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Abstract. We describe a method for selecting optimal actions affecting
the sensors in a probabilistic state estimation framework, with an ap-
plication in selecting optimal zoom levels for a motor-controlled camera
in an object tracking task. The action is selected to minimize the ex-
pected entropy of the state estimate. The contribution of this paper is
the ability to incorporate varying costs into the action selection process
by looking multiple steps into the future. The optimal action sequence
then minimizes both the expected entropy and the costs it incurs.
This method is then tested with an object tracking simulation, show-
ing the benefits of multi-step versus single-step action selection in cases
where the cameras’ zoom control motor is insufficiently fast.

1 Introduction

This paper describes a method for selecting optimal actions which affect the
sensors in a probabilistic state estimation framework. The contribution of this
paper is the ability to incorporate varying costs into the action selection process
by looking multiple steps into the future.

Probabilistic state estimation systems continuously estimate the current state
of a dynamic system based on observations they receive, and maintain this esti-
mate in the form of a probability density function. Given the possibility to affect
the observation process with certain actions, what are the optimal actions, in an
information theoretic sense, that the estimation system should choose to influ-
ence the resulting probability density?

One sample application is the selection of optimal camera actions in motor-
operated cameras for an active object tracking task, such as pan and tilt opera-
tions or zooming. We examine focal length selection as our sample application,
using an extended Kalman filter for state estimation.

� This work was partly funded by the German Research Foundation (DFG) under
grant SFB 603/TP B2. Only the authors are responsible for the content.
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Previous work in the areas of object recognition [10, 4, 3] have shown that an
active viewpoint selection process can reduce uncertainty. For object tracking,
active focal length selection is used to keep the target’s scale constant [6, 11].
Yet the focus of these works is not to find the optimal zoom level.

The information theoretic solution described in [5], which this work is based
on, uses the entropy of the estimated state distribution. This system calculates
the expected entropy for each action, and then chooses the action where the
expected entropy is lowest.

However, this approach only works if all actions are considered equal. If the
actions incur costs which may depend on the last action, examining the expected
benefit of just a single action is no longer sufficient. In the example of focal length
selection, the zoom lens motor has only a finite speed. A too high zoom level can
cause the object to be lost when it approaches the edges of the camera image
faster than the zoom motor can follow.

The solution is to obtain the best sequence of future actions, and to calculate
the costs and benefits of the sequence as a whole. In our case of a motorized
zoom lens, the tracker is able to reduce the focal length in advance, in order for
the low focal length to actually be available in the time frame where it is needed.

In simulated experiments with slow zoom motors, up to 82% less object loss
was experienced, as compared to the original single-step method. This reduced
the overall state estimation error by up to 56%.

The next section contains a short review of the Kalman filter and the notation
used in this paper. Section 3 simultaneously reviews the single-step method from
[5] and shows how to extend it to multiple steps, the main contribution of this
paper. The method is evaluated in section 4, and section 5 concludes the paper
and gives an outlook for future work.

2 Review: Kalman Filter

As in [5], we operate on the following discrete-time dynamic system: At time t,
the state of the system is described in the state vector xt ∈ IRn, which generates
an observation ot ∈ IRm. The state change and observation equations are

xt+1 = f(xt, t) + w , ot = h(xt, at) + r (1)

where f(·, ·) ∈ IRn is the state transition function and h(·, ·) ∈ IRm the obser-
vation function. w and r are normal zero-mean error processes with covariance
matrices W and R.

The parameter at ∈ IRl is called the action at time t. It summarizes all the
parameters which affect the observation process. For object tracking, at might
include the pan, tilt and the focal length of each camera. The action is performed
before the observation is made.

The task of the state estimator is to continuously calculate the distribution
p(xt|〈o〉t, 〈a〉t) over the state, given the sequence 〈o〉t of all observations and
the sequence 〈a〉t of all actions taken up to, and including, time t.



Multi-Step Entropy Based Sensor Control for Visual Object Tracking 3

Assuming the action is (for now) known and constant, the Kalman filter [8],
a standard algorithm, can be used for state estimation. Since the observation
function is based on the non-linear perspective projection model, an extended
Kalman filter [1] is necessary. A full description of the extended Kalman filter is
beyond the scope of this paper. We use the following notation for the filter: x̂−

t

and x̂+
t are the a priori and a posteriori state estimate means at time t. P−

t and
P +

t are the covariance matrices for the a priori and a posteriori state estimates.
The extended Kalman filter performs the following steps for each time-step t:

1. State mean and covariance prediction:

x̂−
t = f(x̂t−1, t − 1) , P−

t = fx
t Pt−1f

x
t

T + W . (2)

2. Computation of the filter gain:

Kt = P−
t hx

t
T (at)

(
hx

t (at)P−
t hx

t
T (at) + R

)
. (3)

3. State mean and covariance update by incorporating the observation

x̂+
t = x̂−

t + Kt

(
ot − h(x̂−

t , at)
)

, P +
t (at) = (I − Kth

x
t (at))P−

t . (4)

fx
t and hx

t (at) denote the Jacobians of the state transition and observation
functions. Since the observation Jacobian hx

t (at) depends on the selected action
at, the a posteriori state covariance does, too. In cases where no observation is
made in a time step, the a posteriori state estimate is equal to the a priori one.

3 Multi-step optimal actions

The method described in [5] uses the entropy of the state distribution to select
the next action for a single step in the future. The single-step approach works
well if the optimal action can be performed at each time-step. Often, however,
there will be real-world constraints on which actions are possible; for example,
cameras with a motorized zoom lens can only change their focal lengths at a
finite maximal speed. In general, we say that an action, or a sequence of actions,
incurs a cost. This cost must be subtracted from the expected benefits of the
actions to find the truly optimal actions.

In the case of focal length selection, the single-step method will often select
a large focal length when the object is in the center of the camera image. Once
the object moves towards the edge, a lower focal length is needed in order not
to lose the object; this focal length may be to far for the zoom motors. The
multi-step method, evaluating a sequence of actions, will detect the need for a
low focal length sooner, and will start reducing the focal length ahead of time.

To evaluate an action, we use the entropy [2] of the state distribution as a
measure of uncertainty. This measure was used in [5] to select a single action.
We will show how this method can be expanded to a sequence of actions.

To evaluate a sequence of actions, we measure the entropy of the state dis-
tribution at the horizon. The horizon k is the number of steps to be looked
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ahead, starting at time step t. For the single-step variant, k = 1. We denote the
sequences of future actions and observations, occurring between time steps t+1
and t + k, as 〈a〉k and 〈o〉k, respectively.

The entropy of the a posteriori state belief p(x̂t+k|〈o〉t+k, 〈a〉t+k) is

H(x+
t+k) = −

∫
p(xt+k|〈o〉t+k, 〈a〉t+k) log(p(xt+k|〈o〉t+k, 〈a〉t+k))dxt+k . (5)

This gives us information about the final a posteriori uncertainty, provided ac-
tions 〈a〉k were taken and observations 〈o〉k were observed.

However, to determine the optimal actions before the observations are made,
this measure cannot be used directly. Instead, we determine the expected entropy,
given actions 〈a〉k, by averaging over all observation sequences:

H(xt+k|〈o〉k, 〈a〉k) =
∫

p(〈o〉k|〈a〉k)H(x+
t+k) d 〈o〉k . (6)

This value is called the conditional entropy [2]. The notation H(xt|ot, at) is
misleading, but conforms to that used in information theory textbooks. The
only free parameter is the action sequence 〈a〉k. The optimal action sequence
can then be found by minimizing the conditional entropy.

In the case of a Gaussian distibution, as is used throughout the Kalman filter,
the entropy takes the following closed form:

H(xt+k|〈o〉k, 〈a〉k) =
∫

p(〈o〉k|〈a〉k)
(

n

2
+
1
2
log

(
(2π)n|P +

t+k(〈a〉k)|
))

d〈o〉k. (7)

We note that only p(〈o〉k|〈a〉k) depends on the integrand 〈o〉k, the covariance
P +

t+k(〈a〉k) does not. This allows us to place everything else outside the integra-
tion, which then intergrates over a probability density function and is therefore
always 1. Therefore, we only need to obtain the a posteriori covariance matrix
P +

t+k to evaluate an action sequence, which means stepping through the Kalman
filter equations k times. Since we do not have any future observations o, the state
estimate mean x̂− can only be updated with the expected observation h(x̂−, a),
which reduces equation (4) to x̂+ = x̂− + 0. The state estimate mean allows
us to calculate all used Jacobians for equations (2) and (3), which give us all
covariance matrices P− and P + for any future time step.

In cases where an observation is not guaranteed, the final entropy is based on
either the a posteriori or the a priori covariance matrix. The conditional entropy
must take this into account. We define an observation to be either visible or
non-visible. For example, in the case of object tracking, an observation is visible
if it falls on the image plane of both cameras, and non-visible otherwise. It is
important to note that a non-visible observation is still an element of the set
of all observations. For a single step, splitting the observations into visible and
non-visible ones results in the following entropy:

H(xt|ot, at) =
∫

{ot visible}

p(ot|at)Hv(x+
t )dot +

∫
{ot ¬visible}

p(ot|at)H¬v(x−
t )dot (8)
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In the Kalman filter case, where Hv(x̂+
t ) and H¬v(x̂−

t ) do not depend on ot,
they can again be moved outside the integration. The remaining integrations
now reflect the probability of a visible (w1) or non-visible (w2) observation:

H(xt|ot, at) = w1 · Hv(x+
t ) + w2 · H¬v(x−

t ) (9)

w1 and w2 can be solved efficiently using the Gaussian error function [5].
In the multi-step case with a horizon of k, there are 2k different cases of

visibility, since an observation may be visible or not at each time step, and
hence 2k different possible entropies must be combined. If we can calculate the
probability and the a posteriori entropy at step t+k for each case, we can again
obtain the conditional entropy by a weighted sum:

H(xt|ot, at) = wvv...vHvv...v(xt) + wvv...nHvv...n(xt)
+ . . .+ wnn...nHnn...n(xt) (10)

where vv . . . v denotes the case where every time step yields a visible observation,
vv . . . n denotes all visible except for the last, and so on. For such a sequence of
visibilities, the probabilities and covariance matrices can be calculated by using
the a priori or a posteriori covariance from the previous step as the starting
point, and proceeding as in the single-step case.

This can be summarized in a recursive algorithm: For time step l, starting
at l = 1, the Kalman filter equations use the current action at+l to produce
the correct state mean (x̂+

t+l) and covariance (P +
t+l , P−

t+l) predictions for both
cases of visibility, as well as the probabilities w1 and w2 for each case. If l = k,
the conditional entropy is calculated as in equation (9), using entropies obtained
from both covariance matrices through equation (7). Otherwise, this procedure
is repeated twice for time l + 1: once using P +

t+1 as its basis for the visible case,
and once using P−

t+1. Both repetitions (eventually) return a conditional entropy
for all steps beyond l, and these are combined according to w1 and w2 into the
conditional entropy for time step l to be returned.

4 Experiments

This algorithm was evaluated in a simulated object tracking system. Current
computational restrictions make a meaningful evaluation in a real-world envi-
ronment impossible, since the insufficient speed of the zoom motors, a key aspect
of the problem, is no longer present.

The following simulated setup, as shown in figure 1, was used: The target
object follows a circular pathway. The sensors are two cameras with parallel lines
of sight and a variable focal length. The cameras are 200 units apart. The center
of the object’s path is centered between the two cameras, at a distance of 1500
units, its radius is 200 units.

Simulations were performed with horizons of 1, 2, 3 and 4, and with zoom
motor speeds 3, 4 and 5 motor steps per time step, for a total of 12 different
experiments. Each experiment tracked the object for 10 full rotations in 720
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αβ

Fig. 1. Simulation setup. The object moves on a circular path. At points α and β,
object loss may occur due to limited zoom motor speed.

time steps. For comparison, one experiment was also conducted with fixed focal
lengths, and one with unlimited motor speed. In our implementation, a Pentium
processor at 2.8 GHz takes less than two minutes for a horizon length of 1
(including output). An experiment with horizon length 4 takes about 6 hours.
This implementation interates over the entire action space, without concern for
efficiency. Section 5 lists several enhancements with the potential for drastic
speed increases to possibly real-time levels.

Figure 2 (left) shows the number of time steps with visible observations, out
of a total of 720, for each experiment. The lower the value, the longer the object
was lost. The object was typically lost near points α or β in figure 1, at which
the object approaches the border of a camera’s image plane faster than the zoom
motor can reduce the focal length.

Figure 2 (right) shows the actual focal lengths selected by the lower camera
in figure 1. Two cycles from the middle of the experiments are shown. The
experiments being compared both use a motor zoom speed of 3, and a horizon
length of 1 and 4. Additionally, the focal lengths which occur when the zoom
motor speed is unlimited are shown. One can see that a larger horizon produces
similar focal lengths to a single-step system, but it can react sooner. This is
visible between time steps 190 and 210, where the four-step lookahead system
starts reducing the focal length ahead of the single-step variant. This results
in reduced object loss. The plateaus at time steps 170 and 240 result from the
object being lost in the other camera, increasing the state uncertainty.

Table 1, lastly, shows the mean state estimation error, as compared to the
ground truth state. The advantage of a multi-step system is greatest in the case
of a slow zoom motor (top row), where the increased probability of a valid ob-
servation more than makes up for the slight increase in information which the
single-step system obtains with its larger focal lengths. This advantage dimin-
ishes once the zoom motors are fast enough to keep up with the object. The
second-to-last row shows the mean error for a horizon of 1 and an unlimited mo-
tor speed. This is the smallest error achievable by using variable focal lengths.
The last row contains the mean error for the largest fixed focal length which
suffered no object loss. An active zoom can reduce this error by up to 45%, but
only if the zoom motor is fast enough to avoid most object loss.
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Fig. 2. Left: Number of time steps with observations, from a total of 720, for each
experiment. Lower values mean greater object loss. Right: Focal lengths for two object
cycles at a zoom motor speed of 3 and horizons of 1 and 4. The focal lengths from an
unlimited motor speed are also shown.

5 Conclusion and Outlook

The methods presented in this paper implement a new and fundemental method
for selecting information theoretically optimal sensor actions, with respect to
a varying cost model, by predicting the benefit of a given sequence of actions
several steps into the future. For the example of focal length selection, we have
shown that, given a small action range, this multi-step approach can alleviate the
problems that the single-step method faces. In our experiments, we were able to
reduce the fraction of time steps with no usable observation by over 80%, which
in turn reduced the mean state estimation error by up to 56%.

Future work will focus on reducing the computation time, to enable meaning-
ful real-time experiments, and finally real-time applications, of multi-step action
selection. For example, the results from common subexpressions, i.e. the first
calculations for two action sequences with a common start, can be cached.

Another optimization is to test only a subset of all possible action sequences,
with optimization methods which only rely on point evaluation. Application
dependent analysis of the topology of the optimization criterion, such as axis
independence and local minimality, may allow more specialized optimization
methods. The efficiency may also be improved by intelligently pruning the eval-
uation tree, for example using methods from artificial intelligence research, such
as alpha-beta pruning [9], or research in multi-hypothesis Kalman filters [1].

Though this paper only outlined the procedure for use with a Kalman filter,
the method should be general enough to apply to other estimation systems, for
example particle filters [7]. This is non-trivial, since this work makes use of the
fact that the entropies do not depend on the actual value of the observations.
This is no longer the case with more general state estimators.

Multiple camera actions have also been studied in object recognition [3] using
reinforcement learning. The parallels between the reinforcement learning meth-
ods and this work will be investigated.
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Zoom motor speed horizon 1 horizon 2 horizon 3 horizon 4

3 steps 52.5 33.7 30.3 23.3
4 steps 21.2 20.4 17.1 16.1
5 steps 16.9 16.9 15.9 16.1

unlimited 15.1
fixed 27.7

Table 1. Mean error, in world units, for each of the 12 experiments. The last two
rows show the results for an unlimited zoom motor speed, and a fixed focal length. A
variable focal length approach is always superior to a fixed one, except for the special
case of slow zoom motors. These cases can be caught by a multi-step lookahead.

Lastly, these methods need to be evaluated for more general cost models,
based on the “size” or “distance” of an action and not just on its feasibility.
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