
This paper is under review at the journal of Computer Vision and Image Understanding

LOST: A flexible framework for semi-automatic image annotation

Jonas Jäger∗†‡, Gereon Reus ∗‡, Joachim Denzler †, Viviane Wolff∗ and Klaus Fricke-Neuderth∗
∗Department of Electrical Engineering and Information Technology, Fulda University of Applied Sciences, Germany

Email: jonas.jaeger@et.hs-fulda.de
†Computer Vision Group, Friedrich Schiller University Jena, Germany

www.inf-cv.uni-jena.de
‡L3P UG, Germany

www.lost.training

Abstract—State-of-the-art computer vision approaches rely on
huge amounts of annotated data. The collection of such data
is a time consuming process since it is mainly performed by
humans. The literature shows that semi-automatic annotation
approaches can significantly speed up the annotation process
by the automatic generation of annotation proposals to support
the annotator. In this paper we present a framework that allows
for a quick and flexible design of semi-automatic annotation
pipelines. We show that a good design of the process will speed
up the collection of annotations. Our contribution is a new
approach to image annotation that allows for the combination
of different annotation tools and machine learning algorithms
in one process. We further present potential applications of
our approach. The source code of our framework called LOST
(Label Objects and Save Time) is available at: https://github.
com/l3p-cv/lost.

1. Introduction

A huge amount of annotated data is the key to success
in machine learning and computer vision. However the
annotation process is still extremely elaborate, since humans
or even experts in a specific field are required. Therefore
a good annotation tool and smart annotation strategies are
essential to build large datasets of sufficient quality.

In recent years the community focused on three main
points to save time and improve annotation quality while
collecting datasets for computer vision research.

1) Crowdsourcing approaches as presented in [1], [2]
have been utilized to collect huge amounts of annotations via
crowdsourcing platforms such as Amazon Mechanical Turk.
With this strategy the overall time for dataset collection
is reduced significantly by employing a large number of
annotators.

2) A second focus of the community was to optimize the
annotation process itself by supporting the human annotator.
The main idea here is to reduce the human interaction
with the annotation tool to save time, while maintaining the
quality of the annotations [3], [4], [5], [6], [7].

3) The third main focus was on the development of
annotation tools and their user interfaces, since the user

experience with such a tool is important for the annotators
motivation and the quality of the annotations. A wide variety
of annotation tools is described in the literature [8], [9], [10],
[11].

Our contribution is a flexible pipeline concept to model
semi-automatic image and video annotation. This approach
allows to combine multiple annotation tools and machine
learning algorithms as one process in a building block
style. We visualize the whole annotation process in a web-
based user interface. Furthermore, we provide an annotation
interface to assign labels to clusters of images or annotations
e.g. boxes (see Section 3.3).

The open source implementation called LOST (Label
Objects and Save Time) is available on GitHub (https:
//github.com/l3p-cv/lost). This implementation contains an
annotation process visualization, two annotation tools, a
tree-based label management and an annotator management.
Our tool allows researchers to design and run their own
annotation pipelines in a quick and consistent way. Further-
more each developer can inject his own Python scripts to
gain full control over the process. A single instance of LOST
can be easily set up with docker, to be used as stand alone
application on a single machine. LOST can also be set up as
a cloud application to allow collaborative annotation via the
web. If required, LOST is able to distribute computational
workload across multiple machines.

2. Related Work

2.1. Approaches to Support the Annotator

The authors of [5], [6] use point annotations to train
object detection models. Papadopoulus et al. [6] report a
speed up of the total annotation time by a factor of 9 to
18 compared to traditional bounding box annotations. The
performance of their detectors is close to a detector trained
with hand drawn bounding box annotations. Russakovsky
et al. [3] use point supervision to create a segmentation
model that is more accurate than models trained with full
supervision given a fixed time budget.

The authors of [4] generate bounding box proposals to
ask the annotators if a box is correct or not. A bounding

1



box is considered as correct if the intersection over union
[12] with a tight box around the object is greater than 0.5.
After the annotators verification step, the object detector is
retrained with the new boxes. This approach reduces the
human annotation time by a factor of 6 to 9, while achieving
a mAP of 58% on Pascal VOC 2007. When training with
full supervision the authors achieve a mAP of 66%. In [13]
an agent is trained to select the best strategy for bounding
box annotation. Two strategies are considered to be selected
by the agent: either box verification [4] as described above
or manual box drawing.

2.2. Annotation Tools/ Interfaces

Russel et al. [8] present a general purpose web-based
image annotation tool called LabelMe to create polygon
annotations. Vondrick et al. [9] propose a web-based tool
called VATIC for semi-automatic video annotation in a
crowdsourcing setup. They use bounding box annotations
and link these boxes to create ground-truth tracks for video
sequences within an optimized user interface. Similar to
VATIC, iVAT [10] and ViTBAT [14] are tools for semi-
automatic video annotation. In contrast to VATIC these tools
are not web-based. Polygon-RNN [7] follows an interactive
approach for faster polygon annotation. A recurrent neural
network is utilized to support the human annotator by iter-
atively sending annotation proposals to the user interface.
Qin et al. [15] present the semi-automatic tool ByLabel
that supports the annotator in segmentation tasks. The tool
FreeLabel [11] is also designed to collect segmentation
masks. It uses scribble annotations as seeds for the region
growing algorithm to create a semi-automatic segmentation
result.

BIIGLE [16] is a web-based tool that is especially
designed for the annotation and exploration of marine im-
age collections. It provides different annotation and review
interfaces, a project management and a user management.
In difference to the other tools it also implements a label
tree management. In contrast to LOST, Biigle does not
implement a flexible pipeline system.

Each of the above mentioned annotation tools was de-
signed with a specific application and annotation process
in mind. Due to that, these annotation tools have hard-
coded a specific process/ algorithm and model only a single
use case. This leads to the fact that every time a new
annotation approach was tested a new tool was implemented.
In contrast to that, our framework is able to model multiple
semi-automatic annotation approaches, e.g. [3], [4], [5], [6],
in a consistent and fast way. In this sense our proposed
framework is a generalization of single purpose annotation
tools.

3. Approach

We propose a framework for semi-automatic image an-
notation. This framework allows any combination of ma-
chine learning algorithms and annotation interfaces in a
building block style.

Request 
Annotations

Annotation
Task

Export 
Annotations

Datasource

Figure 1. Schematic illustration of an example annotation pipeline. A data-
source represents a set of images that should be annotated e.g. the Pascal
VOC dataset. The next element in the pipeline is a script that requests
annotations for the connected annotation task. When the annotation task
was processed by a human annotator for all requested images another
Python script is used to export all annotations to a csv file. After that
the csv file can be downloaded in the web GUI.

Figure 1 represents a simple example, while much more
complex processes can be modeled. In general an annotation
process is defined as a directed graph. Each node in a graph
represents one building block and the connections between
the nodes define the order in which the building blocks are
processed. Also information, such as annotations, can be
exchanged between connected elements and accessed via
the framework API.

The basic building blocks of an annotation pipeline are
datasources, annotation tasks and scripts that implement
different algorithms. By means of these building blocks,
annotation tasks for humans can be combined with machine
learning and other algorithms in a flexible way.

3.1. Flexibility

The main feature of LOST is a flexible pipeline concept.
An example for its flexibility is the combination of different
annotation interfaces in one pipeline. When combining a
single image annotation interface (SIA, Section 3.4) with a
multi image annotation interface (MIA, Section 3.3), anno-
tation tasks can be split into object localization and class
label assignment. See Section 4.2 for a detailed description
of a two-stage annotation approach where SIA is used to
draw bounding boxes and MIA to assign a class label to
each box.

Flexible pipelines allow also to combine any kind of
machine learning algorithm with an annotation interface to
realize semi-automatic annotation approaches. For example,
SIA can be combined with a script that implements an object
detector that generates bounding box proposals. MIA can be
connected to a script element that implements an algorithm
that clusters images based on their visual similarity in order
to speed up the annotation. See Section 4.3 for a semi-
automatic annotation pipeline that combines SIA and MIA
with machine learning algorithms.

LOST allows also to model iterative annotation pro-
cesses when adding loop elements to a pipeline (see Sec-
tion 4.3). In this way lifelong learning [17], [18] and active
learning [19], [20] approaches can be realized with LOST.

3.2. Building Blocks

An annotation pipeline (annotation process) can be com-
posed of six different building block types. These are data-
sources, scripts, annotation tasks, loops, data exports and



visualizations. After a pipeline was designed as a compo-
sition of the different building blocks, it can be loaded
into the LOST framework. When starting (instantiating) a
pipeline , each element can be parameterized. For example,
for a datasource a set of images will be selected. Another
common example is the selection of a user or group that will
perform an annotation task to parameterize an annotation
task-element in a pipeline.

A datasource represents a set of images or videos that
can be used by connected elements in the pipeline, for
example by one or many scripts. Such a script-element is an
arbitrary algorithm implemented in Python that communi-
cates with connected elements via the framework API. The
main purpose of a script is to generate object proposals
or to cluster images for semi-automatic annotation. An
example of such an object proposal could be a bounding
box generated by a RetinaNet [21] object detector. When a
script has generated proposals for all images that should be
annotated it will send them to an annotation task, where the
proposals will be displayed to a human annotator.

An annotation task-element links users, annotation tools
and labels. There are two types of annotation tools that
can be used in our current implementation. The first tool
was designed to annotate single images (Section 3.4) and
with the second tool clusters of images can be annotated
(Section 3.3). Labels are represented as trees (Section 3.5).
In this way we are able to model label hierarchies.

Loop-blocks can be used for iterative annotation pro-
cesses where parts of a pipeline need to be executed mul-
tiple times until a certain criterion is fulfilled. Loops are
often useful to model active learning or continuous learning
approaches. See Section 4.3 for an example how a loop can
be used in a pipeline.

The last two element types that can be used are data
exports and visualization-elements. Data exports are used
to provide any files created by scripts via the GUI for
download. Similar to data exports, visualizations display
images created by scripts within the web interface.

3.3. Multi Image Annotation (MIA) Interface

MIA serves to assign labels to clusters of images or
annotations. The main idea is that visual similar objects
are likely to get the same label. This idea is related to the
cluster-based approach to fish annotation proposed by [22].

In an ideal world a cluster contains only images that
belong to the same class. A human annotator has the task
of sorting out images that do not belong to the cluster.
Therefore, the same label can be assigned to large number
of images at the same time. In the same way labels can be
assigned to point, box, line and polygon annotations.

LOST provides the first open source implementation
of a MIA interface. Due to the pipeline concept, MIA
can be combined with a SIA interface in one annotation
process (see Section 4.2). In this way, class labels and object
localizations can be annotated in specialized interfaces for
each task to speed up annotation. Furthermore, MIA can be
combined with different cluster algorithms by connecting it

to a script element that will sort annotations or images into
clusters.

3.4. Single Image Annotation (SIA) Interface

SIA is designed to create polygons, points, lines and
bounding box annotations. To each annotation and the whole
image, a class label can be assigned. Also the assignment
of multiple class labels is possible. Furthermore, the tool is
configurable to allow or deny different types of user actions
and annotations depending on the use case. For example,
you can specify that only class label assignment is possible,
but no other modifications are allowed. When combining
SIA with an algorithm that generates annotation proposals
semi-automatic annotation can be realized. See Section 4.3
for an example.

3.5. Label Management

Labels are managed in label trees to model label hi-
erarchies. Multiple label trees can be created and edited.
When starting an annotation task a whole label tree or a
composition of subtrees can be selected as possible labels.
During the annotation task the annotator can assign one of
the possible labels to an annotation.

3.6. Comparison to State-of-the-Art Annotation
Tools

Table 1 presents an overview of the key ideas of LOST in
comparison to other open source tools. LOST is the only tool
with a flexible pipeline system, where multiple annotation
interfaces and algorithms can be combined in one process.
There are many tools that where build on web technologies
to enable collaborative annotation.

Table 1 shows also three different annotation interface
designs and if they are implemented for a specific tool:

1) SIA interfaces are used to annotate single images with
different annotations like points, boxes, lines, polygons, etc.
Most tools do focus on a SIA interface.

2) MIA interfaces are used to present clusters of similar
images and assign a label to a whole cluster of images.
This idea of MIA was described by Boom et al. [22]. In
the presented comparison LOST is the only tool that has
implemented this type of interface.

3)Image sequence annotation (ISA) interfaces are espe-
cially designed to annotate video sequences with tracking
information. In most cases these interfaces are extensions of
a SIA interface. In the current version, LOST has no ISA
interface to annotate tracks. The implementation of ISA is
planned for the near future.

Another difference between LOST and the other tools is
that user-defined python scripts can be executed as part of an
annotation pipeline. In such scripts any python code can be
implemented and information with other pipeline elements
can be exchanged to get full control over the process.



TABLE 1. LOST FEATURES IN COMPARISON TO OTHER OPEN SOURCE ANNOTATION TOOLS.

Features Flexible
Pipelines

Collaborative
Annotation

SIA1 MIA2 ISA3 Run User defined
Scripts

License

LOST yes yes yes yes – yes MIT
VoTT [23] – – yes – – – MIT
CVAT [24] – yes yes – yes – MIT
Mask Editor [25] – – yes – – – Free
FreeLabel [11] – yes yes – – – NPOSL-3.0
Polygon-RNN++ [7] – n/a yes – – – n/a
ByLabel [15] – – yes – – – GPL-3.0
LabelMe [8] – yes yes – – – MIT
VATIC [9] – yes – – yes – MIT
iVAT [10] – yes – – yes – n/a
ViTBAT [14] – – – – yes – Free
VIA [26] – – yes – yes – BSD-2

1Single Image Annotation Tool, 2 Multi Image Annotation Tool, 3 Image Sequence Annotation Tool

4. Case Studies

In this Section we show how annotation pipelines can
be modeled and executed within our web-based framework.

All case studies are performed and analyzed on the
Pascal VOC2012 [12] dataset. We use 80% of the VOC
validation split to select the images for annotation and 20%
for evaluation of trained models. The VOC training split
is used for initial training. For our experiments we utilize
the keras implementations of the respective models. The
experiments are executed inside a NVIDIA Docker container
integrated in LOST. The server is equipped with a NVIDIA
Geforce GTX1080Ti, an Intel i7-8700K and 16GB DDR4
RAM.

4.1. Single-Stage Annotation

In our first experiment we create a baseline for simple
bounding box annotation in the proposed framework as it
is possible in most annotation tools. In order to do that, we
use 200 images randomly selected from the Pascal VOC
validation set. In this selection we guarantee that each class
is present in at least 10 images. Two annotators perform
bounding boxes annotation according to the VOC annotation
guidelines on each image. Box drawing and class assignment
is performed with the SIA tool (Section 3.4).

Results. Annotator1 achieved a mAP of 81% and
Annotator2 a mAP of 82% compared to the Pascal VOC
ground truth annotations, when using an intersection over
union threshold of 0.5. Among each other the annotators
agreed on 86% of the annotated boxes. This show that
even among human annotators the level of agreement was
below 87% mAP in our experiment. Which is an interesting
fact when considering that object detectors are trained with
human data.

On average the annotators needed 11.15 seconds to draw
a bounding box and assign a class label to this box. The
average time to annotate an image was 28.2 seconds. For
the annotation of 200 images 102.75 minutes of annotation
time was required.

4.2. Two-Stage Annotation

In this experiment we combine the single image annota-
tion (SIA) with the multi image annotation tool (MIA) in a
two-stage annotation process. In the first stage the annotator
has the task to draw bounding boxes according to the VOC
annotation guidelines. In this stage no class labels will be
assigned. In the second stage all boxes from the first stage
will be clustered according to their visual similarity and
presented in the MIA interface. The annotators task here is
to assign a label to the whole cluster. If an image does not
belong to that cluster, it should be removed by the annotator.
For example, if there are 19 persons and one cat in the view,
the annotator should remove the cat and select the label
person for the remaining images.

For this experiment, a similar setup as in Section 4.1 is
used. The same 200 images from the VOC validation set
are annotated by a human annotator, while this time two
annotation stages are performed.

We test two clustering strategies. First we extract CNN
features for all annotated boxes from stage one and use
the K-Means algorithm to cluster all images. For feature
extraction we use the last pooling layer of ResNet50 [27]
that was pretrained on ImageNet [28].

As second clustering approach we fine-tune ResNet50
on a small subset of the Pascal VOC training set and utilize
the networks predictions directly for clustering.

Results. In the first stage the annotator used the
SIA annotation tool and needed 7.1 seconds (see Figure 2,
SIA exp2) to draw a bounding box and 18.9 seconds to draw
boxes for all objects in an image. On average he annotated
2.7 boxes per image, while the total annotation time for 200
images was 63.8 minutes in the first annotation stage.

Figure 2 shows also the average annotation time per box
for class label assignment in the second annotation stage
(MIA exp2). The x-axis indicates the different cluster meth-
ods, where K-Means and ResNet50 were used. ResNet50
was fine-tuned with 1% = 57 images, 10% = 571 images,
25% = 1429 images and 50% = 2858 images of the Pascal
VOC training split. We see that the two-stage annotation
process (Figure 2, SIA+MIA exp2) is faster than single
stage annotation if the clustering algorithm works well. Only



KMeans ResNet 0.01 ResNet 0.10 ResNet 0.25 ResNet 0.5
clustering method

2

4

6

8

10

an
no

 ti
m

e 
pe

r b
ox

 (s
ec

)

MIA (exp2)
SIA (exp2)
SIA+MIA (exp2)
SIA only (exp1)

Figure 2. Average times for bounding box annotation with a single-stage
approach in comparison to a two-stage approach. SIA only (exp1) indicates
the time for the single-stage approach where class label assignment and
box drawing was performed in one step. SIA+MIA (exp2) shows the times
for the two-stage approach for different clustering algorithm setups. SIA
(exp2) and MIA (exp2) indicate the times for stage one and stage two of
our two-stage approach.

when ResNet50 was fine-tuned with 1% of the training
data, the two-stage process consumed the same time as one-
stage. The mAP of the created boxes compared to the VOC
ground-truth data was almost equal and around 80% for
all approaches. With the fastest two-stage approach it took
81.1 minutes to annotate 200 images, where single-stage
annotation took 102.75 minutes.

When considering that class label assignment plus box
drawing with SIA needs 11.15 seconds and box drawing
only needs 7.1s, we know that pure class label assignment
with SIA takes 4.05 seconds. The fastest annotation ap-
proach with MIA takes 1.92 seconds per box, which is a
speed up in class label assignment by a factor of two.

Use cases. The main idea here was to break down
the complex task of simultaneous bounding box drawing
and class label assignment into two separate tasks that are
simpler, while supporting the annotator with a preclustering
during class label assignment. In this way it was also
possible to split the annotation work into a simple and
an expert task, where in most cases expert knowledge is
required for class label assignment as in many biological
[22] or medical applications [29]. We saw that when using
the MIA annotation tool and a good clustering algorithm
the time for class label assignment was reduced by a factor
of two compared to label assignment with SIA. This allows
for saving expensive annotation time for expert tasks. For
the experts, who will not need to draw a box, annotation
time is reduced by a factor of 3 to 6.

4.3. Two-Stage Annotation in the loop

In this experiment we show how to implement an iter-
ative annotation process within our framework. As in Sec-
tion 4.2 we model a two-stage annotation pipeline composed

Datasource

Update Machine 
Learning Models

Select Images

Generate Box 
Proposals

SIA Task 

Cluster Bounding 
Boxes

First Stage

MIA Task

Second Stage

Figure 3. Schematic illustration of two-stage annotation in the loop, as it is
modeled in the proposed framework. The datasource provides the dataset
and a Python script selects images that should be annotated in stage one.
Then bounding box proposals are generated for a single image annotation
task in order to support the human annotator when drawing boxes. In stage
two, a script clusters the bounding boxes by visual similarity. After that,
MIA is used to assign class labels to clusters of similar boxes. In the last
step all machine learning models will be retrained with annotations from
previous annotation tasks. When the training was performed, a new iteration
starts.

of a single image annotation task and a clustered image
annotation view. In difference to the previous experiment
we use semi-automatic support in both annotation stages,
do not use any VOC data for pretraining and put everything
into a loop. In other words we assume that we have no
annotated data in the beginning and try to get a better
automatic support for the annotator over time.

As in the previous experiments we use images from the
Pascal VOC2012 validation dataset for annotation. Due to
the iterative setup we use 150 images per iteration that will
be processed by two human annotators. In contrast to the
experiment in Section 4.1, both annotators work on the same
annotation task to split the workload.

Figure 3 shows a high level view of the annotation
pipeline. In the first annotation stage RetinaNet [21] is used
for bounding box proposal generation in order to support the
human annotator. As proposals we use all boxes with a con-
fidence value above 0.4. After each iteration, RetinaNet will
be retrained with all annotations from previous iterations.
When all images have been processed by RetinaNet a SIA
task will be performed by the human annotators. Since there
are no annotations in the first iteration, no box proposals are
generated in the first iteration. The annotators are instructed
to draw bounding boxes around all VOC2012 objects in the
images.

In the second annotation stage ResNet50 [27] is used to
cluster all bounding boxes by class. We use pretrained Ima-



0 1 2 3 4 5 6
iteration

3
4
5
6
7
8
9

10
11
12
13
14

an
no

 ti
m

e 
pe

r b
ox

 (s
ec

)

SIA (exp3)
MIA (exp3)
total (exp3)
SIA only (exp1)

Figure 4. Average annotation time per box for two-stage annotation in the
loop (total exp3) vs. single-stage annotation (SIA only exp1).

geNet weights for initialization and fine-tune ResNet50 after
each iteration with all annotations from previous iterations.
In the first iteration where no class label annotations are
available, we use ImageNet class predictions for clustering.
The idea here is that visual similar images will get the
same class label, even if the predicted class is not part of
Pascal VOC. After that, the MIA tool is used to correct the
proposed clusters and to assign class labels to the clustered
box annotations. When the second stage was processed, the
next loop iteration will start.

Results. Figure 4 presents the average annotation
time per box per iteration. We see times for box drawing
in the first annotation stage (SIA exp3), the times for class
label assignment in the second stage(MIA exp3), the total
time per box for the looped two-stage annotation approach
(Total exp3) and the single-stage annotation approach for
comparison (SIA only exp1). In the first iteration, when no
box proposals are generated and the cluster algorithm is
not fine-tuned to the VOC dataset, the looped two-stage
approach is slower than single-stage annotation. But in the
following iterations when RetinaNet and ResNet50 are fine-
tuned with the annotations of the previous iterations, the
looped two-stage annotation process gets faster than single-
stage annotation.

Figure 5 shows the corresponding mAPs of the human-
annotated boxes (Annotator) and the detector performance
of RetinaNet per iteration. While the detector performance
increases, the performance of the created annotations seems
to be stable around a mean of 80% mAP with a standard
deviation of 4.3%. This deviation most likely reflects the
annotators attention level and the difficulty of the images
that have been annotated.

Use cases. We found that a looped two-stage anno-
tation approach would be beneficial if there are no ground-
truth data available in the beginning of the annotation pro-
cess. This approach creates annotations that have an equal
quality compared to the single-stage approach and trains a
detector on-the-fly, while taking less annotator time than

0 1 2 3 4 5 6
iteration

20

30

40

50

60

70

80

90

m
AP

Annotator
Detector

Figure 5. Mean average precision per iteration for the two-stage in the
loop approach. The Annotator curve indicates the quality of the annotated
boxes created by the human annotators compared to the ground truth boxes
provided in the PascalVOC dataset. The Detector graph shows the mAP of
the proposals generated by RetinaNet compared to the PascalVOC ground-
truth annotations.

single-stage annotation. Since it is modeled as two-stage
process, the annotation work can be split in a simple and an
expert task as in Section 4.2. It is notable that the training
process of the machine learning models takes additional
time compared to annotation approaches without machine
learning elements, but we found that this is no problem when
performing the training in time slots when the annotator
needs to rest anyway e. g. over night.

5. Conclusion

To the best of our knowledge, we present the first frame-
work for a flexible design and instantiation of image anno-
tation pipelines. Our approach enables the combination of
different annotation tools and machine learning algorithms
in one process. We also provide an annotation interface
called MIA (multi image annotation) to annotate whole
clusters of images at the same time.

Our case studies show how our framework can be used
to model machine learning based semi-automatic annotation
pipelines and iterative annotation approaches. In Section 4.2
we found that simple clustering in combination with the
MIA annotation interface can speed up class label assign-
ment by a factor of two compared to single stage annotation.
We also show that an annotation task can be split in an
expert and a simple task, which can significantly reduce
expensive expert annotation time. We further show in Sec-
tion 4.3 that a looped two-stage approach is beneficial when
no annotation data is available in the beginning. The quality
of the created annotations is kept high while the time spent
for box annotation gets smaller over time.

In future, we plan to release the missing image sequence
annotation interface (ISA) that is specialized to annotate
tracks. We also want to implement an interface to Mechan-
ical Turk for crowdsourcing applications.



6. Acknowledgments

We thank Clemens-Alexander Brust and Christoph
Käding for the helpful discussions on lifelong machine
learning and Paul Bodesheim for his comments that greatly
improved this manuscript.

References

[1] H. Su, J. Deng, and L. Fei-Fei, “Crowdsourcing Annotations for
Visual Object Detection,” in AAAI Human Computation Workshop,
2012.

[2] A. Kovashka, O. Russakovsky, L. Fei-Fei, and K. Grauman, “Crowd-
sourcing in computer vision,” Foundations and Trends in Computer
Graphics and Vision, vol. 10, no. 3, pp. 177–243, 2016.

[3] O. Russakovsky, A. L. Bearman, V. Ferrari, and F. Li, “What’s
the point: Semantic segmentation with point supervision,” CoRR,
vol. abs/1506.02106, 2015.

[4] D. P. Papadopoulos, J. R. R. Uijlings, F. Keller, and V. Ferrari, “We
don’t need no bounding-boxes: Training object class detectors using
only human verification,” CoRR, vol. abs/1602.08405, 2016.

[5] D. P. Papadopoulos, J. R. R. Uijlings, F. Keller, and V. Fer-
rari, “Extreme clicking for efficient object annotation,” CoRR,
vol. abs/1708.02750, 2017.

[6] D. P. Papadopoulos, J. R. R. Uijlings, F. Keller, and V. Ferrari,
“Training object class detectors with click supervision,” CoRR,
vol. abs/1704.06189, 2017.

[7] D. Acuna, H. Ling, A. Kar, and S. Fidler, “Efficient interactive
annotation of segmentation datasets with polygon-rnn++,” in CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 859–868, 2018.

[8] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman,
“Labelme: A database and web-based tool for image annotation,”
International Journal of Computer Vision, vol. 77, pp. 157–173, May
2008.

[9] C. Vondrick, D. Ramanan, and D. Patterson, “Efficiently scaling
up video annotation with crowdsourced marketplaces,” in Computer
Vision – ECCV 2010 (K. Daniilidis, P. Maragos, and N. Paragios,
eds.), (Berlin, Heidelberg), pp. 610–623, Springer Berlin Heidelberg,
2010.

[10] S. Bianco, G. Ciocca, P. Napoletano, and R. Schettini, “An interactive
tool for manual, semi-automatic and automatic video annotation,”
Computer Vision and Image Understanding, vol. 131, pp. 88–99,
2015.

[11] P. Dias, Z. Shen, A. Tabb, and H. Medeiros, “Freelabel: A publicly
available annotation tool based on freehand traces,” in Winter Con-
ference on Applications of Computer Vision (WACV), January 2019.

[12] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman, “The pascal visual object classes chal-
lenge: A retrospective,” International Journal of Computer Vision,
vol. 111, no. 1, pp. 98–136, 2015.

[13] K. Konyushkova, J. R. R. Uijlings, C. H. Lampert, and V. Ferrari,
“Learning intelligent dialogs for bounding box annotation,” in CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 9175–9184,
2018.

[14] T. A. Biresaw, T. Nawaz, J. Ferryman, and A. I. Dell, “Vitbat: Video
tracking and behavior annotation tool,” in 2016 13th IEEE Interna-
tional Conference on Advanced Video and Signal Based Surveillance
(AVSS), pp. 295–301, Aug 2016.

[15] X. Qin, S. He, Z. Zhang, M. Dehghan, and M. Jagersand, “Bylabel: A
boundary based semi-automatic image annotation tool,” in 2018 IEEE
Winter Conference on Applications of Computer Vision (WACV),
pp. 1804–1813, March 2018.

[16] D. Langenkmper, M. Zurowietz, T. Schoening, and T. W. Nattkemper,
“Biigle 2.0 - browsing and annotating large marine image collections,”
Frontiers in Marine Science, vol. 4, p. 83, 2017.

[17] X. Chen, A. Shrivastava, and A. Gupta, “Neil: Extracting visual
knowledge from web data,” in 2013 IEEE International Conference
on Computer Vision, pp. 1409–1416, Dec 2013.

[18] C. Käding, E. Rodner, A. Freytag, and J. Denzler, “Watch, ask, learn,
and improve: A lifelong learning cycle for visual recognition,” in
European Symposium on Artificial Neural Networks (ESANN), 2016.

[19] B. Settles, “Active learning literature survey,” Computer Sciences
Technical Report 1648, University of Wisconsin–Madison, 2009.

[20] C.-A. Brust, C. Käding, and J. Denzler, “Active learning for deep
object detection,” in International Conference on Computer Vision
Theory and Applications (VISAPP), 2019.

[21] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollr, “Focal loss for
dense object detection,” in 2017 IEEE International Conference on
Computer Vision (ICCV), pp. 2999–3007, Oct 2017.

[22] B. J. Boom, P. X. Huang, Jiyin He, and R. B. Fisher, eds., Supporting
ground-truth annotation of image datasets using clustering: Pattern
Recognition (ICPR), 2012 21st International Conference on, 2012.

[23] Microsoft Partner Catalyst Team, “Visual object tagging tool (vott).”
Accessed: 2019-03-28.

[24] Intel Corporation, “Computer vision annotation tool (cvat).” Ac-
cessed: 2019-03-28.

[25] C. Zhang, K. Loken, Z. Chen, Z. Xiao, and G. Kunkel, “Mask editor
: an image annotation tool for image segmentation tasks,” CoRR,
vol. abs/1809.06461, 2018.

[26] A. Dutta, A. Gupta, and A. Zissermann, “VGG image annotator
(VIA).” http://www.robots.ox.ac.uk/ vgg/software/via/, 2016. Version:
2.0.6, Accessed: 2019-04-03.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, pp. 770–778, 2016.

[28] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A Large-Scale Hierarchical Image Database,” in CVPR09,
2009.

[29] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun, “Dermatologist-level classification of skin cancer with
deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–118, 2017.


