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Abstract

Detecting abnormal events within time series is crucial for analyzing and understanding the
dynamics of the system in many research areas. In this paper, we propose a methodology to
detect these anomalies in multivariate environmental data. Five biosphere variables from a
preliminary version of the Earth System Data Cube have been used in this study: Gross
Primary Productivity, Latent Energy, Net Ecosystem Exchange, Sensible Heat and Ter-
restrial Ecosystem Respiration. To tackle the spatiotemporal dependencies of the biosphere
variables, the proposed methodology after preprocessing the data is divided into two steps:
a feature extraction step applied to each time series in the grid independently, followed by
a spatiotemporal event detection step applied to the obtained novelty scores over the entire
study area. The first step is based on the assumption that the time series of each variable
can be represented by an autoregressive moving average (ARMA) process, and the
anomalies are those time instances that are not well represented by the estimated ARMA
model. The Mahalanobis distance of the ARMA models’ multivariate residuals is used as a
novelty score. In the second step, the obtained novelty scores of the entire study are treated
as time series of images. Markov random fields (MRFs) provide an effective and theo-
retically well-established methodology for integrating spatiotemporal dependency into the
classification of image time series. In this study, the classification of the novelty score
images into three classes, intense anomaly, possible anomaly, and normal, is performed
using unsupervised K-means clustering followed by multi-temporal MRF segmentation
applied recursively on the images of each consecutive L> 1 time steps. The proposed
methodology was applied to an area covering Europe and Africa. Experimental results and
validation based on known historic events show that the method is able to detect historic
events and also provides a useful tool to define sensitive regions.
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1 Introduction

Technological developments from the last decades offer unprecedented opportunities to
monitor the Earth system. In particular, the derived downstream data products are very
valuable to understand processes at the land surface. International research projects like
ESDL' and BACI? are joint efforts to provide free-of-charge, unified, and high quality
Earth Observations (EOs) from satellite-based remote sensing measurements. Within this
framework, the concept of the ‘Earth System Data Cube’ arose as a practical and intuitive
way of storing and representing multivariate spatiotemporal databases.

The ability to detect and monitor anomalous behavior in multivariate environmental
time series is crucial. These events are signals of changes in the underlying dynamical
system and their detection can be used as an early warning system for land ecosystems.
Classical extreme value theory (Coles 2001; Dey and Yan 2016) cannot be an option since
the length of existent EOs data so far is relatively short (up to maximal three decades).
Recently, Zscheischler et al. (2014) and Zscheischler et al. (2014) proposed an univariate
approach based on threshold exceedances to analyze the global interannual variability of
gross primary production. The presented methodology in contrast aims to tackle the
problem from a multivariate point of view. Then, the definition of an extreme event should
also include those constellations where not a single variable is an extreme but its com-
bination is an extreme (multivariate extreme or compound event) (Reichstein et al. 2013;
Flach et al. 2017; Zscheischler et al. 2018). Therefore, the extrapolation from the uni-
variate to the multivariate case is not trivial.

A common approach for multivariate analysis in geoscience is to look for those events
where multiple variables present abnormal behavior simultaneously, often called co-ex-
ceedances (Donges et al. 2011; Donges et al. 2016). This approach is based on fixing a
threshold at each variable and analyzing the probability of occurrence of events above
those thresholds either simultaneously or with a certain lag between variables. However,
this might be a very conservative approach. A good alternative which has become very
popular lately is the application of copulas. Copula models are based on Sklar’s theorem
which states that any multivariate distribution can be written in terms of univariate mar-
ginal distribution functions of the variables involved and a copula function that describes
the dependence between these variables (Sklar 1959). Whereas copulas are well studied in
the bivariate case, higher-dimensional cases still present some limitations. Elliptical (i.e.,
multivariate Gaussian and Student’s t distributions) and Archimedean (i.e., Clayton, Frank
and Gumbel) families are the most suitable ones for practical multivariate applications (Ma
et al. 2013; Corbella and Stretch 2013). Nonetheless, there are authors arguing against the
use of copulas and that they do not present any particular advantage when dealing with
multivariate distributions (Mikosch 2005).

The main objective of this study is to propose a methodology to detect abnormal events
in multivariate environmental time series. By combining different statistical methods, we
are able to tackle the spatiotemporal dependencies. The methodology we propose can be
divided into two main steps: feature extraction and event detection. The first step is based
on the assumption that the time series of each variable can be represented by an autore-
gressive moving average (ARMA) process, and anomalies are those time instances that are
not well represented by the estimated ARMA model (Chandola et al. 2009). We use the

! earthsystemdatalab.net/.
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Mahalanobis distance as a measure of the deviation of the multivariate residuals (differ-
ence between the observations and ARMA model output) at certain time step from their
joint distribution.

For the second step, two event detection methods are presented in this paper. The first is
to use a fixed threshold at a certain percentile of the Mahalanobis distance distribution
applied on each time step independently. However, adjacent points in time and space are
most likely to belong to the same event, whether it is normal or anomalous. The
exploitation of the spatiotemporal regularity of the obtained novelty score can, on one
hand, help to reduce the uncertainty in the estimation of the Mahalanobis distance from the
noisy observations of a single point in time and space, and on the other hand, can help to
directly define the spatial and temporal extent of the detected events. Hence, as an alter-
native solution, we propose to approach the problem of detecting abnormal events as
detection of spatiotemporal clusters of high novelty score (Mahalanobis distance). Based
on the proposed approach, the statistics (mean and variance) of the detected clusters, rather
than a fixed percentile threshold, can be used to define the intensity of the anomalies. This
is advantageous since the optimal selection of a fixed percentile threshold might vary
according to the season as well as the climate area.

Markov random fields (MRFs) (Geman and Geman 1984) provide an effective and
theoretically well-established mathematical tool for integrating spatiotemporal dependency
into the classification of image time series (Melgani and Serpico 2003; Benedek et al.
2015). To this end, the obtained Mahalanobis distance over the entire study area is treated
as a time series of images. We use an adaptation of the multi-layer fusion MRF classifi-
cation model presented in Sziranyi and Shadaydeh (2014) and Shadaydeh et al. (2017) for
the classification of this Mahalanobis distance images into three classes, intense anomaly,
possible anomaly and normal.

The remainder of this article proceeds as follows. Section 2 gives a short description of
the used data and study area. In Sect. 3, the steps of the methodology are explained in
detail. Experimental results and validation based on known historic events are presented in
Sect. 4. Finally, a conclusion is drawn in Sect. 5.

2 Data and study area

Data from the Earth System Data Cube (ESDC) developed within the ESDL project have
been used as the primary source of biosphere data for this study. The ESDC comprises
spatiotemporal data consisting of: time, latitude, longitude and multivariate Earth Obser-
vations. The version used in this study covers the period from January 2001 to December
2012 with 8 daily observations and a spatial grid with a resolution of 0.25°. More than 30
biosphere and atmosphere parameters are included in this database. Out of these variables,
we have used those 5 that mainly measure the terrestrial biosphere activities: Gross Pri-
mary Productivity (GPP), Latent Energy (LE), Net Ecosystem Exchange (NEE), Sensible
Heat (SH) and Terrestrial Ecosystem Respiration (TER), which were kindly provided by
the FLUXCOM initiative (Tramontana et al. 2016).

The study area comprises Africa and Europe (see Fig. 1). This area was defined as the
main study area within the EU project BACL. The BACI project aims to develop a
‘Biosphere Atmosphere Change Index’ to detect climate-induced ecosystem changes and
to asses their impacts in socioeconomical and ecological processes.

@ Springer



Natural Hazards

=2
= Aﬂf o t d d
15% letter 274 letter 37% letter
TS o vy
° f%‘t} ﬁ/\d LJHM( . . .
. ? 5 o A: Tropical f: fully humid h: hot arid
Va ~ LW T B: Dry m: monsoon k: cold arid
® ;) “\\\ e C: Mild temperate s: dry summer a: hot summer
= \Cj o D: Snow w: dry winter b: warm summer
S~ e /’/ bea E: Polar ‘W: dessert c: cool summer
N %g ( S: steppe d: cold summer
> ﬁ\ - T: tundra
« § 7 { ] o F: frost
A ] / ET
(P - 4
—

Fig. 1 Area of study clustered according to the Koppen climate classification. Gaps represent areas where
there is no data available

3 Methodology

The methodology we propose can be divided into the following three steps: preprocessing,
feature extraction and event detection. Methodology workflow is illustrated in Fig. 2. Each
step is described in more detail in the following subsections.

3.1 Preprocessing

Deseasonalization and normalization To avoid inconsistencies later, data needs to be pre-
processed. We have applied techniques commonly used in environmental sciences; ini-
tially, the seasonal pattern usually present in environmental variables has been removed. In
order to do so, we have subtracted the mean seasonal cycle. Then the remaining variables
were normalized by subtracting its mean, u, and dividing by its variance, ¢. This is done
for all the 5 variables locally at each pixel of the grid.

Regionalization Once the seasonality has been removed and the variables have been
normalized, the grid was clustered into regions of similar climate conditions. This
regionalization was done according to the climate types defined by the Koppen Climate
Classification (Chen and Chen 2013). The Koppen Climate Classification is a widely used
vegetation-based empirical clustering that divides the world in up to 31 climate regions.
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Fig. 2 Flowchart of the proposed methodology
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From these 31 climate regions, 23 are present in our study area. Figure 1 shows the climate
regions with the legend explaining the codes that define them.

3.2 Feature extraction
3.2.1 ARMA models

An abnormal event can be defined as those points within the time series that are not well
represented by a previously fitted statistical model (Chandola et al. 2009). Following this
intuitive concept, we have applied an autoregressive moving average (ARMA) model and
afterward computed the residuals between the model and the data. Those points where the
differences (residuals) between model and data are significantly high can be considered as
abnormal events that the model is not able to represent correctly. An ARMA (p, ¢) model
consists of two parts, an autoregressive part (AR) and a moving average part (MA). The
coefficients p and ¢ refer to the order of each part:

P q
X, =&+ Z @;X—i + Z Oie—i (1)
i=1 i=1

where ¢, ..., ¢, and 01, ..., 0, are parameters of the model and ¢, is an error term assumed
to be i.i.d. Gaussian noise.

For each climate region, a representative point that is geographically centered in the
region and hence reflects its average behavior has been selected. A univariate ARMA
model for each of the 5 variables has been fitted, for every representative point. In order to
select the best model order (p, ¢), a Bayesian Criterion (Schwarz 1978) was applied to all
the possible combinations between (0,0) and (5,5). Table 1 shows the selected ARMA
order for each variable and climate region.

Although there are multivariate approaches available (e.g., Cai 2011; Soares and Cunha
2000), we have decided to work with univariate ARMA models independently fitted to
each variable at each point due to higher flexibility and easier interpretation. In Preez and
Witt (2003), the authors compared the performance of univariate and multivariate models
and as a result of their work they recommended the use of univariate models, specially in
those cases where cross-correlations between variables are not particularly strong. Mul-
tivariate models involve a greater number of parameters, which becomes a disadvantage
for rather short time series, while their performance is comparable to univariate
approaches.

Accordingly for each climate region and variable, we have estimated the parameters
(», q) of the ARMA models to be fitted. Then we proceed with the entire grid, fitting for
each point an ARMA (py;, q;;), where i refers to the climate region and j stands for the
variable (see Table 1). Note that there are some variables where the selected ARMA model
is of order (0, 0), in those cases, the Bayesian Criterion indicates that is better to work
directly with the variables themselves instead of working with ARMA model residuals.

We have additionally tested the use of ARIMA models (autoregressive integrated
moving average models) that are worthy to be used when the variables present non-
stationarity. Comparing the use of ARMA and ARIMA models by means of the Bayesian
Criterion, we found that including the extra parameter of the ARIMA models does not lead
to better results for the relatively short-term (12 years) ESDL data. Table 2 shows the
comparison between the ARMA and ARIMA models for each climate region and variable.
The ARIMA(p, D, g) models introduce a non-seasonal integration term defined by the
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Table 1 (p, g9) ARMA parame-

ters selected for each climate Region Variables
region and variable GPP LE NEE SH TER
Af [0,0] [0,0] [0,0] [0,0] [0,0]
Am [1,0] [0,0] [1,0] [0,0] [1,0]
As [1,0] [0,0] [1,0] [0,0] [0,1]
Aw [1,0] [2,2] [1,0] [0,0] [1,0]
BWh [1,1] [1,1] [1,1] [1,0] [2,0]
BWk [1,1] [1,1] [1,1] [1,0] [0,0]
BSh [1,0] [0,0] [1,0] [0,0] [0,0]
BSk [1,0] [1,0] [1,0] [0,0] [1,1]
Csa [1,1] [1,0] [1,1] [1,0] [1,0]
Csb [0,0] [0,0] [0,0] [0,0] [0,0]
Cwa [1,1] [1,1] [1,1] [1,0] [1,1]
Cwb [1,0] [1,1] [0,0] [1,0] [1,1]
Cwc [1,1] [1,1] [1,1] [1,1] [1,1]
Cfa [0,0] [3,2] [0,0] [0,0] [0,0]
Cfb [4,2] [1,0] [1,1] [1,1] [1,0]
Cfc [0,3] [1,0] [4,0] [1,0] [1,0]
Dsa [4,2] [1,1] [2,0] [1,1] [1,1]
Dsb [1,0] [1,0] [1,0] [1,0] [1,0]
Dsc [0,0] [0,0] [0,0] [0,1] [0.0]
Dfa [1,1] [1,1] [1,1] (1,1] [1.1]
Dfb [1,0] [1,0] [1,0] [0,0] [1,0]
Dfc [1,0] [0,1] [1,0] [1,0] [0.1]
ET [1,0] [0,0] [0,0] [0,0] [0,1]

parameter D. As it can be seen, D is equal to O in the majority of the climate regions and
variables. Therefore, following the principle of parsimony, we have decided for the ARMA
models.

3.2.2 Residuals

Next we proceed with the model fittings for all the pixels of the grid; by comparing the
predictions of the ARMA models with the variables themselves, we obtain the time series
of residuals at each point. These residuals’ time series will be used to detect abnormal
events. To ensure the fitness of the estimated ARMA models, we have checked the
autocorrelation pattern of the residuals to ensure the absence of seasonal pattern and low
correlation.

3.2.3 Mahalanobis distance

At each pixel of the grid, we have combined the residuals of the 5 variables in a vector x
and estimated its Mahalanobis distance (Mahalanobis 1936; Hotelling 1947). This distance
measure compared to other metrics has the advantage of taking into account the shape of
the joint distribution. Compared to the Euclidean distance, it does not only take the mean
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Table 2 Comparison between (p, g) ARMA parameters and (p, D, g) ARIMA parameters for each climate
region and variable

ARMA ARIMA

GPP LE NEE SH TER GPP LE NEE SH TER
Af [0,0] [0,0] [0,0] [0,0] [0,0] [1,0,0] [1,0,0] [1,0,0] [1,0,0] [1,0,0]
Am [1,0] [0,0] [1,0] [0,0] [1,0] [1,0,0] [0,0,0] [1,0,0] [0,0,2] [1,0,0]
As [1,0] [0,0] [1,0] [0,0] [0,1] [1,0,0] [1,0,0] [1,0,0] [0,0,0] [1,0,0]

Aw [1,0] [2,2] [1,0] [0,0] [1,0] [2,0,0] [1,0,1] [2,0,0] [1,0,0] [1,0,0]
BWh [1,1] [1,1] [1,1] [1,0] [2,0] [1,0,1] [1,0,1] [2,0,0] [1,0,1] [1,0,0]
BWk [L,1] [1,1] [L,1] [1,0] [0,0] [2,0,0] [1,0,0] [1,0,1] [1,0,0] [1,0,0]
BSh [1,0] [0,0] [1,0] [0,0] [0,0] [1,0,0] [1,0,1] [1,0,0] [1,0,0] [1,0,0]
BSk [1,0] [1,0] [1,0] [0,0] [1,1] [1,0,2] [1,0,0] [2,0,0] [1,0,1] [1,0,0]
Csa [1,1] [1,0] [1,1] [1,0] [1,0] [1,0,0] [1,0,0] [1,0,0] [1,0,0] [1,0,0]
Csb [0,0] [0,0] [0,0] [0,0] [0,0] [1,0,0] [1,0,0] [3,1,3] [0,0,0] [1,0,0]
Cwa [1,1] [1,1] [1,1] [1,0] [L,1] [1,0,0] [1,0,0] [1,0,0] [1,0,0] [1,0,0]
Cwb [1,0] [1,1] [0,0] [1,0] [1,1] [1,0,1] [1,0,0] [3,0,0] [1,0,0] [1,0,1]
Cwc [1,1] [1,1] [1,1] [1,1] [1,1] [1,0,1] [1,0,0] [1,0,1] [1,0,0] [1,0,0]
Cfa [0,0] [3,2] [0,0] [0,0] [0,0] [1,0,0] [1,0,0] [1,0,1] [1,0,1] [1,0,0]
Cfb [4,2] [1,0] [1,1] [1,1] [1,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0]
Cfc [0,3] [1,0] [4,0] [1,0] [1,0] [1,0,0] [1,0,0] [2,0,0] [0,0,2] [1,0,0]
Dsa [4,2] [1,1] [2,0] [1,1] [1,1] [1,0,0] [1,0,0] [1,0,0] [1,0,0] [1,0,0]
Dsb [1,0] [1,0] [1,0] [1,0] [1,0] [1,0,0] [0,0,1] [1,0,0] [1,0,0] [1,0,0]

Dsc [0,0] [0,0] [0,0] [0,1] [0,0] [1,0,0] [1,0,0] [2,0,0] [0,0,0] [1,0,0]
Dfa [1,1] [1,1] [1,1] [1,1] [1,1] [1,0,0] [2,0,0] [2,0,0] [1,0,1] [1,0,0]
Dfb [1,0] [1,0] [1,0] [0,0] [1,0] [1,0,1] [1,0,0] [1,0,0] [1,0,0] [1,0,0]
Dfc [1,0] [0,1] [1,0] [1,0] [0,1] [1,0,0] [2,0,0] [2,0,0] [0,0,0] [0,0,1]
ET [1,0] [0,0] [0,0] [0,0] [0,1] [1,0,0] [1,0,0] [1,0,0] [1,0,0] [0,0,1]

but also take the covariance matrix into account. The Mahalanobis distance (in squared
units) is defined as:

dp(x) = (x —x)"Z 71 (x — x) (2)

where X and X are the mean and covariance matrix of the multivariate residuals vector X
respectively. The mean and the covariance were estimated considering the entire time
series. This was the best way to do so in our case due to the short length of the time series
used together with its coarse temporal resolution.

Figure 3 shows the scatter-plot matrix of the residuals at a certain location (50,875°N,
11,625°E). The diagonal of the matrix shows the autocorrelation plots of the 5 variables,
while the rest of the subplots represent all the pair-wise scatter plots. The colors assigned to
the dots in the scatter plots are associated to the Mahalanobis distance estimated with the 5
variables. Although the residuals’ joint distribution does not follow a multivariate Gaussian
distribution, it does not present a clear multimodality. Therefore, Mahalanobis distance is
still a robust approach as argued by Warren et al. (2011). The negligible autocorrelation

@ Springer



Natural Hazards

0
I
I
& |
&
LI
o|lbane— HEERPN
7 =
2 I
|
I
Yoo |
!
E DU
21, ANt .
N
2 |
w |
ER I
2 |
AN e
|
2 i
|
& o |
{
2 |
AT~
20
|
2 “ 15
E o | >
{
- | 5
2 N N
0

GPP LE NEE SH TER

Fig. 3 Scatter-plot matrix and autocorrelation plots of the ARMA residuals at the location 50,875°N,
11,625°E. The color of the dots represents the Mahalanobis distance associated to the residuals

values for lags greater than zero indicate that the models are well fitted. This corroborates
the use of univariate ARMA models and their correct fit for this study case considering the
low temporal resolution of the data. However, multivariate autoregressive models could be
implemented at the feature extraction step for higher temporal resolution data without
changing the next event detection step.

3.3 Event detection

Once the Mahalanobis distance for all the points of the grid has been estimated, the
following question arises: how could we discern between normal and abnormal values of
this metric? At this point, we have considered two options. As a first approach, we have
used a fixed threshold at a certain percentile of the Mahalanobis distance distribution. And
as a second and more complex approach, we define abnormal events as those spatiotem-
poral clusters of high novelty score (Mahalanobis distance). To this end, we use unsu-
pervised K-means clustering followed by MRF spatiotemporal smoothing. Details of these
two approaches are described in the following two sections.

3.3.1 Event detection using fixed threshold

The easiest way to distinguish between normal and abnormal events is to set a threshold
and look for the events surpassing this threshold. We are interested only in the largest
values of the Mahalanobis distance; therefore, we have set the threshold at the 97.5th
percentile of its distribution (all the Mahalanobis distance values along the entire region).
We have then looked for the events above this threshold, which are the 2.5% of obser-
vations with the largest Mahalanobis distance.
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3.3.2 Event detection using spatiotemporal MRF model

Markov Random Field models are widely adopted to quantify the spatial/temporal
dependency among adjacent pixels in time series of images. It represents an undirected
graph where graph nodes denote image pixels, and graph edges denote conditional
dependencies. The dependency between adjacent pixels can be modeled by conditional
probabilities within a neighborhood system.

Sziranyi and Shadaydeh (2014) proposed a multi-layer fusion MRF model for change
detection in multi-temporal optical images. This method has been further improved in
Shadaydeh et al. (2017) to deal recursively with time series of images.

In this study, the obtained Mahalanobis distance over the entire study area is treated as
time series of images. We use an adaptation of the model proposed in Shadaydeh et al.
(2017) for the classification of time series of the Mahalanobis distance images into K
classes using unsupervised K-means clustering followed by spatiotemporal MRF-based
segmentation applied recursively on each L> 1 consecutive images. The K classes rep-
resent K different intensities of the novelty score clusters.

Animage S = {s1, 52, ..., Sy} is considered as two-dimensional grid of pixels. Let G, be
the set of pixels which are neighbors of a pixel s € S; G = {G, | s € S} is a neighborhood
system (Kato and Zerubia 2012) if: Vs, r € S: s € G;; and s € G, < r € G,.

Each of the image pixels may take a label A from a finite set of labels A. Let Q =
{w=(wy,...,05,) 0 € A, 1 <i<H} be the set of all possible labels assigned to the
image pixels. The image segmentation is equivalent to a global labeling Q = {w; | s € S}.
The label field Q2 is modeled as a Gaussian Markov Random Field. There are several
methods to estimate the global optimum labeling through iteration process or graph-cutting
(Kato and Zerubia 2012).

Let d,(¢) denote the novelty score (Mahalanobis distance) at location s and time point
t. The proposed method consists of the following four steps applied recursively for each
time step ¢ (cf. Fig. 4):

Multi-layer image X Kmean clustering and MRF
(novelty score of segmentation on X

L time layers)

» d,(t-1) '/f/f/f/ /'Z 4
TR

L i e IR
VY
d (t) 1 i f/ /
s Segmentation SRARRAIN
label map Q mp ¢ ¥ ¥ ¢ ¥ 9 m) Classification map
for initial training U ) Q

MRF segmentation on
ds(t+1) the single time layer d(t)

Fig. 4 The workflow of the proposed spatiotemporal MRF classification model applied on each L =3
consecutive novelty score images
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1. The novelty scores d,(t) for L = 2N + 1 successive time instants are presented by the
feature vector:

dg = [d(t —N), -, dg(t),- -, ds(t + N)]T. (3)

2. Finding K clusters in the multi-layer image X = {ds,s € S} using the unsupervised K-
means clustering algorithm.

3. Running MRF segmentation on the multi-layer image X using the K-means clustering
parameters to obtain the multi-layer labeling ;.

4. The multi-layer labeling Q; is used as training map for another MRF segmentation
applied on the novelty score image d(t) = {ds(t),s € S} resulting in a labeling ;.

We use a maximum a posteriori (MAP) estimator for the label field of the MRF. The MAP
estimator combines the conditional random field of the observed data P(f |w;) (f, = ds in
Step 1, and f; = d,(¢) in Step 4) and the unconditional Potts model (Potts 1952). The

global labeling Q is defined by the energy minimum:

Q= argming |:Z —log P(f,|ws) + Z O(wr, ws):| ) (4)

seS r,seS

where ©(w,, ;) is the neighborhood-energy term. It is set to zero if s and r are not
neighboring pixels, otherwise ® can be modified by applying the § homogeneity weight:

0 if o, = w;

Boito £o, ©)

O, ) = {

4 Experimental results and discussion
4.1 Validation process

Validating models that try to reproduce environmental processes is not trivial task. There
are no well-defined ground-truth events which can be used to compare the models’ per-
formance and level of accuracy. Here, with help of experts on the topic, we have selected a
list of well-known historical events that caused perturbations in the biosphere within the
time span of our data.

This validation is not meant to be as detailed and precise as the topic would require. For
this purpose, within the BACI project, there are specific work packages with experts in the
field currently working and analyzing the models from a geophysical point of view and
studying the socioeconomic and biodiversity impacts of these anomalies as well as the
causes behind them. With this validation, we only want to check quantitatively the per-
formance of the proposed methodology without detailed knowledge on the physical drivers
behind the events.

Table 3 encompasses the list of historical events selected for this validation. We have
selected three main events that happened at different locations within the area of study and
with different causes and impacts. These three events are well documented in the literature:
1. the drought-floods at the Horn of Africa along 2006; 2. the Russian Heatwave from 2010
and 3. the severe floods in South Africa between the end of 2010 and the beginning of
2011. In 2006, the Horn of Africa, specially Somalia, confronted a series of disasters both
natural and human-made. From the beginning of that year, a severe drought has caused a
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Table 3 Known historical extreme events used in the validation

Event Period Description
10-11/2006 Horn of Africa floods and food crisis (Kijazi and Reason 2009)
2 06-08/2010 Russian Heatwave (Trenberth and Fasullo 2012; Coumou and Rahmstorf 2012)
3 12/2010-01/ Floods in Southern Africa (Nilsson 2012)
2011

dramatic decrease in crops threatening almost 2 million people with starvation. This was
aggravated by the ongoing political conflict as well as the worst flooding in a decade by the
end of the year (Isar 2010). In summer 2010, western Russia, Ukraine, Belarus, Georgia
and Kazakhstan experienced a heat wave that lead to historical warm records in several
cities and a considerable high number of casualties related to the extremely hot temper-
atures (Barriopedro et al. 2011; Trenberth and Fasullo 2012; Coumou and Rahmstorf
2012). By the end of 2010 and the beginning of 2011, a series of loods took place in the
southern part of Africa, mainly in South Africa, Mozambique, Zimbabwe and southern
Botswana. The heavy rainfalls caused river-floods on the main rivers in that area. Severe
damages on property and loss of human lives were reported in the countries affected. This
event has been linked to the La Nifia event that occurred that winter and led to similar
events in several other countries around the world (Nilsson 2012).

In the following two sections, the results given by the two event detection methods for
those 3 events are presented.

4.2 Results for fixed threshold event detection

For each of the events presented before, the areas with higher values of Mahalanobis
distance are shown in Figs. 5, 6 and 7 with the largest contour line at the 97.5th percentile
threshold marked in red.

Figure 5 shows the months of October and November 2006. At that time, an important
food crisis caused by large floods devastated the Horn of Africa. Figure 6 clearly depicts
the Russian Heatwave of 2010. It can be seen how the anomaly moves from East to West
and finally hits the Nordic countries. The time steps between December 2010 and January
2011 are plotted in Fig. 7. During those months, serious floods took place in southern
Africa.

4.3 Results for spatiotemporal MRF model event detection

Considering the same events, we applied the four steps of the spatiotemporal MRF clas-
sification model presented in Sect. 3.3.2 to each time step. The classification maps of the
Mahalanobis distance into the classes intense anomaly, possible anomaly and normal are
shown in Figs. 8, 9 and 10. The intensity of the possible and intense anomaly classes for
each time step are annotated in the subplots’ legends, respectively, as PA and IA.

In all the experiments, we set the homogeneity weight = 1. We used a graph cut-
based o-expansion algorithm for the energy minimization of the MRF with the imple-
mentation accompanying Szeliski et al. (2006). The selection of the value of L is based on
data’s temporal resolution. In our experiments, we set L = 3 ensuring that the data belong
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04-0ct-2006 B 12-Oct-2006

Fig. 5 Floods at the Horn of Africa from October to November 2006 (Mahalanobis distance images). The
largest contour line at the 97.5th percentile of the Mahalanobis distance distribution is marked in red

to the same season. However, it is possible to use higher values of L = 3 when using data
with a higher temporal resolution. We initially assume that we have K = 9 clusters. We use
MREF segmentation with 9 classes representing 9 different intensities of the Mahalanobis
distance. For anomaly detection, we then merge all classes with mean values exceeding the
value of the Mahalanobis distance distribution (chi-square distribution) at the 97.5th
percentile as the intense anomaly class; classes with mean values between the 97.5th and
the 95th percentiles are classified as possible anomaly, and classes with mean value below
the 95th percentile are considered normal. The mean and variance of the new three clusters
are calculated again from the points of the merged sub-clusters.

4.4 Discussion

The plots shown in the previous sections demonstrate the methodology’s capability of
effectively detecting abnormal events in the biosphere. Both of the proposed event
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06-Jun-2010 14-Jun-2010

Fig. 6 Russian Heatwave from May to October 2010 (Mahalanobis distance images). The largest contour
line at the 97.5th percentile of the Mahalanobis distance distribution is marked in red

detection methods have advantages and disadvantages: fixing a threshold is a simple
approach that allows for a quick analysis of the results. This approach ensures that the
detected events at least have the same intensity (threshold) but the selection of the
threshold requires a meditated decision. The second proposed method, on the contrary,
automatically detects the spatial extents as well as the thresholds between classes at each
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31-Dec-2010 B 05-Jan-2011

Fig. 7 Floods in southern Africa from December 2010 to January 2011 (Mahalanobis distance images). The
largest contour line at the 97.5th percentile of the Mahalanobis distance distribution is marked in red

step. This allows for a more flexible definition of the detected anomalies but makes the
comparison of events more complicated since they might have different intensity levels.

Taking a closer look on the plots of the three selected events, we can observe the
following: Larger events like the Russian Heatwave are well represented by both methods
(Figs. 6 and 9). The sequence of time steps clearly shows how the anomaly moved from
East to West with a later displacement toward northern latitudes. While initially the
anomalies seem to be sparse across entire Europe, they become more concentrated around
western Russia, Ukraine and Belarus. In terms of intensity from the MRF models, the event
increases in intensity starting in May until it reaches a peak in the last 2 weeks of July
before decreasing again.

The event at the Horn of Africa in 2006 (Figs. 5 and 8) is detected more clearly using
the MRF-based method than with the fixed threshold. This can be related to the fact that the
intensities for this event are a bit lower than the ones obtained for the Russian Heatwave.

Finally, the event in southern Africa between the end of 2010 and the beginning of 2011
is shown in Figs. 7 and 10. Although being shorter in time (only 6 time steps), this anomaly
is clearly detected by both methods. Here, another difference between both methods is
present: the definition of three classes established from the MRF model-based method
allows for a better spatial definition of the event compared to the fixed threshold method.

It should be noted that the low temporal and spatial resolution of the data used in this
study represents a limitation for obtention of anomalies of short duration or small spatial
extension.
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04-Oct-2006 12-Oct-2006 B 20-Oct-2006
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Fig. 8 Floods at the Horn of Africa from October to November 2006 (spatiotemporal MRF classification
maps). The intensity of the possible and intense anomaly classes is annotated in the subplots’ legends as PA
and IA, respectively

5 Conclusions

A new methodology to detect anomalies in biosphere time series has been described. The
procedure is computationally efficient and hence practical to apply. Our approach com-
prises two main steps after preprocessing the data: feature extraction and event detection.
The feature extraction is achieved by means of autoregressive models followed by the
estimation of Mahalanobis distance of the multivariate residuals. Event detection is based
on the concept of detecting clusters of high novelty score using a spatiotemporal MRF
classification model.

The proposed methodology has been applied to a large area that covers Europe and
Africa. Results show that the method is able to detect the spatial extent of three known
historic events and also provides a useful tool to define sensitive regions.
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06-Jun-2010 ~ 14-Jun-2010
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Fig. 9 Russian Heatwave from May to October 2010 (spatiotemporal MRF classification maps). The
intensity of the possible and intense anomaly classes are annotated in the subplots’ legends as PA and IA,
respectively

The modular nature of the methodology allows for further improvements in different

sub-steps. It is also envisaged that the methodology can be applied to other kind of data
(e.g., atmospheric parameters). This however could require different preprocessing steps.
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Fig. 10 Floods in southern Africa from December 2010 to January 2011 (spatiotemporal MRF classification
maps). The intensity of the possible and intense anomaly classes are annotated in the subplots’ legends as
PA and IA, respectively

The proposed methodology could be enhanced by the use of other models than the
univariate ARMA models suggested here; for example, with longer time series, multi-
variate regressive models could be implemented at the feature extraction step without
changing significantly the event detection step. Further research is also needed for a better
suited climate classification. Although the use of the Koppen Climate classification pro-
vides a useful approach, a better definition of climate regions with transitional borders
between regions, instead of hard ones could avoid seasonal effects observed in the models’
behavior. Finally, regarding the spatiotemporal MRF classification model, one potential
improvement would be the use of a hyper-parameter-free clustering method instead of the
K-means. In case of availability of training data for normal and/or anomalous classes, it is
possible to use supervised training for the spatiotemporal MRF model instead of the
unsupervised K-means clustering.
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