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Abstract
The Facial Action Coding System describes a set

of 44 ordinally scaled actions units (AUs), which are
used to create facial expressions. In medical applica-
tions such as the therapy of a facial paralysis, auto-
matically finding the activation intensity of each AU is
of main interest. In this medical application context,
existing works feature several drawbacks. For instance,
the majority of approaches concentrates on analyzing
the presence or absence of AUs instead of finding their
underlying activation levels. For facial feature extrac-
tion, Active Appearance Models (AAMs) are often used.
While all current AAM-based studies rely on derived
redundant high-dimensional features, we propose to use
a compact low-dimensional representation. Exhaustive
experiments using three widely-used datasets and sev-
eral prediction methods demonstrate the benefits of our
approach. While retaining a state-of-the-art recognition
accuracy, our approach is substantially faster and thus
perfectly suited for analyzing large-scale databases.

1 Introduction and Related Work
The identification of facial expressions is a key ele-

ment in several problems from psychology and cognitive
science [19]. Each facial expression is the result of a
unique interaction of 43 facial muscles. For medical
applications, e.g. when dealing with pathological dys-
functions such as a unilateral partial and complete
facial paralysis, identifying these individual activations
rather than the corresponding expression is of inter-
est. Applications for this scenario range from aiding a
diagnosis to supporting a therapy. A prominent way
of describing the underlying activations is the Facial
Action Coding System (FACS) introduced by Ekman
and Friesen [6, 7]. It describes facial actions based on
a set of 44 fundamental Action Units (AUs) such as
“raise of inner eyebrows” (AU 1) or “depressing of lip
corners” (AU 15). The degree of activation or intensity
of each AU is measured on an ordinal scale ranging
from A (barely observable) to E (physical maximum).
However, the manual FACS annotation of facial images
is very time-consuming and requires highly trained hu-
man experts. For this reason, a fully automated FACS
classification system is extremely desirable.

For automated facial expression and AU analysis,
an immense amount of literature exists in the field of
computer vision, e.g. [8, 21, 12, 9]. It can mainly be
distinguished between local and global methods of fea-
ture extraction [8]. One example for the former is [20],
where the area around the eyes and the corresponding
AUs are analyzed based on local binary patterns. How-
ever, if the entire set of AUs is to be predicted, global
approaches are more promising [8]. Active Appearance
Models (AAMs) [4] are particularly suited for this task,
as they generate compact parameterized models which
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Figure 1. Examples for the influence of combined AAM
parameters. For two parameters (top/bottom row), the
resulting model instances are shown for AAMs trained on
two different datasets (MPAFC and CK+).

describe the appearance of object instances shown in
images, e.g. faces. An example of the influence of AAM
parameters can be seen in Figure 1, where synthesized
model instances for varying parameter values are shown.
AAMs are successfully applied for both facial expression
recognition [11], as well as AU detection [13, 22].

However, in the context of a medical application as de-
scribed above, all current approaches to AU prediction
suffer from at least one of the following shortcomings:

• Instead of considering the entire AU intensity scale,
only AU presence/absence is predicted [13, 20, 22].
To assess, compare or document the degree of a
facial paralysis, this is highly insufficient.

• Very high-dimensional, redundant features are
used [14, 2, 13]. For large-scale medical studies
with several thousand images, this leads to unrea-
sonably large computation times.

• Prediction is solely performed for groups of
AUs [20], and thus is unsuitable to observe in-
dividual muscle activations.

• Only small subsets of AUs are considered [18, 15,
20] which leads to a limited application range.

This paper adresses all those issues. Our approach
is based on a low-dimensional representation directly
derived from AAMs that enables a fast and accurate
prediction of AU intensities. Exhaustive experiments
on three well-established AU datasets are conducted,
validating the suitability of our approach. We show that,
while retaining a state-of-the-art recognition accuracy,
our approach is substantially faster and thus perfectly
suited for analyzing large-scale databases.

The remainder of this paper is structured as follows.
In Sect. 2, a short introduction to AAMs is given. Pre-
diction methods which are used in this work, are pre-
sented in Sect. 3. A detailed description about our AU
intensity prediction scheme is given in Sect. 4 along with
experiments validating its suitability. Finally, Sect. 5
summarizes and concludes the paper.

2 Active Appearance Models
This section gives a brief overview of Active Appear-

ance Models (AAMs) [4], which are used for FACS
prediction in this paper.
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2.1 Model Training
Given N annotated images I1, . . . , IN showing in-

stances of an object class such as faces, AAMs can be
learnt automatically. The result is a parameterized
appearance model, which can be fitted to new images.
Firstly, the vectorized shapes l1, . . . , lN are aligned

according to translation, rotation, and scale and com-
bined to the matrix L = (l1 − lμ, . . . , lN − lμ), where

lμ = 1
N

∑N
n=1 ln is the mean shape. Applying Principle

Component Analysis (PCA) to L yields the matrix
PL of shape eigenvectors, and each shape l′ can be
expressed by its shape parameters bl′ via

l′ = lμ + PLbl′ , where bl′ = P�
L

(
l′ − lμ

)
. (1)

In the second step, the object textures of each train-
ing image are shape-normalized to form the texture
vectors g1, . . . , gN . As for the shape model, PCA is
applied to obtain the texture eigenvectors PG, and the
texture parameters bg′ are defined similarly to Eq. 1.
As last step, shape and texture submodels are com-

bined to form the appearance model. Correlations
between shape and texture, i.e. the appearance eigen-
vectors PC , are revealed by applying PCA on the set
of the variance-weighted (factor w) and concatenated
shape and texture parameters. Using PC , the shape
and texture of an object instance having the parameters
c′ = [wb�

l′ , b
�
g′ ]

�
can be expressed by

c′ = PCbc′ , where bc′ = P�
Cc′ (2)

are the appearance parameters. The complexity of the
model can be vastly reduced by only using eigenvec-
tors which explain a minimum amount of variance. In
Figure 1, the influence of appearance parameters is ex-
emplarily shown for two AAMs trained on face images.

2.2 Model Fitting
To fit a trained AAM to new images, the appearance

parameters are adapted to minimize the texture differ-
ence Δg between model and image. The relationship
between model parameter updates Δb and Δg is mod-
eled via Δb = RΔg. Here, R is the matrix of linear
coefficients which can be estimated by systematically
displacing the known parameters of the training images.

3 Prediction Methods
This section briefly reviews two non-standard pre-

diction methods used in our work. More details
about all considered prediction methods and their role
for inferring AU intensities are provided in Sect. 4.
Given a training set D = (X,Y ) with inputs X =
[x1, . . . ,xN ]

� ∈ XN and outputs Y = [y1, . . . ,yN ]
� ∈

YN , the goal is to realize a mapping from input to
output space that generalizes to unseen data x∗ ∈ X .

3.1 Gaussian Process Regression
In Gaussian process (GP) regression, univariate out-

puts y ∈ R are assumed to be generated according
to y(x) = f(x) + ε, where f is a latent function and
ε denotes a noise component. Bayesian methods for
solving above problem aim at specifying priors for f
and ε. Based on the provided uncertainties, inference is
possible by integrating out these non-observed variables.
In GP regression, the prior probability is a Gaussian
process using mean function μ : X → R and covariance
(kernel) function κ : X × X → R, i.e. f ∼ GP(μ, κ),

Table 1. Overview of the FACS datasets used in this paper.
Only samples with intensity rated FACS data were used.
For the leave-one-out tests, only AUs with more than one
activated sample were considered.

Dataset Ek60
[5, 23]

MPAFC
[19]

CK+
[10, 13]

Intensity
FACS
Ratings

Subjects 10 8 73
Images 60 128 116
Covered AUs 31 40 24
AUs with≥2 Samples 25 32 22

AAM

Landmarks 58 58 68
Texture Size 7,564 5,215 7,013
Explained Variance 95.16% 95.14% 95.02%
Comb. Parameters 30 46 40

which can be seen as a normal distribution over func-
tions. By assuming i.i.d. zero-mean Gaussian noise
ε ∼ N (0, σ2

n), outputs y∗ follow a normal distribu-

tion [17] with moments y∗ = y�
(
K + σ2

nI
)−1

k∗ and

σ2
∗ = k∗∗ − k�

∗
(
K + σ2

nI
)−1

k∗ + σ2
n, where shortcuts

K = κ(X,X), k∗ = κ(X,x∗), and k∗∗ = κ(x∗,x∗)
were used. Predictions can be made based on estimate
y∗. For multiple output prediction, sharing the ker-
nel is computationally attractive, yielding estimates

y∗ = Y � (
K + σ2

nI
)−1

k∗. Hyperparameters of κ can
be learned by marginal likelihood maximization.

3.2 Cumulative Link Models
Cumulative link models [1] aim to infer outputs y ∈

Y = [1, . . . , C] which obey 1 ≤ . . . ≤ C. In order to
estimate probabilities πik = P (yk = i), assumptions
are placed upon their cumulative probabilities, e.g.
P (yk ≤ i) =

∑
j≤i πjk = g−1(b�xk+ai). The canonical

link function g : [0, 1]→ R is usually a sigmoid, such as
g(z) = [1 + exp(−z)]−1. Parameters are estimated by
maximum likelihood estimation. Multi-variate outputs
Y can be estimated using m univariate models.

4 Experiments and Results
In the following, details about used FACS databases

and insights into our prediction and evaluation scheme
are provided. Finally, a comparison to the state-of-the-
art in terms of accuracy and runtime behavior is done,
showing the suitability of our approach.

4.1 Datasets
Three datasets were used to investigate the FACS

prediction performance of the presented methods. In
particular, these datasets were the Ekman and Friesen
Series (Ek60) [5, 23], the Montréal Pain and Affective
Face Clips (MPAFC) [19] and the Extended Cohn-Kanade
Dataset (CK+) [10, 13]. For all datasets, only those
samples containing intensity, i.e. five point ordinal scale
FACS ratings were selected, resulting in sample sizes
of 60, 128, and 116 images. The Ek60 dataset consists
of images of ten persons performing six basic emotions
anger, sadness, surprise, disgust, fear, and happiness.
In the MPAFC dataset, these six emotions plus pain and
neutral are performed by eight persons in a total of
64 video clips. For each video clip, the first (ideally
neutral expression) and last (target expression) frame is
FACS coded, resulting in 128 images. The well-known
CK+ dataset contains 593 sequences, of which a subset
of 116 samples does have intensity FACS ratings.
For AAM training, landmark data was manually

created for the Ek60 and MPAFC datasets, whereas for
CK+ available ground truth landmarks were used. An
overview of the used datasets can be found in Table 1.
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4.2 AU Prediction and Evaluation Framework
The task of AU intensity prediction can be cast as

a collection of independent prediction problems, each
concentrating on a single AU. We rely on combined
AAM parameters bc′ from Equation (2), which stands in
contrast to other existing approaches for AU intensity
estimation [14, 2, 13]. These combined texture and
shape features are then used as inputs for the prediction
methods outlined in Sect. 3 to learn the relationship to
available AU intensities. The latter are given by the
five point FACS codings and identified with numbers 0
(not present) as well as 1, . . . , 5 (intensities A, . . . , E).

For evaluation, leave-one-out (LOO) cross-validation
is carried out separately for each dataset. The particu-
lar AAM which is used for each dataset is obtained by
training on all images of the respective dataset. Then,
each AU is analyzed separately, based on the confusion
matrix obtained by the LOO test. Note that, as stated
in Table 1, some AUs are only activated in exactly one
sample. To avoid biases in the results, such AUs are
not considered in the LOO tests. By summing over all
AUs, a total confusion matrix is retrieved.

Based on these confusion matrices, various types of
recognition rates can be derived. The most obvious
error measure is to only count a prediction as correct
if a predicted AU activation is identical to its ground
truth counterpart (measure “exact”). Taking the ordi-
nal nature of the FACS ratings into account, a suitable
measure of divergence can be obtained by allowing dif-
ferences of one intensity level between prediction and
ground truth (“diff1”). Another interesting aspect
is whether active and inactive AUs are predicted as
such, disregarding the different intensities of active AUs
(“onOff”). The number of samples for each AU inten-
sity varies drastically, hence we base our evaluations
on the average recognition rate over all AU intensities.
In addition to GP regression (gpr) and cumulative link
models (clm), we also analyzed multivariate linear and
non-linear regression (mlr, nls), linear support vector
machines (lsvm) and nearest neighbor (1nn).

Implementation Details. All prediction steps
were carried out in the programming language R. Own
implementations for AAMs and GP regression were used
with settings listed in Table 1 and kernel κ(x,x′) =
θ21 exp(−||x − x′||2/(2θ22)). For (non-)linear regres-
sion, standard R functions were used. Non-linearity
was achieved via Φ(x) = [x�, x̃�]

�
, where x̃ contains

squared input values. For clm and lsvm, packages
ordinal and kernlab were utilized. Trade-off parame-
ters C = 10−5, 10−4, . . . , 105 were considered for lsvm.

4.3 Results
The total average recognition rates obtained by LOO

cross-validation for all datasets are shown in Table 2
(top). For each dataset and method, the three numbers
are obtained by using the error measures explained
above. It can be stated that the order of magnitude for
corresponding numbers is the same for all three datasets.
In addition, the ranking of the methods for each error
measure is roughly identical. Across all datasets, mlr
and gpr always give the best results except for one
case. Note that gpr is the best method for the CK+
dataset, which by far has the most number of subjects
(see Table 1). This suggests to use GP regression in
the general prediction case. The next best method
is clm, which performs a true ordinal regression and
therefore is to be expected to give good results espe-

c©Jeffrey Cohn c©Jeffrey Cohn

1C 2C 4B 5B 12A 20C 25B True 1C 2C 5D 25D 26D

1A 2A 4B 5A 12B 14A 20A 25B 26B Prediction 1B 2B 5B 16A 23A 25C 26C 27A 38A

Figure 2. Prediction examples for images from the CK+

dataset (subjects S125/006 and S132/008). For prediction,
method gpr was used. The model was trained on all images
of the dataset except for the ones depicted above. AU
activations are coded in the standard notation.

cially for the error measures exact and diff1. Method
nls is inferior to mlr, presumably because non-linear
regression has a larger set of parameters which may
lead to overfitting and less robust parameter estimation.
Despite the different classifier capacity, 1nn and lsvm
give comparable results. An example prediction using
gpr on the CK+ dataset is shown in Figure 2.

Cross-database tests were carried out by using differ-
ent datasets for AAM training and FACS prediction.
The resulting recognition rates are about five to ten
percentage points lower compared to those listed in Ta-
ble 2. For the case that ideal rather than fitted AAM
parameters are used for prediction, all recognition rates
slightly increase by about two to five percentage points.

Comparison to the State-of-the-art in AU In-
tensity Estimation. The previous experiment vali-
dates that encouraging results can be obtained using
our proposed features. To better quantify their suitabil-
ity, we additionally compared our approach to the work
of [14, 2, 13]. Instead of using low-dimensional appear-
ance parameters, the authors rely on a concatenation
of both landmarks (SPTS) and transformed pixel inten-
sities (CAPP) in order to capture shape and texture
information. Applied to our experimental setup, this
gives rise to inputs of dimensionality 7,680, 5,331, and
7,149 for datasets Ek60, MPAFC, and CK+, respectively.

The resulting recognition rates are displayed in Fig-
ure 2 (bottom). Instead of solely using linear SVMs
as done in [14, 2, 13], we also employed mlr, gpr, and
1nn. The remaining methods were omitted due to the
associated computational demands. It becomes appar-
ent that mlr and gpr again robustly achieve accurate
recognition results, outperforming lsvm in nearly all
cases. The worst performance is given by 1nn. There is
no improvement in overall performance by employing
the high-dimensional representations of [14, 2, 13], with
the notable exception of using lsvm. All other methods
tend to produce comparable or even inferior results.
This indicates that our approach of using AAM param-
eter features is to be preferred in terms of accuracy.

Runtime Analysis. Average training and pre-
diction runtimes of our framework using both our
low-dimensional features and state-of-the-art high-
dimensional features (SPTS+CAPP) [14, 2, 13] are
provided in Table 2d. Note that prediction times are
given for infering the entire set of AUs for one input
image, measured on a desktop computer with an Intel R©
CoreTM i5 760 CPU (2.80GHz). The key result is that
runtimes for training and prediction are substantially
reduced by employing our low-dimensional represen-
tation. Moreover, certain methods such as nls and
clm could not be considered for high-dimensional fea-
tures due to exceeding computational demands. Using
“project out” AAM fitting which requires less than 5ms
per image [16] and our GP implementation with hyper-

143



Table 2. Total average recognition rates for leave-one-out cross-validation on the three FACS datasets Ek60, MPAFC and CK+.
The prediction methods used were cumulative link models (clm), Gaussian process regression (gpr), linear regression (mlr),
non-linear regression (nls), nearest neighbor (1nn) and linear SVMs (lsvm).

(a) Ek60

Prediction Error Measure
Method exact diff1 onOff

O
u
r

A
p
p
r
o
a
c
h mlr 42.2% 76.0% 85.7%

gpr 40.1% 75.2% 84.8%
clm 29.4% 62.9% 72.7%
nls 20.1% 48.3% 57.4%
lsvm 30.1% 62.3% 62.1%
1nn 30.1% 62.4% 65.5%

S
P

T
S
+

C
A

P
P

[2
,
1
3
]

mlr 41.6% 76.3% 83.6%
gpr 42.8% 74.0% 83.5%
lsvm 33.7% 66.6% 68.7%
1nn 26.8% 52.9% 56.2%

(b) MPAFC

Error Measure
exact diff1 onOff

35.5% 67.6% 79.4%
33.7% 67.0% 79.1%
37.3% 66.5% 66.1%
31.0% 59.0% 71.3%
28.2% 52.8% 58.4%
27.2% 48.2% 42.1%

35.2% 66.8% 79.7%
32.9% 66.3% 79.0%
35.9% 61.8% 63.4%
24.4% 46.4% 38.0%

(c) CK+

Error Measure
exact diff1 onOff

31.8% 64.2% 85.1%
32.3% 66.6% 86.3%
30.1% 57.7% 66.4%
29.4% 58.9% 75.8%
27.8% 57.8% 64.3%
29.6% 58.5% 61.0%

31.6% 64.2% 85.8%
30.3% 64.4% 85.0%
31.1% 60.4% 64.9%
27.0% 60.5% 58.3%

(d) Comput. Times

Training
(per Dataset)

Prediction
(per Image)

0.01 s 8.67ms
1.17 s 7.45ms
1.39 s 182.96ms
1.17 s 245.16ms

12.09 s 22.82ms
0.01 s 8.61ms

385.95 s 31.60ms
38.78 s 60.97ms
40.79 s 2082.21ms
0.20 s 63.94ms

parameter sharing, the total runtime can be reduced
to below 13ms per image. Compared to existing AAM
and lsvm-based approaches such as [14, 2, 13] this is a
tremendous speed-up allowing for large-scale medical
applications and studies.

5 Conclusions and Further Work
This work concentrated on measuring facial action

unit (AU) activation intensities, which are required
in several medical scenarios. Based on the framework
of Active Appearance Models, we proposed a simple
but powerful representation that enables efficient large-
scale analyses of face images. Our approach eliminates
shortcomings of existing approaches, which use highly
redundant features or solely predict the presence and
absence of AU activations, thereby ignoring the un-
derlying ordinal scale. Extensive experiments were
conducted on three prominent datasets, each compris-
ing at least 22 AUs. A comparison to state-of-the-art
approaches clearly revealed the benefits of our approach:
while retaining good accuracy, it is substantially faster,
especially when using sophisticated prediction methods
such as Gaussian process (GP) regression.

Given the success of GP regression and the nature of
AU intensities, it would be interesting to incorporate or-
dinal GP regression [3] into future analyses. We further
believe that improvements can be achieved by including
a dynamical aspect into AU intensity prediction.
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