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A B S T R A C T

In the neonatal intensive care unit (NICU), preterm infants are usually unable to fulfil their sleep demands due to 
frequent disruptions. Real-time sleep monitoring could be an essential tool not only to shift elective care to their 
wake periods but also to track their developmental sleep profile as an indicator of healthy brain maturation. The 
current gold standard for sleep measurement, polysomnography, is invasive and labour-intensive, limiting its 
applicability for continuous monitoring. We propose an automatic sleep stage classification method using only 
the routinely available electrocardiogram (ECG) and patient movement data recorded with a piezo mat. For this 
study we recorded data from 28 preterm infants (13 females and 15 males) at 35.7 ± 0.5 weeks postmentrual 
age. We employed a support vector machine (SVM) to classify sleep stages into wakefulness (W), active sleep 
(AS), and quiet sleep (QS). The combined piezo + ECG model demonstrated superior accuracy (92 %) and strong 
agreement with expert annotations (Cohen’s kappa = 0.83) compared to ECG-only or piezo-only models. This 
approach offers a reliable, unobtrusive solution for continuous sleep monitoring in NICUs, facilitating individ
ualised, sleep-based medical care for preterm infants.

1. Introduction

According to the latest statistical surveys, approximately 10 % of all 
newborns are born prematurely (<37 weeks of gestation) [1]. Preterm 
birth significantly increases the risk of developing a wide range of 
complications. Neurological disorders include sensory perception dis
orders (up to 50 % of disorders), learning disabilities, depression, and 
attention deficit hyperactivity disorders [2–4]. Consequently, in the 
NICU, emphasis should be placed not only on ensuring survival but also 
on reducing the risk for sequelae. One reliable indicator of normal brain 
development in neonates is the establishment of normal sleep cycles [2]. 
Organized sleep patterns at the premature age may predict a better 
neurodevelopmental outcome [5,6]. However, in the NICU environ
ment, frequent interventions and environmental factors can make it 
challenging for preterm infants to sleep adequately [7]. Therefore, it is 
necessary to track the preterm infant’s sleep in order to: (1) adjust in
terventions and care to less disruptive times and (2) utilise sleep cycle 
information as a diagnostic indicator for normal brain development.

The clinical gold standard for the evaluation of preterm infants’ sleep 
characteristics and associated events is polysomnography (PSG) [8]. It 
consists of the following biophysical parameters: electroencephalogram 
(EEG), electrooculogram, chin electromyogram, ECG, nasal airflow, 
respiratory effort, oxygen saturation, leg and arm movement, and body 
position. Despite the variety of biosignals measured during PSG, the 
classification of sleep stages remains reliant on manual assessment by 
clinicians [9].

In this paper, we propose a method for the automatic monitoring of 
preterm infants’ sleep stages using as few biosignals as possible. We aim 
for a three-stage classification of W, AS, and QS. We utilised an SVM and 
trained three different classifiers. One utilises features from both the 
piezo mat and ECG, and two others use features from either the piezo 
mat or ECG exclusively. The proposed approach ensures reliable sleep 
stage detection, even if one signal source is unavailable. The combined 
piezo + ECG model, with a mean kappa of 0.83, outperformed the 
models using either ECG or piezo mat, which achieved kappas of 0.75 
and 0.73, respectively. To our knowledge, this is the first unobtrusive 
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approach that achieved human expert-level performance in measuring 
all sleep stages in preterm infants.

1.1. Related work

Over the past decades, numerous attempts have been made to 
develop algorithms for automatic sleep stage classification [9]. Most of 
them rely on EEG as it contains important information about brain ac
tivity that defines sleep stages [10]. This approach may facilitate the 
work of clinicians when they analyse PSG recordings, but it is not suit
able for continuous monitoring for two reasons: (i) the additional use of 
EEG electrodes might be harmful to the fragile skin of neonates and (ii) 
contact-based methods might further disrupt their precious sleep [8]. 
Hence, unobtrusive methods for sleep stage measurement are preferred 
[8]. Alternative approaches have included respiration [11], ECG [12], or 
a combination of vital signs to classify sleep stages in preterm infants 
[13–15]. For a three-stage classification of W, AS, and QS, the best 
performance to date was achieved by Wang et al., with a Cohen’s kappa 
of 0.52. They used a combination of heart and respiratory rate sampled 
at 0.4 Hz. However, the achieved accuracy is still insufficient for clinical 
application [16]. Another method involved video signals to monitor 
sleep [17–19]. While they achieved a high accuracy in classifying sleep 
and wake, they did not separate AS and QS. Additionally, video-based 
monitoring can be compromised by low light conditions or the partial 
covering of the infant’s body by blankets or external ventilation 
equipment.

In this study, we combined routinely derived ECG with a movement- 
sensitive sensor mat (piezo mat) for automatic sleep stage classification 
in preterm infants. Ranta and colleagues used a similar approach, 
combining a bed mattress signal and ECG [20]. Even though they ach
ieved very high accuracy, they focussed on detecting deep sleep (N3) in 
1- to 18-week-old term-born patients.

2. Methods

In this section, we first present the study population and the data 
acquisition procedure. Then, we describe the data annotation proced
ures in detail. Finally, we present our approach to automated sleep stage 
classification in preterm infants.

2.1. Study population

The study was designed as a single-centre observational study to 
develop an automated sleep stage classification based on a few vital 
signs. Ethical approval was given by the local Ethics Committee of the 
Jena University Hospital (Reg.-Nr. 2022-2831_1-MV), and parents gave 
their written consent. The study was conducted according to good 
clinical practice and the Declaration of Helsinki. The data includes 13 
females and 15 males, and thus a gender disparity ratio (GDR) of 1.15. 
The 28 preterm infants were routinely referred to the paediatric sleep 
lab at a postmenstrual age of 35.7 ± 0.5 weeks (Table 1). They were 
born at a gestational age of 30.2 ± 2.1 weeks with a birth weight of 1411 
± 248 g. The overall heterogeneity of our patient group was high 
because no exclusion criteria were applied.

2.2. Data acquisition

The PSG data were collected for four hours according to the rules 
given by the American Association of Sleep Medicine (AASM, [10,21]). 
The PSG data were recorded at 200 Hz with the sleep diagnostic system 
ALICE 6 (Löwenstein Medical) together with the Sleepware G3 software 
(Philips Respironics). Electrical signals were recorded with a notch filter 
(50 Hz) to remove the power line noise. As a contactless movement- 
sensitive detector, we placed a piezo-based sensor mat (Jablotron 
Nanny BM-02) underneath the mattress. The signal of the piezo mat was 
synchronously recorded with the PSG. A parallel video recording was 

used to visually detect the child’s movements and annotate external 
interventions like breastfeeding and electrode repositioning.

2.3. Data annotation

Two different methods for data annotation were used in this study. 
The first is based on the Sleepware G3 classification using PSG and piezo 
mat, and the second annotation method is based on the assessments of 
three experts.

2.3.1. Sleepware G3
The commercial software Sleepware G3 is capable of producing an 

automatic sleep stage classification that we refer to as Sleepware 
throughout the manuscript. This automatic sleep scoring is usually 
insufficient for preterm infants and has to be re-evaluated by human 
experts.

2.3.2. Manual annotation
In clinical routine, human experts visually annotate the sleep stages 

based on the rules given by the AASM for infants [21,22]. Clinicians use 
all biophysical signals recorded with PSG to score sleep stages, including 
brain activity (EEG), heart rhythm (ECG), respiration, and muscle 
movement [8,10]. Neonatal sleep is classified in epochs of 30 s con
sisting of three main stages: W, AS, and QS. The W stage is characterised 
by irregular heart rate and respiration, open eyes and body movements, 
and mixed EEG patterns with movement artefacts. The AS stage includes 
irregular respiration, low muscle tone superimposed by twitches and 
phasic movements, epochs of rapid eye movements (REM), and a 
continuous EEG pattern of 40–80 μV in amplitude. Finally, the QS sleep 
stage is characterised by having regular and slow respiration, tonic 
motor activity and startles, no eye movement, and alternant EEG signals 
of high amplitude. We analysed a total of 12,957 30-s epochs from 28 
preterm infants. The manual annotation of sleep stages was performed 
by three independent human experts (C.D., S.J., L.S.). The inter-rater 
variability was calculated using Fleiss’ kappa to evaluate their agree
ment. A common label is considered as ground truth for training and 
testing our machine learning-derived algorithm. Therefore, a unique 
label for each 30-s epoch is created based on the agreement in the 
assessment of the sleep stage of this epoch by three experts, and two 
datasets are generated accordingly. 

● Dataset A: This set includes only those epochs where all three experts 
agreed. This occurred in 68 % of the epochs (8,757 epochs, approx. 
73 h). To make sure we did not introduce a bias toward any sleep 
stage, we evaluated the relative time in each sleep stage for all data 
versus Dataset A (Appendix Fig. A.1A). We noticed only a minor 
change in sleep stage distribution.

Table 1 
Patient demographics and clinical parameters. Data are presented as mean ±
SD.

Parameter Value

Female 46.4 %
Gestational age at birth 30.2 ± 2.1 weeks
Postmenstrual age at measurement 35.7 ± 0.5 weeks
Birth weight 1,411 ± 248 g
Birth length 39.3 ± 2.9 cm
Body weight at measurement 2,148 ± 227 g
Body length at measurement 44.7 ± 1.8 cm
APGAR Score (1 min) 5
APGAR Score (5 min) 8
APGAR Score (10 min) 9
Caffeine therapy ​
• Yes 57.1 %
• No 25.0 %
• Paused 17.9 %
Multiple births 32.1 %
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● Dataset B: This set is defined more liberally and includes, in addition 
to the epochs of Dataset A, all epochs where at least two experts 
agreed. This data set constitutes 98.7 % of the whole data (12,787 
epochs, approx. 106 h).

We aim to test the performance of both data sets to discuss the in
fluence of the uncertainty in the labelling on the classification 
performance.

2.4. Automated sleep stage classification

The process of developing an automated algorithm for classifying 
sleep stages is illustrated in Fig. 1. The individual steps are described in 
detail in the following sections.

2.4.1. Data preprocessing
To reduce noise in the ECG signals and remove baseline drift, the 

signals were filtered in the frequency domain, where frequencies lower 
than 0.025 Hz and higher than 199.975 Hz were removed. The ECG 
signals were corrected by mirroring the inverted R-peaks so that all R- 
peaks point upwards.

2.4.2. Feature extraction
This section focuses on extracting features from the piezo and ECG 

signals, as described in the following two subsections. The features were 
selected to represent the different characteristics of sleep stages as 
summarised in Table 2. The extracted features after standardisation 
serve as input for the machine learning tool as they provide more 
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Fig. 1. Workflow for machine learning derived automatic sleep stage 
classification.

Table 2 
Characteristics of preterm sleep stages wakefulness (W), active sleep (AS), and 
quiet sleep (QS), when only looking at the heart rate and movement of patients 
(adapted from [8,10]).

W AS QS

ECG Heart rate (HR) 
high, irregular

HR mostly irregular HR mostly regular, 
accelerations during 
startles

Heart rate 
variability (HRV) 
high

Low frequencies are 
dominant (0.03–0.39 
Hz)

High frequencies are 
dominant (0.4–1 
Hz)

Movement Head and arm 
movements, 
orientation 
response

Wide range, small 
twitches, sporadic 
motor bursts of 5–60 
s

Little or no startles, 
motion low

Table 3 
List of extracted features that served as input for the training of an SVM.

Feature Used for model
Name Description Piezo 

+ ECG
Piezo ECG

​ Piezo feature ​ ​ ​
Spectrogram frequencies over time ​ ​ ​
Bandpower 

(BP)
average power in frequency interval 
[2–25 Hz]

​ ​ ​

Movement bandpower (BP) > threshold (T) 
(Equation (1))

​ ​ ​

Activity (1 
min)

moving sum movement ⊠ ⊠ ​

Activity (10 
min)

moving sum movement ⊠ ⊠ ​

Distance maximal distance between two 
movements

​ ​ ​

Inactivity (1 
min)

moving sum of distance ⊠ ⊠ ​

Inactivity 
(10 min)

moving sum of distance ⊠ ⊠ ​

​ ECG feature ​ ​ ​
Mean HR (5 

min)
1
N
∑N

{i=1}
xi(xi = the ith RR interval) ⊠ ​ ⊠

SD HR (5 
min)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⎧
⎨

⎩

1
N − 1

∑N
{i=1}

(xi − mean)2

⎫
⎬

⎭

√
√
√
√
√

⊠ ​ ⊠

VLF (5 min) 0.01–0.04 Hz ⊠ ​ ⊠
LF (5 min) 0.04–0.5 Hz ​ ​ ​
HF (5 min) 0.5–2 Hz ⊠ ​ ⊠
LF/HF ratio 

(5 min)
LF/HF ⊠ ​ ⊠

TINN (5 min) triangular interpolation of RR interval 
histogram

⊠ ​ ⊠

Mean HR 
(~6 s)

1
N
∑N

{i=1}
xi(20 data points) ⊠ ​ ⊠

Mean HR 
(~30 s)

1
N
∑N

{i=1}
xi(100 data points) ⊠ ​ ⊠

Median HR 
(~6 s) x

(
N + 1

2

)

(20 data points)
⊠ ​ ⊠

Median HR 
(~30 s) x

(
N + 1

2

)

(100 data points)
⊠ ​ ⊠

Diff (~3 s) |means − medianl| (10 data points) ​ ​ ​
SD HR (~6 s)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⎧
⎨

⎩

1
N − 1

∑N
{i=1}

(xi − mean)2

⎫
⎬

⎭

√
√
√
√
√ (20 

data points)

⊠ ​ ⊠

SD HR (~30  
s)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⎧
⎨

⎩

1
N − 1

∑N
{i=1}

(xi − mean)2

⎫
⎬

⎭

√
√
√
√
√ (100 

data points)

⊠ ​ ⊠

CoV (~6 s) SD/mean (20 data points) ⊠ ​ ⊠
CoV (~30 s) SD/mean (100 data points) ⊠ ​ ⊠
​ Time feature ​ ​ ​
Start time [s] starting point of each 30-s epoch ⊠ ​ ⊠
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relevant information than the raw signals. A summary of all features is 
listed in Table 3.

Piezo mat features: The piezo mat records movements of the pre
term infant that could arise from small or gross body movements as well 
as from respiration and heartbeat. To extract relevant information from 
the raw signal, a spectrogram was created using a 1-second sliding time 
window with 50 % overlap, showing the frequency composition of the 
signal over time. The values of the average power of the spectrogram, 
hereafter referred to as the bandpower (BP), within the frequency range 
of 2 to 25 Hz, were calculated for each time window and used to detect 
movement by applying an individual threshold T on BP for each patient. 
This threshold T was calculated for the entire recording as: 

T = BPBaseline +C × BPMAD (1) 

The individual patient parameters are the BPBaseline defined as the 
25th percentile of BP, and BPMAD, the median absolute deviation (MAD) 
of BP defined as BPMAD = median(abs(BP – median(BP))). The factor C 
was experimentally set to 4.75 for all patients. These parameters were 
optimised through systematic variation for automatic movement 
detection and validated by comparing the results to visually annotated 
movements in a cohort of five patients. The performance was evaluated 
using several metrics, including the Youden index (YI), the matching 
index (MI) [23], and the spike time tiling coefficient (STTC) [24]. The YI 
was used to evaluate the sensitivity and specificity of detecting move
ment periods, whereas the MI and STTC measure the correlation per 
data point (every 0.5 s).

The activity of the preterm infant was calculated as the moving sum 
of the movement vector over different periods of time (long: 5, 10, 15 
min; short: 0.5, 1, 1.5 min). As an indicator of inactivity, the interval 
between movement periods was calculated and then summed up over 
one and ten minutes.

ECG features: The R-peaks as an indicator of the heartbeat were 
detected in the filtered ECG using the findpeaks function in Matlab 
(MinPeakProminence = 60, MinPeakDistance = 0.2, MaxPeakWidth =
0.1703, WidthReference = halfprom, MinPeakHeight = 120). Next, RR 
intervals (distance between R-peaks) less than two-thirds the length of 
the surrounding intervals were identified and removed if the previous 
RR interval is less than one second, as they were likely false-positive R- 
peaks. An example of the preprocessing steps is illustrated in Appendix 
Fig. A.2. The resulting RR intervals were then used as input for a heart 
rate variability (HRV) tool for neonates [25,26]. The tool calculated 
features over five-minute time windows. We set the overlap to 90 %, 
resulting in a value for each 30-s epoch. The calculated features include 
time domain features such as the average heart rate and the standard 
deviation reflecting the total HRV. Frequency domain features of HRV 
include the very low-frequency bands (VLF: 0.01–0.04 Hz), low- 
frequency bands (LF: 0.04–0.5 Hz), high-frequency bands (HF: 0.5–2 
Hz), the LF/HF ratio and the triangular interpolation of the NN interval 
histogram (TINN). TINN is the width of the base of the triangle that best 
approximates the NN interval (normal R-peaks) distribution.

These features could be affected by inaccurate R-peak detection. 
Therefore, periods with noise and artefacts in the filtered ECG signal 
were identified, as these could lead to inaccurate heartbeat detection. 
For this purpose, a spectrogram was calculated using a 3-second time 
window with a 0.5-second overlap between consecutive windows. If the 
bandpower within the 1–30 Hz range exceeded a certain threshold 
(Equation (1), with C = 15), no features were calculated for those pe
riods (Appendix Fig. A.2). During this process, 2.12 % of data were 
discarded. R-peak detection was performed in the remaining “clean” 
time segments. Based on the RR intervals, the following features were 
calculated: Moving average, moving median, the difference between 
mean and median, moving standard deviation, and coefficient of vari
ation. These features were determined over two-time windows: a short 
window with 20 data points and a long window with 100 data points.

In addition, a time feature was included to indicate the temporal 
sequence of epochs, allowing neighbouring epochs to be classified based 

on their likelihood of having similar sleep stages. All extracted features 
are summarised in Table 3.

2.4.3. Sleep stage classification using support vector machine
A supervised learning approach using an SVM was employed to 

classify the sleep stages of preterm infants. The extracted standardised 
features and the manually annotated sleep stages served as inputs for 
training three different models: One utilising features from both the 
piezo mat and ECG, and two others using features from either the piezo 
mat or ECG exclusively. This approach would ensure reliable sleep stage 
detection even if one signal source is unavailable.

A multiclass classification model was implemented using the error- 
correcting output codes (fitcecoc, Matlab) approach, which combines 
the results of multiple binary classifiers to make multiclass decisions. To 
improve model stability and enhance overall performance, features were 
standardised. A fivefold cross-validation was conducted to evaluate 
model performance. The average performance results are shown in 
Table A.1 in the Appendix. To optimise model performance, various 
kernel functions—linear, Gaussian, radial basis function (RBF), and 
polynomial—were tested to determine the best fit. RBF performed best 
and was finally selected. During each cross-validation run, hyper
parameters such as coding parameter, kernel scale, and box constraint 
were fine-tuned to achieve the best performance. Additionally, various 
features and feature combinations were iteratively added to the SVM. 
Features that did not contribute to improved model performance were 
removed to minimise overfitting and to reduce the number of parame
ters to be estimated, ultimately retaining only the most relevant fea
tures. Table 3 summarises all extracted features, highlighting the ones 
finally used for the models.

To evaluate the performance of the proposed method, we compared 
the predicted sleep stages to the PSG-derived and manually annotated 
sleep stages that served as groundtruth. As performance measures, we 
used accuracy, sensitivity, specificity, and Cohen’s kappa, which are 
calculated from the confusion matrix.

2.4.4. Feature importance analysis
The impact of each of the used features on the SVM Model’s classi

fication output was assessed using the SHapley Additive exPlanations 
(SHAP) method [27]. SHAP assigns each feature an importance value for 
a particular prediction. The Shapley value of a feature for a certain 
epoch explains the deviation of the SVM model’s prediction from the 
average prediction, due to this feature. The SHAP analysis was applied 
using ‘shapley’ Matlab function to the three final models, allowing for a 
comprehensive assessment of each feature importance across all epochs 
of dataset A and for each of the three sleep stages W, AS, and QS. We 
calculated the average absolute SHAP value for each feature across all 
30-s epochs.

2.5. Statistics

The relative amounts of time spent in W, AS, and QS represent 
compositional data, as the total for each patient sums to 100 %. To ac
count for the interdependencies of these proportions, we applied a 
centred log-ratio transformation, following Aitchison [28], prior to 
conducting a two-way ANOVA. The log-transformed data were tested for 
normality using the D’Agostino-Pearson test (p > 0.17) and for homo
geneity of variances with Levene’s test (p = 0.19). Statistical power was 
assessed assuming an alpha level of 0.1. As the differences in sleep bout 
lengths (comparing manual vs. automatic sleep stage classification) did 
not meet normality assumptions, we employed the Wilcoxon signed- 
rank test to assess these differences. All statistical analyses were per
formed using OriginPro 2019 (see Section 3.3).

3. Results

In this section, we present the results of the proposed methods for the 
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classification of sleep stages in preterm infants. We start by evaluating 
the performance of the movement detection procedure based on the 
piezo mat signal alone, as discussed in Section 2.4.2, and then we pre
sent the performance of our approach using both piezo mat and ECG 
signals.

3.1. Piezo mat for movement detection

To unobtrusively measure patient movement, we placed a piezo mat 
beneath the mattress (Fig. 2A). While this ballistographic approach has 
been suggested previously [29], we conducted our own performance 
evaluation of the proposed piezo mat. A synchronised video recording 
served as ground truth for visually detectable patient movements.

The automatic extraction of movement periods is detailed in Section 
2.4.2. The best parameter configuration yielded an average correlation 
index of 0.78 ± 0.01 (n = 5) between automatically and visually 
detected movements (Fig. 2B).

We assume that the piezo mat has a higher sensitivity to brief 
twitches of skeletal muscles, which may have escaped the human eye. 
This is actually an important feature because the twitches are related to 
AS.

As expected, during resting periods, the piezo mat provides a clear 
signal corresponding to patient respiration (Fig. 2C). However, this 
signal was not utilised as a feature for sleep stage classification due to its 
intermittent availability.

3.2. Automatic sleep stage classification

We trained an SVM to automatically detect the sleep stages of pre
term infants and compared the results to PSG-derived annotations. 
Following the clinical gold standard, three human experts manually 
scored the sleep stages of 28 patients. The statistical agreement among 
them, calculated using Fleiss’ kappa, was 0.7 ± 0.014 (n = 28), indi
cating a substantial but imperfect interrater agreement. Most in
consistencies were observed between active sleep and wakefulness, 
which was the case in about 20 % of all 30-s epochs (Appendix 
Fig. A.1B). A total number of 25 features were extracted from ECG and 
piezo data sources, although not all of them were finally used (Table 3). 
Feature importance results are summarized in Appendix Fig. A.3. In the 
piezo model, short-term activity was identified as the most influential 

feature, highlighting its relevance for model predictions. For the ECG 
model, the median RR-interval, TINN, and start time emerged as the 
most important features. In the combined piezo + ECG model the piezo- 
derived activity features became the most relevant ones, followed by 
ECG-derived features such as median RR-intervals and TINN. Notably, 
the inclusion of piezo data in the combined model reduced the impor
tance of the start time feature, which played a more prominent role in 
the standalone ECG model.

Fig. 3A shows two example features over time and the corresponding 
hypnograms from human experts (Dataset B, see Section 2.3.2), the 
predicted sleep stages from our piezo + ECG model, and the exported 
sleep stages from Sleepware G3. This comparison illustrates a solid 
agreement between predicted and observed sleep stages, whereas the 
current Sleepware does not perform as well. Performance measures were 
calculated based on the confusion matrix, exemplified in Fig. 3B for the 
testing data (20 % of data) of one-fold. The best classification perfor
mance was achieved by our piezo + ECG model trained on dataset A 
with an accuracy of 92.2 ± 0.01 % (n = 5, five-fold cross-validation) and 
a Cohen’s kappa of 0.83 ± 0.002 (Fig. 3C, Table 4). Sensitivity and 
specificity were 88 ± 0.01 % and 94 ± 0.01 %, respectively. We also 
trained models using features from either the piezo mat or the ECG 
alone. These models performed slightly worse than the combined model 
but still outperformed the automatic annotation from the Sleepware G3 
which only had a kappa of 0.31 ± 0.21 (n = 28). The large SEM for all 
accuracy measures points to high interindividual variability of the 
Sleepware G3 prediction, whereas our trained models perform similarly 
well across all patients. We repeated this procedure on dataset B, which 
contains more continuous data and is therefore closer to reality. On the 
other hand, human experts did not fully agree in about 30 % of all 
epochs, introducing a level of uncertainty. As a result, the performance 
measures for all three models were slightly reduced compared to the 
models trained on Dataset A (Fig. 3D). All agreement metrics for all 
models, including those separated by individual sleep stages, can be 
found in Table A.1 in the Appendix. We would like to emphasise that 
predicting AS is the most challenging. The agreement for AS is consis
tently the poorest among all sleep stages, which is also reflected in the 
manual sleep scoring (Appendix Fig. A.1B). The majority of epochs 
discarded for dataset A were co-labeled with AS. We observed similar 
discrepancies between model predictions and human annotations that 
are evident from the confusion matrix (Fig. 3B) and the analysis of 
human disagreements (Appendix Fig. A.1B). AS can be confused with W 
and QS, but the probability of confusing QS with W is very low. This 
finding is also evident when comparing the accuracy ratio between 
Dataset A and B trained models (Appendix Table A.1). The greatest 
reduction in agreement for models trained on Dataset B was due to 
inaccuracies in the detection of W and AS (Accuracy ratio Dataset A/B 
for W and AS was 0.93, in comparison to QS with 0.98). This can be 
explained by the fact that most of the additional epochs in Dataset B 
contain inconsistencies between W and AS (Appendix Fig. A.1B).

3.3. Sleep characteristics

To evaluate the feasibility of transitioning sleep diagnostics to our 
proposed model, we assessed whether the sleep parameters derived from 
the model align with the current gold standard of PSG. We compared the 
percentage of recording time and sleep bout lengths for W, AS, and QS 
between observed and predicted sleep stage classifications with our 
piezo + ECG model. Only minor differences were observed in the 
average percentage of recording time for wake (observed: 37.9 ± 2.6 %, 
predicted: 36.3 ± 2.1 %), QS (observed: 26.5 ± 1.5 %, predicted: 24.2 
± 1.5 %) and AS (observed: 35.6 ± 1.9 %, predicted: 39.5 ± 1.5 %) 
(Fig. 4A). A two-way ANOVA indicated no significant interaction be
tween classification method and sleep stage distribution (p = 0.17) with 
a reasonably high power of 0.77 (α = 0.1) (see also Section 2.5). 
Notably, we observed considerable variability in sleep stage distribu
tions across patients, with around 25 % showing a deviation of 20 % 

A

Piezo
Visual

Movement of patient

-1

0

1

Pi
ez

o 
(V

) 2 min

B

C

Piezo-Mat 1 min

C Movement

Respiration

Fig. 2. Contactless measurement of movement in preterm infants. (A) A piezo- 
based sensor mat is placed under the mattress. (B) Raw signal from the piezo 
mat and the extracted movement compared to visually observed movements 
from the camera image. The average correlation is 0.78. Please note that brief 
movements cannot be seen in the video making the piezo mat generally more 
sensitive to movement. (C) Time-magnified segment (1 min) from B. During 
resting periods, there is a clear respiration signal. Movement is characterised by 
high-amplitude signals from the piezo mat.
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between observed and predicted sleep stages. These deviations were 
most pronounced in patients with steeper slopes in Fig. 4A. The median 
sleep bout length per patient was not found to be different between 
observed and predicted sleep stages for W and AS (Fig. 4B, W: p = 0.09, 
AS: p = 0.14, n = 28), even though the cumulative probability distri
bution showed a slight left shift (Fig. 4C). For QS, however, we observed 
a significant reduction in median sleep bout lengths (QS: p < 0.001), 
which was also evident from the leftward shift in the cumulative prob
ability distribution (Fig. 4C). This discrepancy may be explained by 
instances where long QS phases, manually classified by clinicians, were 
interrupted by brief W or AS bouts in the automatic classification, 
thereby reducing the overall median sleep bout length.

4. Discussion

The goal of the present study was to test the feasibility of an auto
matic sleep stage classification in preterm infants that uses as few bio
signals as possible and achieves clinically acceptable accuracy. We used 
a combination of movement and ECG features to train three different 

classifiers using an SVM: One utilising features from both the piezo mat 
and ECG, and two others using features from either the piezo mat or ECG 
exclusively. The proposed approach ensures reliable sleep stage detec
tion, even when one signal source is unavailable. Our combined piezo +
ECG model achieved a kappa of 0.83, which is considered, according to 
Cohen’s kappa measure [30,31], a strong agreement with the manually 
annotated sleep stages. Models based solely on piezo or ECG data also 
performed well, achieving kappa values of 0.75 and 0.73, respectively. 
These kappa values are comparable to or higher than the interrater 
reliability that can be achieved by manual sleep scoring according to 
AASM standards [16,32]. These results suggest that our models can 
potentially be considered clinically acceptable [33]. Surprisingly, the 
current software Sleepware G3 used in our paediatric sleep lab 
frequently produces inaccurate sleep stage outputs, often requiring 
manual corrections. Implementing our automatic sleep stage classifica
tion would significantly enhance clinicians’ time management, allowing 
them to dedicate more attention to other clinical responsibilities.

Compared to previous studies, we observed notable differences in the 
distribution of sleep stages, particularly regarding wake times. While the 
literature typically reports ~ 10 % wake periods [12,13,15], our data 
showed a much higher percentage (38 %). Several factors could explain 
this discrepancy, including the infants’ transport to the sleep lab, 
adaptation to a new environment, handling during sensor placement, 
and the connection of electrodes and sensors. Almost all hypnograms in 
our study began with extended wake periods before sleep onset (see 
Appendix), further supporting this observation. In contrast, the frac
tional amounts of AS and QS were in line with the literature, reporting 
~ 60 % AS and ~ 40 % QS [8]. The analysis of sleep bout lengths 
provides insights into the frequency of sleep stage transitions and our 
models’ ability to detect them. We confirmed short median wake periods 
of approximately 2 min [15]. However, our results differed for other 
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Fig. 3. Performance evaluation of sleep stage classifiers. (A) The heart rate (BPM: beats per minute) and activity (short, moving average over one minute) from a 30- 
minute recording are displayed as examples. Below, the manually annotated sleep stages (observed Dataset B), the predictions from the piezo + ECG model, and the 
classifications from the Sleepware G3 (Philips) sleep lab software are shown for comparison. (B) Confusion matrix of the piezo + ECG model trained on PSG-derived 
sleep data (Dataset A). The matrix shows percent agreement, with the number of testing epochs (20 % of the data) indicated in brackets. (C) All machine learning 
models trained on observed Dataset A sleep data outperform the current software across various agreement measures. The model combining piezo and ECG features 
shows a strong agreement with PSG-derived sleep stages (κ > 0.8). (D) Classifiers trained on PSG-derived sleep data (Dataset B) perform slightly worse.

Table 4 
Performance measures of dataset A trained models reported as mean ± SD over 
five-fold cross-validation. Sleepware-generated sleep stages were compared to 
Dataset A of all patients (n = 28) reported as mean ± SD.

Piezo þ ECG Piezo ECG Sleepware

Accuracy 0.92 (±0.01) 0.89 (±0.004) 0.88 (±0.002) 0.68 (±0.16)
Kappa 0.83 (±0.002) 0.75 (±0.01) 0.73 (±0.01) 0.31(±0.21)
Sensitivity 0.88 (±0.01) 0.83 (±0.01) 0.82 (±0.004) 0.53 (±0.38)
Specificity 0.94 (±0.01) 0.92 (±0.003) 0.91 (±0.002) 0.76 (±0.4)
Precision 0.89 (±0.01) 0.8 (±0.01) 0.82 (±0.003) 0.73 (±0.28)
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sleep stages: we observed a shorter median AS duration (2 min vs. 4 min 
in Wang et al.) and a longer median QS duration (6 min vs. 4 min). 
Notably, they also reported a tendency toward shorter sleep stage du
rations using their automatic LightGBM classifier [15] as we have 
observed for QS. In our study, long periods of QS were occasionally 
interrupted by brief AS or wake epochs. This raises important questions: 
do human experts subconsciously apply a “temporal filter” when scoring 
sleep stages, or could our algorithm be more precise and sensitive to 
detecting short stage transitions? This finding, together with the inter
rater reliability of 0.7 (Fleiss’ kappa), suggests that the gold standard of 
manual sleep scoring may have limitations, potentially impeding the 
development of more accurate automatic systems by introducing in
consistencies in sleep stage classification, which may ultimately be 
adopted by the models themselves. It may even call for a reconsideration 
of existing rules for sleep stage classification.

To the best of our knowledge, our approach achieved the highest 
accuracy for a three-stage sleep classification (W, AS, QS) based on vital 
signs when compared to previous studies reporting kappa values ranging 
from 0.38 to 0.52 [13–15]. Zhang et al. extracted movement data as 
motion artefacts from the ECG [14], which may not capture brief 
movements like twitches. Our ECG-based model (κ = 0.73) out
performed earlier ECG algorithms (κ = 0.33) [12].

The achieved high accuracy could be attributed to different factors: 
(1) the integration of novel motion features of the piezo mat signal, (2) 
the inclusion of the temporal feature of the epochs’ sequence that fa
cilitates classifying any epoch based on its features as well as those of 
neighbouring epochs, (3) the careful preprocessing to reduce noise and 
outliers in the signals, (4) the careful selection and the reduced 
dimensionality of the feature space to avoid overfitting during machine 
learning. For comparison, Werth et al. used 47 features, which may have 

introduced overfitting [12].
Our detailed feature importance analysis revealed that the ranking of 

features in the standalone models was largely preserved in the combined 
piezo + ECG model (Appendix Fig. A.3). Notably, short-term activity 
emerged as a key predictor for AS and W which aligns with their defi
nitions as movement-dominated states (Table 2). In contrast, long-term 
activity, median heart rate, and TINN (a measure HRV) were the most 
important features for predicting QS, consistent with its characterization 
by behavioural silence, low heart rate, and reduced HRV (Table 2).

Astonishingly, our models using only vital signs achieved an accu
racy comparable to EEG-based algorithms [9,34–36], despite the 
expectation that EEG provides the most relevant features for sleep stage 
classification [8,10]. The limitations of EEG recordings in preterm in
fants are manifold. First, EEG electrodes can damage the vulnerable skin 
of preterm infants or cause inflammation, making them unsuitable for 
long-term recording [8]. Second, EEG signatures become increasingly 
unreliable the younger the preterm infants [37,38]. The highest per
formance of an EEG-based algorithm for three-stage sleep classification 
was reported by Fraiwan and Alkhodari, achieving an accuracy of 0.96 
and a kappa of 0.91 [34]. However, their study focused on term and 
preterm infants at 40 weeks postconceptional age, a developmental 
stage where adult-like EEG patterns emerge, making their approach less 
applicable to younger infants. More recent studies have made ad
vancements in minimising the number of EEG electrodes or developing 
algorithms tailored to younger patients [35,36]. Both studies achieved 
kappa values around 0.7, which is lower than the performance of our 
models that rely on vital signs rather than EEG.

The combination of movement and ECG-derived features for auto
matic sleep stage classification has previously been applied to specif
ically detect deep sleep (N3 stage) in infants aged 1 to 18 weeks, 

Fig. 4. Comparison of sleep characteristics between visual annotation (black) and automatic sleep stage classification (magenta, piezo + ECG model). (A) Percent of 
time spent in W, AS, and QS. (B) Quantification of median sleep bout length per patient for W, AS, and QS. Note the different y-scale for QS, as quiet sleep bouts are 
much longer. A darker color indicates that more lines are stacked on top of each other. (C) Cumulative probability distribution of epoch lengths. Distributions were 
averaged across patients. Data are presented as mean ± SEM. *** p < 0.001. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)
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achieving an accuracy of 0.97 [20]. Our combined piezo + ECG model 
similarly detects QS with an accuracy of 0.95 (Appendix Table A.1, 
which is comparable to the detection of N3 during the early postnatal 
weeks in term infants. However, unlike Ranta and colleagues, we per
formed a three-stage classification. Additionally, we evaluated our 
movement detection algorithm using visually annotated movements 
from video recordings, as we assume that the activity profile of preterm 
infants provides valuable information for sleep stage classification. Our 
algorithm demonstrates a strong correlation of 0.78 with the visual 
annotations. Notably, our piezo mat exhibited higher sensitivity to 
small, brief movements – likely related to twitches – associated with AS 
[39]. In contrast, prior studies using 15-second windows for movement 
quantification may have missed these subtle movements [29].

The unobtrusive measurement and automatic sleep stage classifica
tion enable continuous monitoring of sleep in preterm infants. On one 
hand, this allows for the clinical monitoring of sleep cycle development 
as an indicator of normal brain development [2]. On the other hand, it 
paves the way for individualised medical care tailored to the sleep cycles 
of preterm infants. The ultimate goal is to protect their precious sleep 
that is frequently interrupted in the NICU environment to promote their 
health and early brain development [8,15].

5. Conclusion

We have demonstrated that reliable sleep stage detection is feasible 
in preterm infants using unobtrusive vital sign measurements. Our 
trained SVM models, based on either or both movement and heart rate 
information, can compete with EEG-based algorithms. Our results sug
gest that algorithms based on vital signs are more suitable for preterm 
infants, which may be due to the fact that EEG patterns only start to 
emerge after 32 weeks of gestation [10]. Although the patient group 
used is unbiased with respect to gender (GDR ~ 1), the generalisability 
of our findings remains limited by the current relatively small sample 
size. Future work is essential to validate the applicability of our models 
in extremely preterm as well as term infants. Future research should also 
focus on exploring deep learning-based feature extraction approaches to 
use only previous data, thus enabling real-time applicability of the piezo 
+ ECG model [13,15]. Beyond real-time classification, the prediction of 
future sleep-wake transitions is essential to facilitate better planning for 
caregivers and clinicians. Clustered care, tailored to the individual sleep 
stages of preterm infants, may offer the greatest benefit to the long-term 
outcomes of these vulnerable patients. At the same time, continuous 
sleep monitoring may improve our understanding of the relationship 
between sleep disturbance and brain development in preterm infants.
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