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Abstract. On a daily basis, experts in biodiversity research are confronted with
the challenging task of classifying individuals to build statistics over their distri-
butions, their habitats, or the overall biodiversity. While the number of species
is vast, experts with affordable time-budgets are rare. Image retrieval approaches
could greatly assist experts: when new images are captured, a list of visually simi-
lar and previously collected individuals could be returned for further comparison.
Following this observation, we start by transferring latest image retrieval tech-
niques to biodiversity scenarios. We then propose to additionally incorporate an
expert’s knowledge into this process by allowing him to select must-have-regions.
The obtained annotations are used to train exemplar-models for region detection.
Detection scores efficiently computed with convolutions are finally fused with an
initial ranking to reflect both sources of information, global and local aspects. The
resulting approach received highly positive feedback from several application ex-
perts. On datasets for butterfly and bird identification, we quantitatively proof the
benefit of including expert-feedback resulting in gains of accuracy up to 25% and
we extensively discuss current limitations and further research directions.

1 Introduction

In biodiversity research, experts are confronted with a growing amount of collected im-
ages which build the foundation for statistics over distributions of species, their habitats,
or the overall biodiversity in ecosystems. Within this challenging process, classification
of individuals is commonly done using field guides and by comparing the current ob-
ject of investigation against known classes, thereby checking for the presence of unique
characteristics (e.g., a red dotted neck or a characteristically colored wing). Common
image retrieval techniques, e.g., [26, 8,34,27,2, 4,37, 5], could greatly assist in this pro-
cess by suggesting visually similar genera for further inspection to an expert. Simply
applying these techniques to biodiversity scenarios, however, does not necessarily lead
to satisfying results. One reason is that species, while visually similar on a global scale,
often show significant differences in small and localized details which are easily missed.
Furthermore, locations of discriminative details significantly differ between categories,
which requires experts to investigate different sets of parts depending on the currently
faced individual. In this paper, we therefore present an approach to improve existing
image retrieval techniques by incorporating expert feedback about must-have-regions
into the retrieval process. A visualization of the underlying idea is given in Fig. 1.

We will build on neural codes [4] as baseline, a recently introduced technique for
image retrieval using activations of convolutional neural network architectures. Thereby,
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Fig. 1: Image retrieval techniques can assist biodiversity researchers by filtering col-
lected datasets for individuals visually similar to an unseen object (left and top row).
We present how an expert-in-the-loop can improve this baseline by selecting a must-
have-region (e.g., the dashed rectangle). By training region-specific detection models,
we can detect these regions in training images (indicated as circles in bottom row) to
verify and update the initial ranking.

handing over a query image results in similarity scores for all previously collected
training examples. Based on an image region specified by an expert, we then learn
a detection model from only this single positive example following recent results for
exemplar-models in patch discovery [30, 19, 12]. Efficient evaluations of the detection
model on all training images result in a second score indicating the presence of the se-
lected region. We finally update the ranking by fusing both results. In consequence, we
obtain a list of visually similar individuals which additionally exhibit parts similar to
the selected region. For the sake of quantitative results, we require ground truth labels
of training images in the presented evaluations. However, our approach does not rely
on class annotations at all and can thus be applied even in unsupervised tasks where
no (machine-accessible) class information is available. Furthermore, the resulting ap-
proach runs within seconds on standard hardware and is thus also applicable for large
image collections.

In the remainder of this paper, we first give a short review on state-of-the-art in im-
age retrieval (Section 2) and then introduce our approach for interactive image retrieval
in Section 3. Quantitative analyses of the resulting system are presented in Section 4 on
computer vision datasets related to biodiversity applications. Depending on the tackled
scenario, we report significant accuracy gains but also show and discuss limitations of
the current approach and resulting future research directions. A short summary con-
cludes the paper.

2 Image Retrieval in a Nutshell

Retrieving visually similar images given a newly captured query, i.e., the task we moti-
vated in the last section, is the central topic of an entire research area which is commonly
referred to as content-based image retrieval. In more then 20 years of research, a variety
of approaches has been developed, e.g., [15,31,26,8,27,2,1,4,37,7,5]. While differ-
ing in algorithmic details and required assumptions, the underlying pipeline mainly
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consists of three steps: (i) representing known images and organizing representations
in a search structure, (ii) computing representations for a new query image, and (iii)
matching of representations to build a ranked list from which top-ranked images are
returned. A great amount of research and engineering art went into carefully designing
and implementing all three steps. However, we noticed two crucial issues for image re-
trieval in biodiversity applications. First of all, latest findings from the image retrieval
community are yet to be transferred to remaining areas of application. While this is
partly successful, e.g., in medical scenarios [38], we found in several discussions that
this process works rather poorly in biodiversity research. Besides, we found that off-the-
shelf retrieval algorithms are often not perfectly feasible for biodiversity applications.
This observation mainly arises from the fact that a large fraction of retrieval algorithms
aim at finding images of exactly the same object as the query [31,26,8,27,2,4,37,
5]. In this paper, we are instead interested in retrieving known individuals similar but
not identical to a previously unseen sample. This task is by far not novel, and an entire
sub-field known as category retrieval tackles this challenging problem by modeling or
learning the occurring intra-category variances (e.g., see [7,4, 5] for latest impressive
results as well as [22] for an application to plant species identification scenarios). While
we received already promising feedback by simply applying image retrieval techniques
in biodiversity scenarios, the resulting framework was often found to be too static. In-
stead, the possibility for selecting must-have-regions, e.g., a unique wing pattern, was
often desired. In terms of computer vision, we thus seek for distance metrics which are
user- and exemplar-specific and interpretable.

A research area similar in spirit is local learning, where known images most similar
to a test image are retrieved to then learn representations and models from those similar
images only [40, 13,32,17,12,7,39]. In the focus of this paper, we instead leave the
decision process to the expert, but aim at providing him with a set of relevant images as
helpful as possible and further allow him to interactively refine the query results.

The only related work we a aware of is [6] which allows to select outputs of an
unsupervised segmentation for query refinement. We instead propose a more intuitive
and precise technique for providing feedback as shown next.

3 Interactive Selection of Regions of Focus

Let us now introduce the aforementioned technique for interactive image retrieval. As
a result of several discussions, we found that the selection of rectangles as must-have-
regions for the current query is an intuitive, simple, and yet powerful way for receiving
feedback from an application expert. To integrate this information into the retrieval
process, we provide solutions for three questions:

i. how to train a detection model f from a single positive example,
ii. how to efficiently evaluate the model on all training images, and
iii. how to integrate detection responses into the process of image ranking.

An overview of the resulting approach is shown in Fig. 2.

Exemplar-models for Region Detection. Determining the existence or absence of a
selected region in a collected training set can be done most easily by casting it as a part
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Fig. 2: Overview of our proposed approach for interactive image retrieval. Figure is best
viewed in color and by zooming in. See text for details.

detection task. Thus, we aim at training a detection model from a single positive exam-
ple and virtually everything else as negative data. While this task appears cumbersome
on first glance, exemplar-models such as Exemplar-SVM [24] or Exemplar-LDA [16,
19] provide an elegant solution and have been found useful for learning patch detectors
from a single positive example [30, 19, 12]. Unfortunately, training of Exemplar-SVMs
involves computationally expensive hard negative mining, In contrast, Exemplar-LDA
models can be trained highly efficiently since the majority of computations is done only
once in an offline stage. Since we are interested in fast responses after an expert selected
a region, we thus follow [19, 12] and apply LDA models as region detectors. In conse-
quence, distributions of (the single) positive and all negative examples are assumed to
be Gaussian with a shared covariance matrix X'y and mean vectors g, and p_, re-
spectively. Although this assumption might be far from being perfectly correct, it offers
two advantages: (i) a discriminative linear separation of positive and negative data

wipa = X! (B —p_y) 0]

with (ii) fast training and model evaluations [16]. Furthermore, we can additionally
view Eq. (1) as de-correlated nearest class mean [25] and it is known that reducing
correlations in feature cells is beneficial for detection tasks [16, 12]. We thus only need
to compute Xy and p_; from all possible locations, aspect ratios, and scales in all
training samples once [16]. In practice, we add a scaled identity matrix X + U%I to

increase numerical stability. During the interaction process, it only remains to solve the
linear equation system in Eq. (1) to obtain the desired detection model.

Efficient Convolutions for Region Detection.  To reliably detect the selected region
in training images, we need to densely evaluate the learned detector, i.e., on all possible
locations and scales. Let therefore x denote the feature vector extracted from a single
position and scale. For a linear detector as in Eq. (1), the response on x is computed
as additive combination of dimension-specific similarity scores (ignoring offsets for
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simplicity of notation):

D
f(@) = (wipa, @) =Y wipa(d) -z (d) . )
d=1

Evaluation of f on all possible locations can then be done in a sliding window manner
by computing Eq. (2) for densely extracted features. In this case, we can also change the
order of computations and can equivalently compute Eq. (2) by adding D convolutions
of 1 x 1 filters with corresponding feature planes. As required later, this also holds if «
follows a spatial tiling composed of T' x T' cells with D¢ feature dimensions per cell
(thus, D =T -T- D¢ in Eq. (2)). For prominent examples, e.g., Spatial Pyramid Match
Kernels [23] or HOG [11] for detection tasks, Eq. (2) translates to

T D¢
f@ = > > wipa((dT+d;)Dc+c) x((d;T+di)Do+c) . (3)
di,dj=1c=1

Again, we can exchange order of summations which leads to adding results of D¢
convolutions of T' x T filters with corresponding feature planes. By computing feature
planes for all training images in an offline step, we can efficiently detect selected regions
and reduce an expert’s idle times to a minimum.

Fusion of Complementary Retrieval Scores. Given the previous steps, it now re-
mains to combine detection results with the previously obtained ranking of the baseline
retrieval system. As commonly done in object detection, we perform max-pooling over
response maps from all scales and return the largest detection score for each image.
Scores are linearly normalized into [0, 1] to maintain their relative ordering and still
allow for a well-defined range of outputs. Given results of baseline image retrieval and
interactive selection, we now seek for examples with high scores reflected by both in-
dicators. We therefore assume both sources of information to be complementary which
justifies a simple product as combination rule [3, 20]. Note that the assumption of com-
plementary information is indeed justifiable, since a baseline retrieval is concerned with
coarse distinctions regarding the entire image. Instead, interactive selection explicitly
neglects the majority of this information and searches for the remaining parts with
arbitrarily different techniques. While we also experimented with other fusion tech-
niques [20], we empirically found this strategy to be as simple as powerful. Combined
scores are finally ordered and top-ranked results are returned. Putting all parts together,
we obtain the framework as visualized in Fig. 2. The entire pipeline runs within sec-
onds and allows experts to easily investigate results with different regions selected. A
qualitative example is given in Fig. 3.

4 Experiments

By applying the previously introduced techniques to biodiversity tasks, we already ob-
tained highly positive feedback from several experts which we took as a qualitative
confirmation of our approach’s usability. In this section, we additionally present quan-
titative results on two established computer vision datasets to analyze benefits, limita-
tions, and future research directions.
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Fig. 3: Visualizing the influence of expert feedback. Figure is best viewed in color.

4.1 Evaluation Criteria

To evaluate success of an image retrieval technique, a variety of different criteria have
been put forward and the presumably most common measure is mean average preci-
sion (mAP) [26,8,27,2,4,37,5] based on precision and recall. When returning % top-
ranked imaggzs, precision refers to the relative number of correctly retrieved images,
ie., w, whereas recall denotes the number of correctly retrieved images rela-

tive to the absolute number of known positive examples, i.e., % Computing
mAP is then done by plotting recall against accuracy individually for each possible
category and averaging areas under the resulting curves. While mAP is excellent for
evaluating an image retrieval system’s performance over the entire range of possible
working points, i.e., different trade-offs between precision and recall, we observed that
the majority of possible working points is not feasible in practice. Instead, application
constraints often render high recall values as an irrelevant measure of quality. Accord-
ing to our experience, an application expert is in fact not interested in a supporting tool
with perfect recall which returns almost all known images — only to not miss a single
correct one. Instead, he is usually interested in inspecting just a small set of retrieved
images, and this retrieved set should exhibit several properties. Interestingly, we also
observed that these properties vary over task and expert, e.g., experienced researchers
are usually interested in inspecting visually similar examples to then make a final deci-
sion on their own. In this case, retrieving at least one example of the correct category
is often sufficient which we refer to as 1-of-all precision. Less experienced researchers,
though, often base their decision on relative frequencies of returned categories. In these
cases, as many retrieved images as possible should be of the correct category, i.e., a
high precision matters. While several papers followed the second evaluation, e.g., [37,
7], we are not aware of any work applying the first principle, which however was found
to be a useful criterion for application experts. We will see later that both criteria can
cover orthogonal aspects of a system’s performance and thus should be considered side
by side. Both criteria are illustrated in Fig. 4 visualizing results for a strong and a poor
retrieval system.
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Fig. 4: Tlustrating different criteria for evaluating image retrieval accuracy.

4.2 Datasets for Illustrating Biodiversity Applications

So far, we are not aware of any biodiversity dataset publicly available for computer
vision researchers. To still allow for quantitative evaluations, we present experimental
results on two datasets established in the computer vision community which cover areas
of investigation relevant for biodiversity researchers. In the following, we give a short
overview on both datasets.

Leeds — Identifying Butterflies. The Leeds Butterfly dataset [36] contains 832 im-
ages of butterflies captured in a natural environment. It covers ten distinct butterfly
species with 55 to 100 images per category. Exemplary individuals of eight species are
shown in Fig. 5a.

CUB2011 - Recognizing Birds. The Caltech-UCSD Birds-200-2011 (CUB200) [35]
dataset covers 200 bird species native in North America. The provided dataset contains
11,788 individuals which are split in train and test set of approximately same size. We
also conducted experiments on the frequently used subset (CUB14) by [10] which con-
tains 14 categories of warblers and woodpeckers with 817 images. Examples are shown
in Fig. 5b. Noteworthy, category labels do not distinguish between male and female,
nor between young and adult.

4.3 Experiments in a Butterfly Identification Scenario

We have already seen a qualitative example in Fig. 3. For a quantitative evaluation, we
start with the previously introduced butterfly dataset Leeds [36].

Experimental Setup.  As baseline retrieval technique, we apply neural codes by [4].
In detail, we use the AlexNet model [21] initially trained on ImageNet for general pur-
pose feature extraction [18, 14]. Features of several layers are extracted using the Caffe
toolbox [18] and we empirically found conv3 to be well suited for our application.
Since the dataset does not provide any part information, we asked six users to manually
select a single region for each image which they rate as informative. Notably, the users’
initial domain knowledge ranged from no knowledge at all to individual training for
several weeks. For their guidance, we displayed individuals of each category as visual-
ized in Fig. Sc. Following recent trends in fine-grained recognition [12], we represent
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Fig. 5: Left: Examples of different species from datasets used in our evaluations showing
butterflies [36] (top) and birds [35] (bottom). Right: GUI for acquisition of must-have-
regions to allow for quantitative evaluations.

selected regions using histograms of oriented gradients (HOG) [11] and histograms of
ColorNames (CN) [33] to capture color, texture, and shape. Spatial information is kept
by tiling the selected region using a regular grid and extracting features in each cell sep-
arately [11]. HOG and CN features are extracted using publicly available source-code
of [16] and [33]. We train exemplar-specific LDA models using the code provided by
[12]. For evaluation, we follow the leave-one-out principle and exclude each image once
from the training set to serve as query image. Precision and 1-of-all precision curves
are finally averaged over all images and shown in Fig. 6.

Evaluation. When averaging over all users (Fig. 6a), we notice a significant increase
in both precision and 1-of-all precision. Noteworthy, the accuracy with respect to the
first retrieved image is increased from 71% to 90%. From our experience, this result
is indeed remarkable given the already sophisticated performance obtained with neu-
ral codes as baseline technique. Furthermore, we note that experienced annotators can
easily lift the retrieval accuracy to ranges significantly over 95% (Fig. 6b). However,
even novices with little experience can add valuable information (Fig. 6¢). We also ob-
serve that solely relying on outputs of detection models further boosts performance if
k is extremely small but is inferior to combined results for larger retrieved sets. This
behavior is plausible since images with extremely high detection scores are likely to
contain the exact same pattern as the query. In contrast, medium scores likely result
from examples of mixed-up categories which have a similar local pattern but are differ-
ent at a global scale. Consequently, incorporating the baseline information can correct
these cases. Interestingly, we also notice different trends when comparing precision and
1-of-all precision as a measure of accuracy. We therefore conclude that a decision for
one evaluation strategy over the other should be based on the desired properties of the
retrieved set of images.
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Fig. 6: Evaluating image retrieval with interactive feedback on the butterfly dataset
Leeds [36]. Results are obtained from six annotators ranging from novices to experts.

4.4 Experiments in a Bird Recognition Task

In a second experiment, we evaluate limitations of our approach and further research
directions using the previously introduced CUB200 bird dataset.

Experimental Setup. Following previous research [42,12,9], we crop images to
the provided bounding box and apply the provided split in train and test images. We
simulate region selection using provided part annotations for anchoring a squared region
of width and height proportional to 1—10 of the box’s main diagonal. For verification, we
additionally asked our most experienced annotator to mark head regions on the small
subset. The remaining setup is identical to the previous experiment except that neural
codes are extracted from conv5. Due to the lack of space, we only present results in
Fig. 7 obtained from head regions which are known to be most discriminative [42].

Evaluation. In contrast to the superior results on Leeds, we notice that selecting a
single region is too restrictive for bird recognition tasks and can even hurt retrieval ac-
curacy. Notably, even our most experienced expert was not able to improve the accuracy
(Fig. 7a). On CUB200, the accuracy induced by detection scores finally drops signifi-
cantly (Fig. 7b) and thus goes along with the combined results. We attribute this obser-
vation to three reasons. First of all, captured bird images are highly diverse, both with
respect to pose (parts are often occluded, thus, no model can be trained) and appearance
(male vs. female, young vs. adult, label errors). Besides, the number of species is sig-
nificantly larger which renders the task significantly more difficult. Finally, single parts
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Fig. 7: Evaluating limitations and further research directions for the introduced interac-
tive retrieval approach on bird recognition datasets by [35].

are often not visually discriminative with respect to different categories although their
combination is. Since the usability of the current approach was confirmed in personal
discussions, we can conclude several important directions for improvement. First of all,
an extension to multiple selectable regions would be highly beneficial to specify parts
which are only discriminative when appearing jointly. Besides, estimating the number
of required annotations would be helpful for unexperienced researchers. Finally, pro-
viding relative positions of multiple parts and expressing their semantics would allow
for more informative expert feedback.

5 Conclusions

In this paper, we introduced image retrieval techniques to assist in biodiversity research.
Using neural codes as baseline, we then presented how to additionally incorporate ex-
pert feedback by interactively selecting must-have-regions. The provided information
served for training of region-specific detection models which are efficiently evaluated
on all training images with convolutions. Combining detection scores with baseline
results finally allowed for verifying and updating the initial ranking. In a butterfly iden-
tification task, this intuitive way of providing feedback resulted in improved results for
non-experts while more experienced users could even further boost the performance.
The resulting approach is easy to use and already received highly positive feedback
from several experts. In a last experiment, we evaluated limitations of our approach and
discussed open research directions. As future work, we plan to incorporate relevance
feedback [29,41] which was suggested by medical experts. In addition, transferring our
approach to different application areas, e.g., retrieval of similar plants [22] or moths
[28], could assists experts in other domains. Furthermore, replacing current region de-
scriptions by efficiently computable CNN activations is likely beneficial. While their
applicability is currently limited by hardware requirements, further progress in this field
will allow for training even better region detection models.
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