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Abstract. In the past decades most object recognition systems were based
on passive approaches. But in the last few years a lot of research was done
in the field of active object recognition. In this context there are several
unique problems to be solved, like the fusion of several views and the
selection of the best next viewpoint.
In this paper we present an approach to solve the problem of choosing
optimal views (viewpoint selection) and the fusion of these for an optimal
3D object recognition (viewpoint fusion). We formally define the selection
of additional views as an optimization problem and we show how to use
reinforcement learning for viewpoint training and selection in continuous
state spaces without user interaction. We also present an approach for the
fusion of multiple views based on recursive density propagation.
The experimental results show that our viewpoint selection is able to select
a minimal number of views and perform an optimal object recognition with
respect to the classification.

1 Introduction

The results of 3D object classification and localization depend strongly on the
images which have been taken of the object. Based on ambiguities between objects
in the data set some views might result in better recognition rates, others in worse.
For difficult data sets usually more than one view is necessary to decide reliably on
a certain object class. Viewpoint selection tackles exactly the problem of finding
a sequence of optimal views to increase classification and localization results by
avoiding ambiguous views or by sequentially ruling out possible object hypotheses.
The optimality is not only defined with respect to the recognition rate but also
with respect to the number of views necessary to get reliable results. The number of
views should be as small as possible to delimit viewpoint selection from randomly
taking a large number of images.

In this paper we present an approach for viewpoint selection based on rein-
forcement learning. The approach shows some major benefits: First, the optimal
sequence of views is learned automatically in a training step, where no user inter-
action is necessary. Second, the approach performs a fusion of the generated views,
where the fusion method does not depend on a special classifier. This makes it ap-
plicable for a very wide range of applications. Third, the possible viewpoints are
continuous, so that a discretization of the viewpoint space is avoided, as has been
done before, for example in the work of [2].

Viewpoint selection has been investigated in the past in several applications.
Examples are 3D reconstruction [11] or optimal segmentation of image data [10].
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In object recognition some active approaches have already been discussed as well.
[12] plans the next view for a movable camera based on probabilistic reasoning.
The active part is the selection of a certain area of the image for feature selection.
The selected part is also called receptive field [13]. Compared to our approach, no
camera movement is performed, neither during training nor during testing. Thus,
the modeling of viewpoints in continuous 3D space is also avoided. The work of [9]
uses Bayesian networks to decide on the next view to be taken. But the approach is
limited to special recognition algorithms and to certain types of objects, for which
the Bayesian network has been manually constructed. In other words, the approach
is not classifier independent and cannot be applied without user interaction. [5]
showed that the optimal action is the one that maximizes the mutual information
between the observation and the state to be estimated.

In section 2.1 we will show how the fusion of multiple views can be done. We
will present our approach for viewpoint selection in section 2.2. The experimental
results in section 3 show that the presented approach is able to learn an optimal
strategy for viewpoint selection that generates only the minimal number of images.
The paper concludes with a summary and an outlook to future work in section 4.

2 Planning of view sequences

The goal of this work is to provide a solution to the problem of optimal viewpoint
selection for 3D object recognition without making a priori assumptions about the
objects and the classifier. The problem is to determine the next view of an object
given a series of previous decisions and observations. The problem can also be
seen as the determination of a function which maps a history of observations to a
new viewpoint. This function should be estimated automatically during a training
step and should improve over time. The estimation must be done by defining a
criterion, which measures how useful it is to choose a certain view given a history
of observations. Additionally, the function should take uncertainty into account
in the recognition process as well as in the viewpoint selection. The latter one is
important, since new views are usually taken by e.g. moving a robot arm or a
mobile platform. So the final position of the robot arm or the platform will always
be error-prone. Last not least, the function should be classifier independent and
be able to handle continuous viewpoints.

The realization of the described problem can be separated into two major parts.
First, as a sequence of views will be necessary to compute classification results, we
have to be able to perform a fusion of several views. A way to solve this problem
using particle filters is given in section 2.1. Second, the main task, the planning of
view sequences, must be properly formulated. An approach based on reinforcement
learning [14] is presented in section 2.2

2.1 Fusion of Multiple Views by Density Propagation

In active object recognition a series of observed images ft, ft−1, . . . , f0 of an object
are given together with the camera movements at−1, . . . , a0 between these images.
Based on these observations of images and movements one wants to draw conclu-
sions for a non-observable state qt of the object. This state qt must contain both
the discrete class and the continuous pose of the object. This fact is important for
the following discussion.



In the context of a Bayesian approach, the knowledge on the object’s state is
given in form of the a posteriori density p(qt|ft, at−1, ft−1, . . . , a0, f0) and can be
calculated from

p(qt|ft, at−1, . . . , a0, f0) =
1
kt

p(qt|at−1, ft−1, . . . , a0, f0)p(ft|qt) (1)

where kt = p(ft, at−1, . . . , a0, f0) denotes a normalizing constant that is ignored in
the following considerations. Under the Markov assumption for the state transition,
(1) can be recursively rewritten as

p(qt|at−1, ft−1, . . .) =
∫

qt−1

p(qt|qt−1, at−1) · p(qt−1|at−1, ft−1, . . .)dqt−1 . (2)

Obviously this probability depends only on the camera movement at−1. Its inac-
curacy is modeled with a normally distributed noise component.

The classic approach for solving this recursive density propagation is the Kalman
Filter [8]. But in computer vision the necessary assumptions for the Kalman Filter
(p(ft|qt) being normally distributed) are often not valid. In real world applications
this density p(ft|qt) usually is not normally distributed due to object ambiguities,
sensor noise, occlusion, etc. This is a problem since it leads to a distribution which
is not analytically computable. An approach for the complicated handling of such
multimodal densities are the so called particle filters [7]. The basic idea is to ap-
proximate the a posteriori density by a set of weighted particles. In our approach
we use the Condensation Algorithm [7]. It uses a sample set Ct = {ct

1, . . . , c
t
K} to

approximate the multimodal probability distribution in (1). Please note that we
do not only have a continuous state space for qt but a mixed discrete/continuous
state space for object class and pose, as mentioned at the beginning of this section.

Now we will show how to use the Condensation Algorithm in a practical real-
ization of sensor data fusion of multiple views. As noted above we need to include
the class and pose of the object into our state qt to classify and localize objects.
This leads to the definitions of the state qt =

(
Ωκ

1ϕt . . . Jϕt
)T

. The samples c
and camera movements a are defined as

ct
i =

(
Ωκi

1ϕt
i . . . Jϕt

i

)T and at =
(
∆1ϕt . . . ∆Jϕt

)T (3)

with the class numbers Ωκ and Ωκi . jϕt denotes the pose of the j-th degree of
freedom for the camera position and ∆jϕt the relative changes of the viewing
position of the camera.

In the practical realization of the Condensation Algorithm, one starts with an
initial sample set C0 = {c0

1, . . . , c
0
K} with samples distributed uniformly over the

state space. For the generation of a new sample set Ct, samples ct
i are

1. drawn from Ct−1 with probability p(ft−1|ct−1
i )

P
K
j=1 p(ft−1|ct−1

j )

2. propagated with the necessarily predetermined sample transition model ct
i =

ct−1
i +

(
0 r1 . . . rJ

)T with rj ∼ N (∆jϕt, σj) and the variance parameters of
the Gaussian transition noise σj . They model the inaccuracy of the camera
movement under the assumption that the errors of the camera movements are
independent between the degrees of freedom. These variance parameters have
to be defined in advance.

3. evaluated in the image by p(ft|ct
i). This evaluation is performed by the clas-

sifier. The only requirement for the classifier that shall be used together with
our fusion approach is its ability to evaluate this density.



In the context of our viewpoint selections the densities represented by sample
sets have to be evaluated. This can be done, for example, by a Parzen estima-
tion over the sample set [15]. For a more detailed explanation on the theoretical
background of the approximation of (1) by a sample set we refer to [7].
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Fig. 1. Reinforcement learning

At this point we want to note that it is impor-
tant to include the class Ωκ in the object state
qt and the samples ct

i. An alternative would be
to omit this by setting up several sample sets –
one for each object class – and perform the Con-
densation Algorithm separately on each set. But
this would not result in an integrated classifica-
tion/localization, but in separated localizations
on each set under the assumption of observing

the corresponding object class. No fusion of the object class over the sequence of
images would be done in that case.

2.2 Reinforcement Learning Applied to Viewpoint Selection
A straight forward and intuitive way to formalizing the problem is given by looking
at Fig. 1. A closed loop between sensing st and acting at can be seen. The chosen
action at corresponds to the executed camera movement, the sensed state

st = p(qt|ft, at−1, ft−1, . . . , a0, f0) (4)
is the density as given in (1). Additionally, the classifier returns a so called reward
rt, which measures the quality of the chosen viewpoint. For a viewpoint that in-
creases the information observed so far the reward should have a large value. A
well-know measure for expressing the informational content that fits our require-
ments is the entropy

rt+1 = −H(st) = −H (p(qt|ft, at−1, ft−1, . . . , a0, f0)) (5)

It is worth noting that the reward might also include costs for the camera move-
ment, so that large movements of the camera are punished. In this paper we neglect
costs for camera movement for the time being.

At time t during the decision process, i.e. the selection of a sequence of view-
points, the goal will be to maximize the accumulated and weighted future rewards,
called the return

Rt =
∞∑

n=0

γnrt+n+1 = −
∞∑

n=0

γnH(st+n+1) with γ ∈ [0; 1] . (6)

The weight γ defines how much influence a future reward will have on the overall
return Rt at time t+ n+ 1. Of course, the future rewards cannot be observed at
time step t. Thus, the following function, called the action–value function Q(s, a)

Q(s, a) = E {Rt|st = s, at = a} (7)

is defined, which describes the expected return when starting at time step t in
state s with action a. In other words, the function Q(s, a) models the expected
quality of the chosen camera movement a for the future, if the sensor fusion has
returned s before.

Viewpoint selection can now be defined as a two step approach: First, estimate
the function Q(s, a) during training. Second, if at any time the sensor fusion
returns s as classification result, select that camera movement which maximizes



the expected accumulated and weighted rewards. This function is called the policy

π(s) = argmaxa Q(s, a) . (8)

The key issue of course is the estimation of the function Q(s, a), which is the basis
for the decision process in (8). One of the demands defined in section 1 is that the
selection of the most promising view should be learned without user interaction.
Reinforcement learning provides many different algorithms to estimate the action
value function based on a trial and error method [14]. Trial and error means that
the system itself is responsible for trying certain actions in a certain state. The
result of such a trial is then used to update Q(·, ·) and to improve its policy π.

In reinforcement learning a series of episodes are performed: Each episode k
consists of a sequence of state/action pairs (st, at), t ∈ {0, 1, . . . , T}, where the
performed action at in state st results in a new state st+1. A final state sT is
called the terminal state, where a predefined goal is reached and the episode ends.
In our case, the terminal state is the state where classification and localization is
possible with high confidence. During the episode new returns R

(k)
t are collected

for those state/action pairs (sk
t , ak

t ) which have been visited at time t during the
episode k. At the end of the episode the action-value function is updated. In our
case so called Monte Carlo learning is applied and the function Q(·, ·) is estimated
by the mean of all collected returns R

(i)
t for the state/action pair (s, a) for all

episodes.
As a result for the next episode one gets a new decision rule πk+1, which is

now computed by maximizing the updated action value function. This procedure
is repeated until πk+1 converges to the optimal policy. The reader is referred to a
detailed introduction to reinforcement learning [14] for a description of other ways
for estimating the function Q(·, ·). Convergence proofs for several algorithms can
be found in [1].

Most of the algorithms in reinforcement learning treat the states and actions
as discrete variables. Of course, in viewpoint selection parts of the state space
(the pose of the object) and the action space (the camera movements) are contin-
uous. A way to extend the algorithms to continuous reinforcement learning is to
approximate the action-value function

Q̂(s, a) =

∑
(s′,a′) K (d (θ(s, a), θ(s′, a′))) · Q(s′, a′)∑

(s′,a′) K (d (θ(s, a), θ(s′, a′)))
, (9)

which can be evaluated for any continuous state/action pair (s, a). Basically, this is
a weighted sum of the action-values Q(s’,a’) of all previously collected state/action
pairs (s′, a′). The other components within (9) are:

– The transformation function θ(s, a) transforms a state s with a known action
a with the intention of bringing a state to a “reference point” (required for the
distance function in the next item). In the context of the current definition of
the states from (4) it can be seen as a density transformation

θ(st, at) = θ (p(qt|ft, at−1, ft−1, . . . , a0, f0), at)

= det
(
Jζ−1

at
(qt)

)
p

(
ζ−1

at
(qt)|ft, at−1, ft−1, . . . , a0, f0)

)
(10)



cup “type one”

views from 0◦ and 180◦ views from 90◦ views from 270◦

cup “type two”

views from 90◦ with number visible no differences between 150◦ and 30◦

Fig. 2. Examples for objects that require viewpoint selection and fusion of images for
proper recognition.

ζ−1
a (q) =




q1 + a1

...
qm + am


 , Jζ−1

a
(q) =




∂(ζ−1
a )1

∂q1
. . .

∂(ζ−1
a )

m

∂q1
...

. . .
...

∂(ζ−1
a )1

∂qm
. . .

∂(ζ−1
a )

m

∂qm


 =



1 0
. . .

0 1


 .

This density transformationwhich simply performs a shift of the density.
– A distance function d(·, ·) to calculate the distance between two states. Gen-
erally speaking, similar states must result in low distances. The lower the
distance, the more transferable the information from a learned action-value
to the current situation is. As the transformation function (10) results in a
density, the Kullback-Leibler Distance

dKL(sn, sm) = dKL (p(q|fn, an−1, fn−1, . . .), p(q|fm, am−1, fm−1, . . .))

=
∫

p(q|fn, an−1, fn−1, . . .) log
p(q|fn, an−1, fn−1, . . .)
p(q|fm, am−1, fm−1, . . .)

dq ,

which can easily be extended to a symmetric distance measure, the so called
extended Kullback-Leibler Distance

dEKL(sn, s′m) = dKL(sn, s′m) + dKL(s′m, sn, ) , (11)
can be used. Please note that in general there is no analytic solution for (11)
but as we represent our densities as particle sets anyway (see section 2.1) there
are well-known ways to approximate (11) by Monte Carlo techniques.

– A kernel function K(·) that weights the calculated distances. A suitable kernel
function is the Gaussian K(x) = exp(−x2/D2), where D denotes the width of
the kernel.

Viewpoint selection, i.e. the computation of the policy π, can now be written,
according to (8), as the optimization problem

π(s) = argmax
a

Q̂(s, a) . (12)

3 Experimental Evaluation

Our primary goal in the experiments was to show that our approach is able to learn
and perform an optimal sequence of views. We have shown in several publications



[3, 4] that the fusion of a sequence of randomly chosen views works very well in real
world environments and improves classification and localization result significantly.
For that reason we decided to use the rather simple — from the object recognition’s
point of view — synthetic images of the two types of cups shown in Fig. 2 for
the evaluation of our viewpoint selection approach. In this setup the camera is
restricted to move around the object on a circle, so that (3) reduces to ct

i =
(Ωκi

1ϕt
i)

T and at ∈ [0◦, 360◦]. The classifier used to evaluate p(ft|ct
i) for the

fusion of images (see section 2.1) is based on the continuous statistical eigenspace
approach presented in [6].

The four cups of “type one” in Fig. 2 show a number 1 or 2 on one, and a
letter A or B on the other side. A differentiation between the 4 possible objects
is only possible if number and letter have been observed and properly fused. In a
training step a total of about 600 action-values Q(·, ·) were collected during 200
episodes; each for different settings of the return parameter γ (6). The evalua-
tion was performed with 500 sequences with randomly chosen classes and starting
views. There exists a theoretical minimum for the necessary sequence length of
≈ 2.3 views: Number and letter are visible within about 120◦ each, requiring 2
views for that case and 3 views for the remaining viewing area. The recognition
rates at the end of the sequences were as expected 100% for these rather simple
objects. But it is very interesting, and this is the main point, that the average
length of the planned sequences shown in Table 1 is very close to the calculated
minimum of necessary views. This indicates very strongly that the learned strategy
for recognition is optimal. Due to the nature of the objects, the learned strategy
is the same for all values of γ.

The cups of “type two” in Fig. 2 show a number (1 2 3 4 5) on the front
side. If this number is not visible the objects can not be distinguished or localized.
The cups can be classified correctly and stable within an area of nearly 120◦.
Localization of the cups is possible within an area of about 144◦. In the training
a total of about 430 action-values Q were collected during the 200 performed
episodes that generated about 600 different views. The optimal strategy must
bring up the number with a minimum number of views. We first expected our
viewpoint selection to learn a strategy that moves the camera by 120◦ if the cup
can not be classified, as this would result in an average minimum sequence length
of 2.0. But the learned strategy — which is the same for each trained value of γ —
moves the camera by 180◦ if no classification or localization is possible. The reason
for this strategy is that it allows for a better fusion and thus for an unambiguous
recognition. Surprisingly, even this learned strategy has a theoretical minimum for
the necessary sequence length of only ≈ 2.03 steps. As the results in Table 1 show,
the average sequence length required by our viewpoint selection is just about the
minimal number of required views.

4 Conclusion and Future Work

In this paper we have presented a general framework for viewpoint selection and
the fusion of the generated sequence of views. The approach works in continuous
state and action spaces and is independent of the chosen statistical classifier. Fur-
thermore the system can be be trained automatically without user interaction. We
claim that these properties have not yet been provided by any other approach. The
experimental results on two objects that require different strategies for recognition
have shown that an optimal planning strategy was learned.



Table 1. Results of viewpoint selection. Calculation time given is for planning one step,
computed on a Pentium IV 2.4GHz.

cup “type one” “cup type two”
γ = 0 γ = 0.5 γ = 1.0 γ = 0 γ = 0.5 γ = 1.0

classification rate 100% (as expected)
average sequence length 2.36 2.28 2.31 2.13 1.96 2.13

calculation time ≈ 13.1s ≈ 12.3s

In our future work we will evaluate how much the planning of optimal view
sequences improves object recognition rates on real world objects compared to
the random strategy we used in [3, 4]. Another important point for real world
applications are costs of movement that could not be discussed in this paper.
Finally, for higher dimensional state spaces, other reinforcement learning methods
might be necessary to reduce training complexity.
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