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Abstract. As statistical approaches play an important role in object

recognition, we present a novel approach which is based on object mod-

els consisting of normal distributions for each training image. We show

how to parameterize the mean vector and covariance matrix indepen-

dently from the interpolation technique and formulate the classification

and localization as a continuous optimization problem. This enables

the computation of object poses which have never been seen during

training. For interpolation, we present four different techniques which

are compared in an experiment with real images. The results show the

benefits of our method both in classification rate and pose estimation

accuracy.

1 Introduction

Within the wide area of computer vision, object recognition is still one of the

main topics of current research. Approaches for object recognition can mainly

be divided into two directions. Firstly, segmentation based techniques which
1This work was partially funded by the European Commission 5th IST Programme -
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2This work was partially funded by the German Science Foundation (DFG) under grant
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detect for example, geometric features can be used for object recognition [8].

But segmentation approaches suffer from the disadvantage that segmentation

errors may occur which disturb the recognition process and from the general

problem that often significant information is lost.

The second direction is that of appearance based approaches [13, 2,

10, 3, 12]. They avoid these disadvantages since they directly use the image

data, e.g. pixel intensities, for the recognition process. There exist some well

known approaches which uses multi-resolution wavelet features [13], Gaus-

sian mixtures for classification [2] and the eigenspace approach [10] which

was extended with a statistical component in [3, 12]. One primary disad-

vantage of most of those approaches is, that only those poses of objects are

known that have been seen during the training process. The reason is that for

each known pose a model feature is generated that represents exactly this one

pose. That means for the statistical eigenspace approach that only poses can

be computed which have been seen during the training.

This article discusses a general technique to parameterize the model fea-

tures. From the application’s point of view there is no longer a large collection

of discrete model features — one for each known pose — but a continuous

function that is able to provide a model feature for any desired pose. Our ap-

proach shows how one can efficiently parameterize the normal distributions

that underlie the model features in a very general way. One major aspect

of the discussion will be how to retain the necessary properties of normal

distributions, like the positive definiteness of the covariance matrix. Based

on this general parameterization technique we will show that a lot of differ-

ent interpolation techniques can be used to implement that parameterization.

The integration of the interpolation methods is thereby very easy as the pa-

rameterization does not make assumptions, for example, about the number

of dimensions of the underlying pose space. Finally we will use this mathe-

matical method to extend the statistical eigenspace to allow for an improved



recognition and continuous localization.

Our experiments will show that our approach dramatically improves

object recognition especially for the estimation of the pose of an object. We

will also show and compare the different interpolation techniques and will

discuss their major advantages and disadvantages with respect to runtime,

memory consumption and recognition aspects.

2 The Discrete Statistical Eigenspace Approach

Traditionally, most object recognition methods do not work directly on pixel

intensities of an imagef , but calculate features. One advantage of this tech-

nique is that the amount of data can be reduced drastically. Using graylevel

images with a size of 256 x 256 pixels (=̂65536 intensity values), the amount

of data can be reduced to typically less than 20 feature values. Furthermore,

features are normally more significant than the raw intensity values.

A very popular feature based method is the so-calledeigenspace ap-

proach based on [10], which uses aKarhunen-Loeve Transformation [9] (also

known asPrincipal Components Analysis) to obtain a linear system for com-

puting a feature vector by

c = Φ(f − f̄ ), Φ ∈ IRNE×NP . (1)

The vectorf contains allNP intensities of the pixels of the object image.

The matrixΦ containsNE eigenvectors (with the largest eigenvalues) of the

covariance matrix of the training images. The average of all training images

is denoted as̄f . Without loss of generality, we assume that the average image

is subtracted from the object image in advance.

After computation of a feature vector using equation (1) it is possible to

reconstruct the object image by

f̂ = Φ+c (2)



using the matrix pseudo inverseΦ+ [17]. As the eigenspace matrix has the

property of orthogonality, it is possible to use (2) to obtain a measurement of

similarity. Using a distance measurementd(·, ·) (typically theL1 or theL2

norm is used) the relationship of similarity can be described as

d(f , f ′) ≈ d(f̂ , f̂
′
) (3)

= d(Φ+c,Φ+c′)

= d(c, c′).

In Murase’s traditional eigenspace approach, an object model is created

using all training images of the objects. At first, for every objectΩκ, all im-

agesf i,κ from different viewpoints are used to calculate a single eigenspace

matrix. Thus, the featuresci,κ can be calculated by equation (1). As the corre-

sponding external pose parameterφi,κ known for every image, classification

and localization of an unknown object imagef can be performed (using the

similarity relationship of equation (3) ) by

c = Φf

(κ∗, i∗) = argmin
(κ,i)

d(c, ci,κ) (4)

φ∗ = φi∗,κ∗ ,

where the result is classΩκ∗ and poseφ∗. In figure 1 the first three compo-

nents of the feature vectors of an object are shown. The distance measurement

for an object image to be classified is also exemplified.

Fig. 1

An analysis of the feature vectors of noisy object images shows that the

first components ofc are less dispersed than the last ones. This is because the

eigenvectors used for the eigenspace matrixΦ are sorted (descending depen-

dent on the corresponding eigenvalue). This means that the first eigenvectors

represent significant features of the object and the last ones describe less sig-



nificant details and noise. However, all components have the same influence

on the distance measurement in (3).

A more robust classification was presented in [13] whereci
κ is replaced

by a normal distribution

p(c|Bi
κ) = N (c|µi

κ,Σ
i
κ), (5)

whereµκ,i denotes the mean vector andΣκ,i the covariance matrix. These two

components build astatistical model Bκ,i = (µκ,i,Σκ,i) which is estimated

by adding noise to the training imagef i,κ n-times. The result of the noise-

adding processes are the new training images

f i1,κ, f i2,κ, . . . f in,κ

and the corresponding feature vectors

ci1,κ = Φf i1,κ

ci2,κ = Φf i2,κ

...

cin,κ = Φf in,κ

which are used to estimate the mean vectorµκ,i and covariance matrixΣκ,i.

Classification and pose estimation can be done in a similar way as in (4), but

instead of the usage of the distance measurementsd(·, ·), the probability (5)

of the feature of the test image describes the similarity to a training image,

which can be formulated as

c = Φf

(κ∗, i∗) = argmax
(κ,i)

p(c|Bi,κ) (6)

φ∗ = φi∗,κ∗.



3 Parameterization of Normal Distributions

The last section described the extension of the classical eigenspace approach

by an statistical object model, which solves some of its problems. Neverthe-

less the poses, which can be estimated from the classifier, are restricted to

poses of the training images. This means that exactly the pose of the most

likely training image is returned, which leads to a systematical pose estima-

tion error. As similar object images have similar features in feature space,

[10] interpolates additional features using B-Splines. This is comprehensible

as the features shown in figure 1 lead to the assumption that the curve in the

feature space is continuous.

Assuming that the estimated normal distributions of similar object im-

ages are also similar, these considerations are also applicable to the statistical

eigenspace model. In figure 2 components of the mean vector and the covari-

ance matrix of the object images of one class dependent on the pose parameter

are shown, which verifies this assumption. Interpolation of some additional

normal distributions in an offline step would improve the resolution of pose

estimation of the statistical eigenspace classifier. The disadvantage of this

method is the high demand of memory to store the additional normal distribu-

tions. Also the usage of more features still shows the same systematical pose

estimation errors as only poses of training images and interpolated normal

distributions can be returned. We propose the parameterization of the normal

distribution

B(κ, φ) = (µ(κ, φ),Σ(κ, φ)) (7)

whereκ describes the discrete class number andφ denotes the continuous

pose parameter. Since in equation (6) it is assumed that a discrete number of

normal distributions are available, classification and pose estimation has now

to be formulated as an optimization problem

c = Φf



(κ∗, φ∗) = argmax
(κ,φ)

p (c|B(κ, φ)) . (8)

The optimization is done in two steps, which is typical for such problems [11].

First the optimal pose parameter for every class is estimated. Then the class

with the best result determines the overall result of the classification process.

More formal, this can be described as

c = Φf

φ∗(κ) = argmax
(κ,φ)

p (c|B(κ, φ)) (9)

κ∗ = argmax
κ

φ∗(κ).

Fig. 2

It has been shown in figure 2, that the components of the mean vec-

tor and covariance matrix, which are dependent on the pose parameter, are

continuous. Based on this fact, the parameterization is reduced to the inter-

polation of individual components. So the mean vector can be interpolated

by

µ(κ, φ) =




µ1(κ, φ)

µ2(κ, φ)

...

µNE
(κ, φ)




. (10)

An obvious idea for interpolation of the covariance matrix is using

Σ(κ, φ) =




Σ1,1(κ, φ) Σ1,2(κ, φ) · · · Σ1,NE
(κ, φ)

Σ2,1(κ, φ) Σ2,2(κ, φ) · · · Σ2,NE
(κ, φ)

...
...

. . .
...

ΣNE ,1(κ, φ) ΣNE ,2(κ, φ) · · · ΣNE ,NE
(κ, φ)




, (11)

which means that all components ofΣ(κ, φ) are interpolated independently

from each other. This is not permitted, as the vital postulation ofpositive

definiteness

xTΣx > 0 ∀x �= 0 (12)



may be violated. So two other ways of parameterization are suggested:

• Discrete interpolation: Use the covariance matrix of the correspond-

ing training image whose poseφi,κ has the lowest distance. This ap-

proach is maintainable, because the influence of the mean vector on the

classification rate is more important.

• Cholesky factorization: Every positive definite matrixΣ can be fac-

torized byΣ = LLT . The matrixL is a lower triangular matrix, which

can be parameterized componentwise and is written as

L(κ, φ) =




L1,1(κ, φ) 0 0 · · · 0

L2,1(κ, φ) L2,2(κ, φ) 0 · · · 0

...
...

. . .
...

LNE ,1(κ, φ) LNE ,2(κ, φ) · · · · · · LNE ,NE
(κ, φ)




.

(13)

The parameterized covariance matrix can be calculated by

Σ(κ, φ) = L(κ, φ) (L(κ, φ))T . (14)

The product of a matrix and its transponent is always positive definite

which can easily be shown by

xTΣ(κ, φ)x = xT L(κ, φ)(L(κ, φ))T x

= (xT L(κ, φ))︸ ︷︷ ︸
vT

((L(κ, φ))T x)︸ ︷︷ ︸
v

> 0 ∀x �= 0, L(κ, φ) �= 0

Algorithms for calculatingL are given in [6].

4 Interpolation Techniques

In the last section, a method for parameterization of normal distributions

which is independent from the interpolation technique was presented. There



exist many methods for interpolating data. In the first part of this section, we

restrict ourselves to pose parameters which lie on a regular grid. In the sec-

ond part we also show two methods, based on trilinear interpolation and radial

basis functions, which allow interpolation with scattered pose parameters.

4.1 Interpolation Techniques on Gridded Data

We use two 1-D interpolation methods for the components of the mean vector

and the left triangle matrix and extend them to an-D interpolation: Linear

interpolation andCatmull-Rom spline (CRS) [1] interpolation. The linear in-

terpolation is very fast but not continuously differentiable. The CRS inter-

polation is also fast because of its polynomial character and is continuously

differentiable. A continuously differentiable interpolant is more realistic than

one which is not. In contrast to other interpolation techniques, one does not

have to solve a linear system, which makes CRS interpolation very flexible.

In figure 3, two graphs of the first three components ofµ(κ = 1, φ) using

linear (left) and CRS interpolation (right) have been interpolated.

Fig. 3

The 1-D interpolation can be easily enhanced ton dimensions by using

a dimension-descent technique as shown in figure 4. The upper left picture

shows the dimension-descent for 2-D pose parameters for the linear interpo-

lation. The filled points are the pose parameters of training images and the

pointX is to be interpolated. To do this by a linear 1-D interpolation, pointp ′
1

has to be interpolated fromp1 andp2. Similarly, pointp′
2 can be interpolated

from p3 andp4. Now it is possible to interpolate the searched pointX by using

p′1 andp′2. The upper right picture of figure 4 shows the dimension-descent

for 3-D pose parameters. Of course, the dimension-descent can be adapted to

CRS interpolation, which is exemplified (for 2-D interpolation) by the lower

image.



Fig. 4

4.2 Interpolation Techniques on Scattered Data

Interpolation of scattered data is an intensively researched field in the area of

computer graphics. Most of those techniques require a two dimensional tri-

angle net for the parameterization which means that for our purpose we are

limited to a 2-D pose parameter space. It is important that the mesh generator

does not create acute angled triangles which would lead to bad interpolation

results. Therefore we use aDelaunay refinement [15] to restructure an arbi-

trary triangle net which improves the quality of interpolation. Two examples

for triangulation are given in figure 5.

One interpolation technique which uses triangle nets is the trilinear in-

terpolation. The interpolant is defined as

µn(κ, φ) = ujµj,κ,n + ukµk,κ,n + ulµl,κ,n (15)

whereuj, uk, ul are the barycentric coordinates ofφ, which is in the interior

of the triangle with cornerφκ,j, φκ,k, φκ,l andµκ,j,n, µκ,k,n, µκ,l,n denotes the

nth-component of the mean vector which belongs to the corresponding cor-

ners. The elements of matrixL in (13) can be treated the same way as the

components of the mean vector.

Fig. 5

Another interpolation technique for scattered data which is applicable

in parameter spaces of arbitrary size is the interpolation with radial basis func-

tions [4], which have been intensively researched in numerical mathematics.

The interpolation rule is

µn(κ, φi,κ) = µi,κ,n∀i, κ (16)



and the interpolant is defined as

µn(κ, φi,κ) =
∑

i

wi,κh(dE(φ, φi,κ)), (17)

whereh : IR+ → IR+ is the so-called radial basis function,dE(·, ·) is a

distance measurement (we use Euclidian distance), andwi,κ,n is a weighting

coefficient. For details of the computation ofwi,κ consult [4]. There exist

dozens of different radial basis functions, for our purpose we use

h(x) = exp

(
−x2

τ

)
, (18)

because it depends on only one free adjustment parameter. If the value ofτ

is small, the elements of the normal distributions which have a large distance

toφ have a higher influence in comparison to a largeτ (illustrated in figure 6).

Fig. 6

Note that any other interpolation techniques can be used for our purpose

and the four examples are used to show how to use the presented method of

parametrization of normal distributions. Doubtless there exist other methods

of interpolation which could bring better classification rates.

5 Experiments and Results

We performed experiments on theDIROKOL image database [14] which con-

sists of 13 real objects (1860 training images and 1860 test images per object)

with a resolution of 256 x 256 shown in Fig. 7. For the image acquisition a

turntable and a robot arm were used, which allows images to be taken from a

hemisphere. Also the objects are illuminated at three different lighting con-

ditions. As three different illumination conditions have been used, we limit

ourselves to one third of the image set (all with the same illumination condi-

tion). Experiments with the full set have already been presented in [7]. We

use aLinux PC with anAthlon XP (1.68 GHz) processor and 1GB memory for



the experiments. We used an eight dimensional eigenspace for the PCA, and

for the optimization problem in equation (8) we applied an adaptive random

search algorithm [16], followed by a simplex step.

Fig. 7

We compared classification rate and pose estimation accuracy of the

linear, CRS, trilinear and RBF interpolation. All methods are tested with

a discrete interpolation of the covariance matrix and Cholesky factorization

(except for the trilinear interpolation, where only a discrete interpolation ofΣ

has been performed). For the RBF interpolation set the parameter of the Gaus-

sian functionτ = 100. As the unit of the pose parameter of the DIROKOL

database ismotor steps [14] and not degree, the value ofτ is here much larger

than in figure 6. Experiments for using the discrete statistical eigenspace

approach have also been done to show the improvement of the continuous

model. The results, which are presented in table 1, show, except for the tri-

linear interpolation, that the continuous approach leads to better results than

the discrete approach both in classification rate and pose estimation accuracy.

The accuracy is given in the so called percentile 80 values which describe the

maximal localization error if the classification is correct and only the 80%

best localizations are taken into account. The objectscup 1 andcup 2 have

been excluded from the calculation of the pose estimation error since there

exist ambiguities. Disadvantageous is the high computational cost of the con-

tinuous method, because a lot of mean vectors and covariance matrices have

to be interpolated for optimization of (8). Note that the classification time

is linearly dependent on the number of classes. The best classification rate

and pose estimation can be achieved by using using a Cholesky factorization

for covariance matrix. Using a linear interpolation for the mean vector and a

discrete interpolation for the covariance matrix also shows a very good result,

but takes only∼40% of the computation time. Furthermore, the results show



that the trilinear interpolation is not well suited for the interpolation of normal

distributions.

Tab. 1

6 Conclusion and Outlook

In this paper, we presented a novel approach for parameterization of normal

distributions which is applicable to object recognition algorithms based on

statistical normal distributed object models. As the componentwise parame-

terization of the covariance matrix is not allowed, because the positive defi-

niteness may be lost, we proposed the usage of a Cholesky factorization. For

interpolation we used Catmull-Rom splines, linear interpolation, radial basis

functions and trilinear interpolation. The last two techniques are also appli-

cable on object models where the pose parameters of the training images are

scattered. Experiments which have been performed on an image database

with real images show that the continuous model is superior to the discrete

model. The advantage of radial basis functions is that they can also be used

on scattered pose parameters of the training images.

Further research should concentrate on other methods for parameteri-

zation of normal distributions. Also interpolation techniques based on Bezi´er

patches like the Clough-Tocher interpolation [5] should be evaluated. The

usage of other radial basis functions like the inverse multiquadratic functions

may be beneficial.
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Fig. 1: Illustration of the first three components of feature vectors of one class
and the distance measurement, which is used to classify and localize a new
image
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placed on a turntable.
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Fig. 3: Example of a linear (left) and CRS interpolation (right) of a graph
of the first three components of µ(κ = 1, φ) dependent of a one dimensional
pose parameter φ. A total of NT = 16 training images – corresponding mean
vectors are marked as diamonds – are the control points of the interpolation.
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Fig. 4: Illustration of a reduction of an n-dimensional to a one-dimensional
interpolation. (a) and (b) show this recursive procedure in the case of a linear
interpolation, (c) in the case of CRS Interpolation.
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Fig. 5: Left: Triangle net using an awkward triangulation algorithm. Right:
Triangle net with delaunay refinement [15] which is more suitable for inter-
polation. Dots mark pose parameters of training images.
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Fig. 6: Example for an interpolation using radial basis functions (RBF) of a
three-dimensional mean vector µ(κ = 1, φ). A total of NT = 16 training im-
ages – corresponding mean vectors are marked as diamonds – are the control
points of the interpolation. The influence of the parameter τ of the Gaussian
function K(x) = exp(−x2/τ) is clearly visible.
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Fig. 7: The DIROKOL image database [14]



Method Classification Pose estimation Classification
rate accuracy time

discrete statistical 86.1% 9.61◦ < 0.01s
µ: linear,Σ: discrete 90.0% 6.79◦ 1.6s
µ: linear,Σ: linear 92.6% 6.18◦ 3.7s
µ: CRS,Σ: discrete 91.1% 6.59◦ 3.4s
µ: CRS,Σ: CRS 92.5% 6.00◦ 6.5s
µ: trilinear,Σ: discrete 75.1% 45.28◦ 4.5s
µ: RBF,Σ: discrete,τ = 100 90.5% 6.06◦ 9.7s
µ: RBF,Σ: RBF, τ = 100 92.5% 6.00◦ 20.0s

Table 1: Classification rate, accuracy of pose estimation (percentile 80
values) of successfully classified images and optimization time using the
DIROKOL image database.
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