
How Fusion of Multiple Views Can Improve Object Recognition in
Real-World Environments

Marcin Grzegorzek∗, Frank Deinzer†, Michael Reinhold∗, Joachim Denzler, Heinrich Niemann

Friedrich-Alexander-Universit¨at Erlangen-N¨urnberg, Informatik 5
Lehrstuhl für Mustererkennung

Martensstr. 3, 91058 Erlangen, Germany
Email: grzegorz@informatik.uni-erlangen.de

Abstract

In the past decades most object recognition systems
were based on passive approaches. But in the last
few years a lot of research was done in the field of
active object recognition. In this context there are
several unique problems to be solved. One of them
is how to fuse a series of images that might differ in
their viewpoints.

In this paper we present a well-founded approach
for the fusion of multiple views based on a recursive
density propagation method. It uses particle filters
for solving the fusion in a continuous pose space.
Furthermore we will show by means of a statisti-
cal object recognition system how to integrate such
systems into our fusion approach.

The experimental result will show, how the fu-
sion can improve classification rates substantial, es-
pecially for difficult conditions like heterogeneous
background within real world environments.

1 Introduction

Passive approaches for object recognition have been
in the center of research in computer vision within
the last decades. One of the main properties is that
a decision for a certain class and pose or a rejection
must be made based on a single image. Although
such passive approaches are sufficient for the solu-
tion of many computer vision problems as shown
in a lot of applications in the past, they neglect the
fact that in many fields there is usually more than
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one image available or it can be easily acquired.
These additional images could be perfectly used to
gain more information about the scene and the ob-
served objects. This is one reason, why research
has focused on active object recognition recently
[2, 4, 5, 9, 13].

One of the most important aspects in active ob-
ject recognition is the fusion of a sequence of im-
ages taken from different viewpoints to obtain an
overall classification and localization result that im-
proves over time. Actually, this is what one ex-
pects from our human visual system – collect and
merge information. These circumstances where
several images are available to a computer vision
system can be observed in a lot of today’s appli-
cations. Think, for example, of robots that move
around in real world environments to perform ser-
vice tasks. Such tasks require a continuous fusion
of the images taken by the robot – preferable in real
time. Other situations where a fusion of multiple
views might be helpful is when one has to deal with
ambiguous objects (for which more than one view
might be necessary to resolve the ambiguity) or het-
erogeneous background.

In this paper we present a general fusion scheme
based on [6]. There are three main reasons for ap-
plying the Condensation algorithm. First, during
fusion one has to deal inherently with multimodal
distributions over the class and pose space of the ob-
jects. Second, moving the camera from one view-
point to another will add uncertainty in the fusion
process as the movement of the camera will always
be disturbed by noise. This is especially true for ap-
plications where the information about the camera
movement is obtained from a robot’s odometric in-
formation. Thus, this uncertainty must be taken into
account when fusing the current image with the re-
sults acquired so far. Third, it is not straight forward
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to model the involved probability distributions in
closed form, especially if multiple hypothesis, i.e.
multimodal distributions, shall be handled. These
three aspects are strong criterions that the Conden-
sation algorithm is perfectly suited. Especially, the
ability to handle dynamic systems is advantageous
because in viewpoint fusion the dynamics is given
by the known but noisy camera motion between two
viewpoints.

In Section 2, we will present the theoretical back-
ground of our fusion approach based on the Con-
densation algorithm. We will also describe the re-
quirements to existing object recognition systems
needed to allow an integration into our fusion ap-
proach. A statistical object recognition system
based onwavelet features, that was successfully
used together with the fusion approach, is presented
in Section 3. The performed experiments in Sec-
tion 4 will show the practicability of our method
in the context of classification of objects with het-
erogeneous background in real world environments.
The results will show a significant improvement in
recognition results. Section 5 will close this paper
with a conclusion and a short outlook to further in-
vestigations.

2 Fusion

Active object recognition extends the classic pas-
sive approach in a manner that object classification
and localization is based on a sequence of images no
matter whether they were taken randomly or in an
intelligent way. These images are used to improve
the robustness and reliability of the object classifi-
cation and localization. In this active approach ob-
ject recognition is not simply a task of repeated clas-
sification and localization for each image, but a well
directed combination of the information acquired so
far with the current image. As one will see in the
following section, the fusion can be formulated as
the recursive propagation of densities over time.

2.1 Density Propagation with the Conden-
sation Algorithm

In active object recognition a series of observed im-
agesfn, fn−1, . . . ,f0 of an object are given to-
gether with the camera movementsan−1, . . . ,a0

between these images. Based on these observations
of images and movements one wants to draw con-

clusions for a non-observable stateqn of the object.
This stateqn must contain both thediscrete class
and thecontinuous pose of the object. This fact is
important for the further proceeding.

In the context of a Bayesian approach,
the knowledge on the object’s state is
given in form of the a posteriori density
p(qn|fn,an−1,fn−1, . . . ,a0,f0) and can be
calculated from

p(qn|fn,an−1, . . . ,a0,f0) =

1

kn
p(qn|an−1,fn−1, . . .)| {z }

(�)

p(fn|qn) (1)

where kn = p(fn,an−1, . . . ,a0,f0) denotes a
normalizing constant that is left out in the follow-
ing considerations. Under the Markov assumption

p(qn|qn−1,an−1, . . .) = p(qn|qn−1,an−1)

for the state transition, the term(�) within (1) can
be recursively rewritten as

p(qn|an−1,fn−1, . . .) =

Z
qn−1

p(qn|qn−1,an−1)·

p(qn−1|fn−1,an−2,fn−2, . . .)dqn−1 (2)

It is obvious that this probability depends only on
the camera movementan−1. The inaccuracy of the
camera movement is modeled with a normally dis-
tributed noise component.

If continuous components in the stateqn can be
avoided, the integral in (2) can be simplified to

p(qn|an−1, fn−1, . . .) =
X
qn−1

p(qn|qn−1,an−1)·

p(qn−1|fn−1,an−2,fn−2, . . .) (3)

and can easily be evaluated in an analytical way.
For example, to classify an object of classΩκ in
a sequence of images with i.e.qn = (Ωκ),
p(qn|qn−1,an−1) in (3) degrades to

p(qn|qn−1,an−1) =

�
1 if qn = qn−1

0 otherwise
(4)

since the object class does not change if the camera
is moved, and consequently (3) must have an ana-
lytically solution.
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But if one wants to use the fusion of multiple
views in a general way with the possibility of con-
tinuous pose parameters inqn it is no longer possi-
ble to simplify (2) to (3).

The classic approach for solving this recursive
density propagation is the Kalman Filter [7, 1]. But
in computer vision the necessary assumption for
the Kalman Filter (p(fn|qn) being normally dis-
tributed) are often not valid. In real world applica-
tions this densityp(fn|qn) usually is not normally
distributed due to object ambiguities, sensor noise,
occlusion, etc. This is a problem since it leads to
a distribution which is not analytically computable.
An approach for the complicated handling of such
multimodal densities are the so called particle fil-
ters. The basic idea is to approximate the a poste-
riori density by a set of weighted particles. In our
approach we use the Condensation algorithm [6]. It
uses a sample setYn = {〈yn

1 , pn
1 〉, . . . , 〈yn

K , pn
K〉}

to approximate the multimodal probability distribu-
tion in (1). Please note that we do not only have
a continuous state space forqn but a mixed dis-
crete/continuous state space for object class and
pose as mentioned at the beginning of this section.
The practical procedure of applying the Condensa-
tion to the fusion problem is illustrated in the next
section.

2.2 Fusion of Multiple Views with the
Condensation Algorithm

After the presentation of the density propagation
theory we will show how to use the Condensation
algorithm in a practical realization of sensor data
fusion of multiple views. As noted above we need
to include the class and pose of the object into our
stateqn to classify and localize objects. This leads
to the following definitions of the state

qn =
�
Ωκ, 1φn, . . . , Jφn

�T

(5)

and the samples

y
n
i =

�
Ωκ, 1φn

i , . . . , Jφn
i

�T

(6)

wherejφn denotes the pose of thej-th degree of
freedom for the camera position. The camera move-
ments are defined accordingly as

an =
�
∆1φn, . . . , ∆Jφn

�T

(7)

with ∆jφn denoting the relative changes of the
viewing position of the camera.

In our experimental setup (see image ”O” in Fig-
ure 3) we have only one degree of freedom. The
camera can move on a circle around the object with
an angle1φn ∈ [0◦; 360◦) describing the pose of
the object.

In the practical realization of the Condensa-
tion, one starts with an initial sample setY0 =
{〈y0

1 , p0
1〉, . . . , 〈y0

K , p0
K〉} with samples distributed

uniformly over the state space andp0
i = 1/K. If

there is some knowledge available about the distri-
bution in advance the samples can of course be dis-
tributed non-uniformly. For the generation of a new
sample setY n, samplesyn

i are
1. drawn fromY n−1 with probability

pn−1
i /

XK

j=1
pn−1

j , (8)

2. propagated with the state transition model

y
n
i = y

n−1
i + (0, r1, . . . , rJ)T (9)

with rj ∼ N (∆jφn, σj) and the variance
parameters of the Gaussian transition noise
σj . They model the inaccuracy of the camera
movement under the assumption that the errors
of the camera movements are independent be-
tween the degrees of freedom. The variances
have to be determined in advance.

3. evaluated in the image by

p(fn|yn
i ) . (10)

This evaluation is performed by the classifier.
The only need to the classifier that shall be
used together with our fusion approach must
be its ability to evaluate this density. In sec-
tion 3.5 we will show how (10) can be evalu-
ated by (16).

For a more detailed explanation on the theoreti-
cal background of the approximation of (1) by the
sample setY N we refer to [6].

At this point we want to note that it is important
to include the classΩκ into the object stateqn and
the samplesyn

i . An alternative would be to omit
this by setting up several sample sets – one for each
object class – and perform the Condensation algo-
rithm separately on each set. But this would not re-
sult in an integrated classification/localization, but
in separated localizations on each set under the
assumption of observing the corresponding object
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∆r b−2,m

d0,−2,m d1,−2,m

d2,−2,m

cm

Figure 1: Feature calculating.Left: image with the grid size∆r = 22. Right: the wavelet multiresolution
analysis was performed two times. Each grid point has exact one corresponding low-pass coefficientb−2,m

and three high-pass coefficientsd0...2,−2,m, from which the two dimensional local feature vector will be
computed.

class. Consequently, no fusion of the object class
over the sequence of images would be done.

3 Statistical Object Recognition

In this section a statistical object recognition system
that is successfully used together with the fusion ap-
proach will be presented.

3.1 Feature Vectors

To build the statistical model of any object we need
first to define the feature vectors. Two dimensional
local features are calculated with thewavelet trans-
formation [3, 8]. A grid with the size∆r = 2−s,
wherebys is the scale ofwavelet transformation, is
laid over the quadratic imagef (Figure 1). On each
grid point a two dimensional local feature vectorcm

is calculated. In this case we performs-times the
wavelet multiresolution analysis:

cm =

�
cm1

cm2

�
=

=

�
ln(2s |bs,m|)
ln[2s (|d0,s,m| + |d1,s,m| + |d2,s,m|)]

�
(11)

The value bs,m is the low-pass coefficient and
d0...2,s,m are the high-pass coefficients. Using the
local feature vectors has an very important advan-
tage: If only one pixel changes in the image, e.g.
by noise or occlusion, only the local feature vectors
in a small region around vary. Owing towavelet
multiresolution analysis the high-pass and low-pass

information of the image could be stored in the fea-
ture vectors. We can now define the set of all feature
vectors in the image:

C = {c1, c2, ..., cM} (12)

whereM is the number of local feature vectors in
the image.

3.2 Bounding Region of the Object

In natural environments the object takes usually
only part of the image area. The rest belongs to
the background. In order to model the object den-
sity function we do not need to regard feature vec-
tors that belong to the background. That is, why
we define for each object class in each training po-
sition a bounding region. A close boundary is laid
around the object (Figure 2). The feature vectors
inside this bounding region belong to the object and
the feature vectors outside the bounding region be-
long to the background. When the object is rotated
and translated inside the image plane (�int, tint)
the appearance and size of the object do not change.
This transformations are called internal transforma-
tions. To handle this case, the bounding region and
the object grid are moved by the same transforma-
tions as the object. The new positionsx′

m in the
object grid are calculated from the old grid points
xm with following equation:

x
′
m = R(�int)xm + tint (13)

wherebyR(�int) is the rotation matrix. For the
external transformations (�ext, text) the size of the
object in the image varies. We have to model the
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O

c(xm) c(xm)

�int, tint �ext, text

c(R(�int)xm + tint)

Figure 2:Left : all feature vectors within the bounding region belong to the object.Middle: under internal
transformations moves the bounding region with the same intern transformations as the object.Right: under
external transformations is the size of the object and the bounding region variable.

size of the bounding region as a function of these
external transformations. For this purpose, we de-
fine for each local feature vectorcm a function, that
assigns the feature vector to the bounding region, or
to the background [12]:

ξm = ξm(�ext, text) =

�
1 if cm ∈ O
0 if cm 
∈ O

(14)

O symbolizes the object bounding region. These
functions are calculated during training. We train
these functions using images of objects taken
from different viewpoints. During the recognition
phase the size of the bounding region for a pose
(�ext, text) is calculated by these trained func-
tions ξm(�ext, text). The internal and external
transformations could be written together:� =
(�int,�ext)

T , t = (tint, text)
T .

3.3 Statistical Model for the Object

To handle noises and illumination changes in im-
ages we apply a statistical model. Each feature vec-
tor cm is interpreted as random variable. We as-
sume that the object features are statistically inde-
pendent of the background features, so only object
feature vectors have to be considered for the object
model. We assume also the statistical independency
of the single feature vectors and their components.
The components of the feature vectors are modelled
as normally distributed consequently. The density
function for the object features could be written as:

p(C|Bκ,�, t) =

=
Y

{m|ξmκ=1}
p(cm|�mκ,�mκ,�, t) (15)

whereBκ comprehends the trained mean vectors
�mκ = (µmκ1, µmκ2)

T and standard deviation
vectors�mκ = (σmκ1, σmκ2)

T of the feature vec-
tors cmκ = (cmκ1, cmκ2)

T , (�, t) are the trans-
formation parameters and indexκ denotes the num-
ber of object class [10]. For internal transforma-
tions the mean valuesµmκ1 , µmκ2 and the stan-
dard deviationsσmκ1 , σmκ2 are constant. Un-
der external transformations the mean values vary
and can be written as functions of these trans-
formationsµmκ1 = µmκ1(�ext, text), µmκ2 =
µmκ2(�ext, text). In contrast to mean values we
model the standard deviation values as constant in
this case.

3.4 Statistical Model for the Background

In our task the objects are situated in heterogeneous
background. As a consequence the feature vectors
at the border of the object depend not only on gray
values in the object bounding region, but also on
the background. Components of such feature vec-
tors could sometimes have strongly different values
from the components of feature vectors that were
observed during training. It has one very unpleas-
ant consequence. The probabilities of such feature
vectorsp(cm|�mκ,�mκ,�, t) are in the recogni-
tion phase near zero. The density function of an
Object (15) as product of the single probabilities
is also close to zero, i.e. a successful recognition
is impossible. To solve this problem we have in-
troduced a separate background model. The back-
ground is modelled as uniform distribution over all
possible values of the feature vectors [11]. There-
fore, a priori, nothing has to be known about the
background in the recognition phase. Every possi-
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Figure 3: A - yellow bear (external rotation0◦), B - red bear (0◦), C - yellow heart (0◦), D - red heart (0◦),
E - yellow deer (0◦), F - red deer (0◦), G - yellow “star-money” (0◦), H - red “star-money” (0◦), I - red bear
(90◦), J - red bear (180◦), K - red bear (270◦), L - yellow heart (90◦), M - yellow heart (180◦), N - yellow
heart (270◦), O - complex scene with moving robot

ble background can be handled by the same back-
ground density.

3.5 Evaluation of the Probability

The classifier, that is described in this section, must
be able to evaluate the density from the equation
10. The imagefn has to be transform into the set
of feature vectorsC (12). The computation of the
feature vectors is described in the section 3.1. Then
we get the trained class modelBκ from the first el-
ement of the vectoryn

i (6). The external rotations
vector�ext could be also obtained from the vector
yn

i (6). We consider in our task one external rota-
tion, so it could be written:�ext = ((yn

i )2, 0)
T ,

whereby(yn
i )2 is the second component of the vec-

tor yn
i and the second external rotation is always

equal zero in our task. The internal rotation and ex-
ternal translation are equal zero. The evaluation of
the probability (10) can be written as:

p(fn|yn
i ) = max

tint

p(C|Bκ,�, t) (16)

As one can see in the equation above we had to
maximize the density with internal translations. The
test images were taken from a moving robot, the

moment of which is not precise. That is why the
objects were shifted in the image plane.

4 Experiments and Results

We tested our approach on a data set that compre-
hends 8 objects which are illustrated in figure 3.
These objects are represented from different view-
points.

For the training the objects were put on a
turntable, with0◦ ≤ φtable ≤ 360◦, and from each
object 270 gray value images with2562 pixels were
taken by a camera mounted on a robot, so that we
have one external rotation. The viewpoints are uni-
formly distributed on a circle and the angle between
two adjacent viewpoints is4◦. Besides three differ-
ent lighting conditions were applied. Although we
used a dark background for taking the training im-
ages the background was not homogeneous. For the
training of the bounding region we applied a thresh-
old value for each training image. All pixels with
gray values under this threshold value were set to
zero (black).

The experiments were performed on 180 images
for each class, i.e altogether 1440 images, thereby
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Classification Rates
0◦ 90◦ 180◦ 270◦

1 90% 60% 62,5% 62,5%
5 72,5% 70% 85% 75%
10 77,5% 70% 85% 80%
15 85% 87,5% 85% 80%
18 85% 90% 82,5% 85%

Figure 4: The classification rates in the column0◦

were created when the fusion algorithm was started
with objects in the position0◦. The next column
contains the results of the fusion algorithm that was
started with objects in the position90◦ etc. The left
column denotes the number of fused images.

the test images were different from the training im-
ages. The test images were taken from a robot. The
robot moved on a circle around the object and took
90 images of each object. The objects were located
on a box wrapped with a newspaper which is de-
picted in the figure 3 O. The search area fortint

within the image plane as described in (16) was re-
stricted to±12 pixels in x- and y-direction.

We took into account four different situations.
First, we started with experiments where the pic-
tures on the objects were visible already on the first
image in the fusion (around0◦, figure 3A-H). Then
our fusion algorithm was started with images where
the objects were rotated about90◦ (Figure 3 I and
L). In this case a successful classification is impos-
sible at the beginning, because, for example, red
bear and red deer are identical. First when the pic-
tures on the objects become visible is the classifica-
tion and the probability value of the expected object
class much better what you can see on the diagram.
In the third situation the algorithm was started with
images where the objects were rotated about180◦

(Figure 3 J and M) and in the last case - about270◦

(Figure 3 K and N).
The first part of the experiments is presented in

figure 5. It shows the probability of the best class
(its certainty) against the number of fused images.
The number of fused images amounts 18 (the rota-
tion between two adjacent objects is20◦). As we
can see in the diagram the value of certainty in-
creases, what is expected from the fusion algorithm.
At the beginning the fusion algorithm used infor-
mations only about a couple of images and as time
dragged on informations many a frames of images

0 2 4 6 8 10 12 14 16 18
0.3
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Figure 5: — algorithm starts with the image in0◦

position,· · · algorithm starts with the image in90◦

position, - - - algorithm starts with the image in
180◦ position, -· - algorithm starts with the image
in 270◦ position.

is being used. The classification rates are presented
in the table (Figure 4).

In the 0◦ column in the table the classification
rates are good also at the beginning of the fusion al-
gorithm. In this case the pictures (bear red, heart
yellow etc.) are visible in the first fused image.
For example if our algorithm starts with the im-
age in position90◦, some objects could not be dis-
tinguished at the beginning. First when the algo-
rithm comes to the image with the object in the po-
sition (270◦) the picture on the object is visible and
the probability of the expected class and classifica-
tion rate become greater. Four example test images
could be seen in the figure 6. The objects in the im-
ages were correct classified although they are paired
nearly identical. This is because we took into ac-
count the fusion of more images in the recognition
phase. An static approach for object recognition
would give in this case rather chaotic results.

The training of one object class (270 images for
the training of the object model and 90 for the train-
ing of the bounding region) executed on Pentium
III (800 MHz) takes actually 14s. The recognition
of one image on the same computer takes about a
minute, hence the using of our algorithm in real-
time applications is presently not possible.

5 Conclusions

In this article we presented a powerful statistical
approach for classification and localization of 3-D
objects based on the fusion of multiple views. In
contrast to passive approaches, where the decision
about class and pose of an object has to be taken
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A B C D

Figure 6: Example test images and results: A - class: yellow bear, result: yellow bear; B - class: yellow deer,
result: yellow deer; C - class: red heart, result: red heart; D - red “star-money”, result: red “star-money”.

based on one image, we use more images. The ad-
ditional images are used to gain more information
about the scene and the observed objects. A gen-
eral fusion scheme based on the Condensation algo-
rithm [6] was presented. In section 3 we described
the classifier which was used in our approach. To
build the statistical model of any object we defined
two dimensional feature vectors. The feature vec-
tors were calculated with thewavelet transforma-
tion. A close boundary around the object (bounding
region) was introduced to determine the object area
in the image. The statistical model for the back-
ground was defined to avoid problems with occlu-
sions and heterogeneous background. The results
show that the using of information about more im-
ages makes the classification rate and the certainty
better.
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