes and substantially improve
recognition rates. The DPEA method [14] is slightly infe-
rior and needs roughly 40 queries to discover all classes.
In direct comparison, our EMOC variants reliably find all
classes after only ten to twenty queries – a reduction by
roughly one third – without the necessity of explicitly mod-
eling potentially occurring classes. Notably, the elegant
method PKNN [17], the established 1–vs–2 scheme [20],
and expected risk minimization [32] perform worse than
random query selection. This is due to the fact that they
are not designed for discovering new classes, which can
be clearly observed from Fig. 2a. Interestingly, GP-Var
and GP-unc mainly queries unnameable samples, although
proven to be valuable in other scenarios [21].

6.3. Face identification

The identification of faces in images is an important task
in real-life applications, where unnameable samples (e.g.,
false-positive face detections) or unrelated examples might
occur. For example, a user is likely interested in only label-
ing and recognizing faces of friends in a huge collection of
photos rather than annotating all faces in images that may
belong to unknown persons in the background.

Dataset and experimental setup The Labeled-Faces-in-
the-Wild (LFW) dataset [16] contains face images of 5,749
individuals. In our experiments, we use the face features
provided by [13] consisting of SIFT descriptors extracted at
nine detected landmark positions and three different scales.
The 27 individual descriptors are concatenated and the
whole vector is L1-normalized. Consequently, a histogram
intersection kernel [31] serves as similarity measure. We
use the 9 classes that contain at least 55 images to represent
the current problem domain. Additionally, we use 400 ran-

https://github.com/cvjena/
http://research.microsoft.com/en-us/um/people/akapoor/cvpr2009/
http://research.microsoft.com/en-us/um/people/akapoor/cvpr2009/
http://www.eecs.qmul.ac.uk/~tmh/
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Figure 2: Evaluating active class discovery (top) and improving recognition accuracy with active learning (bottom). Results
are obtained on the USPS dataset [1], the Labeled-Faces-in-the-Wild dataset [16], and the COCO dataset [27]. Baselines are
indicated with dotted lines, whereas our techniques are plotted solidly. Overlapping learning curves of multiple strategies are
additionally labeled in each plot. See text for details on the experimental setup. Best viewed in color.

domly selected classes that contain only a single image to
provide unnameable samples for the unlabeled pool.

Evaluation For the face identification dataset, the results
are shown in Fig. 2b and Table 1. We consistently ob-
serve that GP-var and GP-unc [21] as well as ERM [32]
lead to discovery results significantly worse than random
selection. Remaining techniques obtain roughly identical
results slightly superior to passive learning. Note that no
results for the close competitor DPEA are given, since the
source code provided by [14] is not able to handle scenarios
with that many samples and dimensions. Interestingly, no
method is able to discover all classes after 50 queries and
only some come close after 100 queries. We attitude this
behavior to the cluttered, unordered distribution of data in
space (see Fig. 3b) which hinders identification of new clus-
ters. With respect to classification accuracy, GP-var, GP-
unc, and ERM only obtain minor improvements, since re-
quested samples are mostly rejected. In contrast, PKNN and
1-vs-2 can improve on random selection over time. How-

1

(a) USPS [1]
1

(b) LFW [16]
1

(c) COCO [27]

Figure 3: T-SNE visualizations of datasets used in evalua-
tions, colored according to ground truth class membership.
Note how strongly dataset characteristics differ, e.g., with
respect to class distances or cluttered classes.

ever, they still require twice as much queries compared to
our EMOC strategies to obtain equal performance. In addi-
tion, we notice that our simplest EMOC technique is signif-
icantly inferior to GP-EMOCPDE+R, resulting in 10% per-
formance gain.



Figure 4: Object proposals extracted from the COCO
dataset [27]. Our active learning approach can cope with
these heterogeneous samples and with rejections of an an-
notator. Upper: nameable segments of the current problem
domain. Middle: unknown or unrelated objects. Lower:
segments not even corresponding to valid objects.

6.4. Active discovery with object proposals
Our active learning approach can handle heterogeneous

unlabeled data containing unnameable examples and un-
known categories, which would be rejected by an annotator.
These properties are especially valuable when an annotator
is provided with automatic object proposals which likely
capture not only the classes of interest but also background
artifacts. Thus, it provides another realistic scenario for our
active discovery scheme.

Dataset and experimental setup For our experiments,
we use a subset of the COCO training dataset [27] and
extract object proposals with the geodesic object proposal
method of [23]. The dataset for our experiment is cre-
ated as follows: As a problem domain, we select all ani-
mal categories7. Segments that overlap with more than an
intersection-over-union (IoU) value of 0.9 with a ground-
truth object of one of these categories are considered as
valid objects and labeled accordingly. Randomly chosen
segments with no overlap with a ground-truth object are
considered as unnameable segments, which would be re-
jected by an annotator. These segments can be catego-
rial examples (objects of non-animal categories) and non-
categorial instances (wrongly detected object proposals). In
total, we use 10,000 random images of the dataset, which
contain at least one of the objects of our problem domain.
We start with 2 categories and 5 examples for each of them
as in all other experiments. Features are extracted using out-
puts of pool5, a layer of a convolutional neural net (CNN)
provided by the Caffe framework [19] and trained on Im-
ageNet images. Given the high feature dimensionality, a
simple linear kernel is applied. These features have shown
to be powerful for scene understanding tasks, although they
have been learned from internet images not related to scenes
as contained in the COCO dataset.

7bird, cat, dog, horse, sheep, cow, elephant, bear, zebra and giraffe.
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Figure 5: First three queried segments in our active discov-
ery scenario with the COCO dataset. Successfully labeled
queries are marked green, whereas rejected samples are in-
dicated with an orange frame.

Evaluation Fig. 5 shows object detection results that we
obtain after different numbers of additional active learning
and discovery queries. A quantitative evaluation is given
in Fig. 2c and Table 1. Note that for a better visualization,
the upper bound (roughly 76%) is left out. In summary,
we observe a similar pattern as in the previous experiments.
The inferior results of GP-EMOCPDE can be explained by
the structure of unnameable instances in the COCO dataset
(categorial as well as homogenous segments) as can be seen
in Fig. 3. However, we observe our GP-EMOCPDE+R strat-
egy resulting in highest performance compared to all other
methods. Thus, respecting data density and modeling pos-
sible rejections within evaluating information gain nicely
pays off and boosts performance by roughly 30%.

7. Conclusions and future work
We proposed a new method for multi-class active learn-

ing and class discovery which offers several advantages in
real-world scenarios. Driven by the observation that human
annotators are not always able or willing to label requested
instances, we extended and generalized the expected model
output change principle to handle resulting challenges. In
extensive empirical evaluations, including a simple digit
recognition experiment, a challenging face identification
application, and a realistic object classification task, we
compared our approach with established active learning
methods. Results clearly indicate that our approach is
able to outperform previous methods with respect to the
number of new categories discovered, the average accuracy
obtained by requesting influential unlabeled examples, and
by avoiding label rejections of the annotator. Applying
the same key ideas to support vector machines or neural
network architectures is possible and will be future work.
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[23] P. Krähenbühl and V. Koltun. Geodesic object proposals.
In European Conference on Computer Vision (ECCV), pages
725–739, 2014. 8

[24] D. D. Lewis and W. A. Gale. A sequential algorithm for
training text classifiers. In International Conference on Re-
search and Development in Information Retrieval (SIGIR),
pages 3–12, 1994. 2, 5

[25] X. Li and Y. Guo. Multi-level adaptive active learning for
scene classification. In European Conference on Computer
Vision (ECCV), pages 234–249, 2014. 1, 2, 3, 5

[26] X. Li, L. Wang, and E. Sung. Multilabel svm active learning
for image classification. In International Conference on Im-
age Processing (ICIP), volume 4, pages 2207–2210, 2004.
2

[27] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollr, and C. Zitnick. Microsoft coco: Common
objects in context. In European Conference on Computer
Vision (ECCV), pages 740–755, 2014. 6, 7, 8

[28] C. Long, G. Hua, and A. Kapoor. Active visual recognition
with expertise estimation in crowdsourcing. In International
Conference on Computer Vision (ICCV), pages 3000–3007,
2013. 2, 5

[29] J. Milgram, M. Cheriet, and R. Sabourin. Estimating
accurate multi-class probabilities with support vector ma-
chines. In International Joint Conference on Neural Net-
works (IJCNN), pages 1906–1911, 2005. 4

[30] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes
for Machine Learning. Adaptive Computation and Machine
Learning. The MIT Press, Cambridge, MA, USA, 2006. 3, 4



[31] E. Rodner, A. Freytag, P. Bodesheim, and J. Denzler. Large-
scale gaussian process classification with flexible adaptive
histogram kernels. In European Conference on Computer
Vision (ECCV), pages 85–98, 2012. 6

[32] N. Roy and A. McCallum. Toward optimal active learning
through sampling estimation of error reduction. In Interna-
tional Conference on Machine Learning (ICML), pages 441–
448, 2001. 2, 3, 5, 6, 7

[33] B. Settles. Active learning literature survey. Computer
Sciences Technical Report 1648, University of Wisconsin-
Madison, 2009. 3, 5

[34] S. Tong and D. Koller. Support vector machine active learn-
ing with applications to text classification. Journal of Ma-
chine Learning Research (JMLR), 2:45–66, 2002. 2, 5

[35] S. Vijayanarasimhan and K. Grauman. Cost-sensitive active
visual category learning. International Journal of Computer
Vision (IJCV), 91:24–44, 2011. 1, 2, 3, 5

[36] YouTube. Youtube statistics, Nov. 2014. 1


