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Region-based Edge Convolutions with Geometric
Attributes for the Semantic Segmentation of

Large-scale 3D Point Clouds
Jhonatan Contreras, Sven Sickert, and Joachim Denzler

Abstract—In this paper, we present a semantic segmentation
framework for large-scale 3D point clouds with high spatial
resolution. For such data with huge amounts of points, the
classification of each individual 3D point is an intractable task.
Instead, we propose to segment the scene into meaningful regions
as a first step. Afterward, we classify these segments using
a combination of PointNet and geometric deep learning. This
two-step approach resembles object-based image analysis. As an
additional novelty, we apply surface normalization techniques
and enrich features with geometric attributes. Our experiments
show the potential of this approach for a variety of outdoor scene
analysis tasks. In particular, we are able to reach 89.6% overall
accuracy and 64.4% average intersection over union (IoU) in the
Semantic3D benchmark. Furthermore, we achieve 66.7% average
IoU on Paris-Lille-3D. We also successfully apply our approach
to the automatic semantic analysis of forestry data.

Index Terms—Geometric Deep Learning, 3D Point Clouds,
Semantic Segmentation, Outdoor Scenes.

I. INTRODUCTION

IN recent years, companies and research groups have in-
creased their interest in the use of Light Detection and

Ranging (LiDAR) scanners. These scanners can be used to
generate precise spatial information about the shape, surface,
and other geometric characteristics of occurring objects in a
scene. LiDAR uses pulsed beams of light to measure distances
from a scanner to the surface of objects in a scene. The result
is typically stored as a 3D point cloud. Thus, the data is
composed of a collection of non-uniformly distributed points
in a continuous space (x-, y-, z-coordinates), which can be
referred to as unstructured data. In some LiDAR campaigns,
images are captured simultaneously to retrieve additional color
or reflectance information of objects in a scene. Merging such
information creates more meaningful point clouds.

Especially in geological sciences, a setup with LiDAR offers
several advantages over regular 2D images. In dense forest
areas, for instance, an aerial 2D photograph fails to capture the
terrain surface in areas with thick canopy cover. Furthermore,
clouds can make satellite imaging difficult. On the other
hand, terrestrial cameras fail to capture scenes completely
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due to occlusions by nearby objects in the line of sight of
the camera. In poorly illuminated scenes or during darkness,
a 2D image captures only a few or very noisy information.
In contrast, LiDAR is an active sensor and can collect data
during both day and night. Although handling such data is
not as intuitive as processing images, point clouds are used
in numerous applications. Examples include the generation of
canopy models [1], individual tree segmentation [2], build-
ing models, digital terrain elevation models [3], or semantic
understanding of forest and urban areas. The latter can be
achieved via semantic segmentation. It aims at assigning one
label from a set of pre-defined classes to each point of a
point cloud [4], [5]. Nearby points of the same class form
semantically meaningful segments that resemble real-world
object boundaries. For instance, in an urban outdoor scene, the
classes could include natural terrain, vegetation, buildings, and
cars. Semantic segmentation is an essential intermediate step
towards complex tasks such as autonomous car driving, urban
planning or disaster prevention and mitigation. It is crucial for
automatic decision making.

For large high-resolution outdoor scenes, point-wise clas-
sification approaches are an intractable problem. However,
the semantic segmentation of a scene can also be achieved
differently. To reduce the complexity of the task, points can
be grouped into segments before classification. Most com-
monly, such segments are voxels in regular volumetric grids
[6], [7], [8]. This process reduces the complexity and, thus,
computational requirements. However, at the same time, it
decreases the output resolution. Furthermore, especially in
outdoor scenes, a large number of voxels are empty.

Finally, rectangular grids are not a natural division for real-
world scenes. In most cases, a unit contains points of different
semantic classes. A consistent global labeling of all points in
such voxels will likely lead to many misclassifications. It can
be substituted by unsupervised segmentation, which obtains
3D segments based on visual or geometric criteria. In the
best-case scenario, the resulting 3D segments are consistent
with the spatial geometry and do not cross object boundaries.
Thus, 3D segments are a more natural representation of point
groups than voxel grids. At the same time, the quality of the
initial segmentation method can have considerable effects on
the behavior of subsequent processing steps.

In this paper, we propose a method based on PointNet
[9] using a geometric deep learning operation called edge
convolution [10]. It can capture local geometric attributes of
adjacent segments. As an initial segmentation step, we follow
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Fig. 1: Pipeline of our approach for semantic segmentation: The original point cloud consists of A points, which is typically
several orders of magnitude larger than the number of segments B. Segments are generated using an unsupervised segmentation
approach. Based on the input and the unsupervised over-segmentation, NDSM is a means of modeling additional geometric
attributes. These are added to the segment’s features and passed to a semantic segmentation sub-network. The losses of both
the global classification and local semantic segmentation sub-network are combined for optimization.

the approach proposed by [11]. For the semantic segmentation
of outdoor 3D scenes, we propose to use the normalized
elevation to simplify the distinction between elevated and
non-elevated objects. In urban scenes, for instance, it benefits
the distinction between ground, high vegetation, and building
structures. Our experiments demonstrate the viability of our
approach for both high-resolution and low-resolution point
clouds displaying outdoor scenarios.

The remainder of this paper is organized as follows. In
Sec. II we report on related work and put our approach
in context to the state-of-the-art. After that, in Sec. III we
describe our approach based on convolutional networks using
edge convolutions and a Normalized Digital Surface Model
(NDSM) for 3D point cloud data. Sec. IV follows with an
extensive experimental evaluation of our approach. We use
diverse and challenging outdoor datasets that differ in both
quality and the underlying recording settings. In Sec. V we
summarize our findings.

II. RELATED WORK

There are mainly three kinds of approaches to directly
process 3D point cloud data: point-wise, voxel-wise, and
segment-wise. Alternatively, a point cloud data can be mapped
into two-dimensional space and processed accordingly. The
output is then obtained by applying standard image CNNs on
multiple 2D images views [12], [13], [14]. In the following,
we will put our proposed approach in relation to these works.

A. Voxels-wise Approaches

VoxelNet proposes a generic 3D detection learning network
that unifies feature extraction and bounding box prediction into
a single stage. Selected points inside each voxel are trans-
formed using a proposed voxel feature encoding [6]. A region
proposal network [15] uses the previous output to generate
detections and bounding boxes. The authors of OctNet [7]
create a hierarchical partition of the 3D space, that exploits
its sparsity characteristics using a set of unbalanced octrees
[16]. It focuses on dense regions, obtaining more partitions
only over the relevant dense regions without affecting the
resolution and accuracy. Their 3D CNN redefines traditional
operators for convolution and pooling, to make deep learning
tractable for high-resolution inputs. In [8], a technique is
proposed, where each voxel is encoded using only 1 Bit, which

saves computational time and effort. An essential contribution
is the implementation of a lightweight CNN model, which
obtains a low-power and low-cost inference targeting robots,
drones, and cars. It is independent of the number of points and
their distributions inside of voxels. However, the voxelization
process leads to a loss of information and details in both
geometric and visual aspect.

B. Points-wise Approaches

Point-wise approaches are computationally expensive but
can offer high details in scenarios with low point densities.
The authors of [17] propose to compute 3D moment invariant
features for each occurring point. They are invariant under
scaling, rotation, and translation. Additionally, the feature
representation is augmented by local contextual information,
which is generated using cascaded classification. Context
features are shared among nearby points. Another example of
hand-crafted features is the work on SHOT descriptors [18].
The surrounding of each point is organized in a structured
spherical neighborhood with bins. Based on the distribution
of nearby points, a meaningful histogram can be created,
which is invariant under rotation. A fast semantic segmentation
point-wise approach is proposed in [19], where a Random
Forest classifier is used. The points are described by a set
of features of three different types. First, they use a subset
of geometric features based on eigenvalues and corresponding
eigenvectors. Additionally, the first and the second-order mo-
ments of the point neighborhood around the eigenvectors are
integrated. The third type of feature comprises height values
(z-coordinates) and vertical range.

In contrast to these works on features design, recent point-
wise classification approaches focus on the use of deep neural
networks [9], [10]. PointNet [9] divides a scene into 3D blocks.
Points inside a block are then aligned by a spatial transformer
network (STN) [20] to retrieve point features. A max-pooling
layer serves as a symmetric function to aggregate information
from all the points resulting in a shared global feature, which
is invariant to input permutation. Finally, concatenated global
and local features are used to predict a class score for each
point. Follow-up work [21] addresses missing local context
information by applying a hierarchical PointNet variant called
PointNet++. The authors of PointCNN [22] propose a hi-
erarchical convolution method with an X-Conv module that
aggregates inputs into less points with more valuable features.
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(a) Classification Sub-network

(b) Semantic Segmentation Sub-network

Fig. 2: Architectural details on the sub-networks used in our pipeline: (a) The classification sub-network takes as input n
3D points from the segments. A max-pooling operation aggregates all information in a 1D global feature descriptor, which
is used as input for the segmentation Sub-network. The spatial transformation block is used to align an input point cloud to
a canonical space by applying a learned 3 × 3 transformation matrix. (b) The Semantic segmentation sub-network takes
as input the 1D global feature descriptor and information extracted in previous steps or from other sources. Those additional
features can be added at an early or late step in the system. The network computes features by applying edge convolutions
and multi-layers perceptron until the last layer classifies each segment in one of c classes.

Also motivated by the individual classification of points,
the authors of [10] adapt ideas from CNNs to incorporate
neighborhood information. In particular, an edge convolution
operation based on graphs is introduced. It allows to find
semantically similar geometric areas within a point cloud.
PointSift [23] introduces a module that can be incorporated to
most of the existing PointNet based methods to improve the
permutation invariance. This method applies a scale-invariant
feature transform to capture a feature representation of the
points. The authors of [24] propose a multi-scale point-wise
CNN based on PointNet. It consists of the four components
3D convolutions, up- and down-sampling, dynamic feature ex-
traction, and post-processing using conditional random fields
(CRF). Furthermore, the authors of [25] present a module
called PointGCR that can be included in 3D CNNs to in-
corporate semantic context dependencies information with
global reasoning. It performs graph convolution operations
considering each channel of an output layer as a graph node,
while their dependencies are modeled via edges.

In another work, the authors of [26] propose a network
called MHNet, which is composed of four connected down-
sampling modules using PointNet layers to capture local
features at multiple scales. The point cloud is up-sampled,
concatenating the local features obtained in the four stages
of the hierarchical network. Additionally, a CRF is applied
within the output layer as post-processing step. TGNet [27] is
a geometric graph convolution network applied on multiscale

neighborhoods that learns expressive and compositional local
geometric features. Their filters are defined as the products
of the local point features and the neighboring geometric
features where Gaussian weighted Taylor kernels represent the
geometric features. The work on MS-PCNN [24] proposes an
end-to-end feature extraction framework inspired by PointNet
and edge convolutions. Its global and local features are ex-
tracted using dynamic edge convolutions on points at different
scales utilizing down-sampling and up-sampling modules. The
previously mentioned multiscale methods and others such as
3P-RNN [28] have the advantage of including information
from a larger neighborhood. Using the neighborhood size the
influence of context can be controlled and scale invariance can
be improved.

C. Segments-wise Approaches

Another way to achieve a semantic segmentation is to
classifiy segments instead of individual points. The authors of
[11] propose to combine PointNet with graphical models and
unsupervised segmentation. The whole point cloud is divided
into geometrically homogeneous segments. PointNet is utilized
to obtain a global feature for each of those segments. A super-
point graph is built by modeling segments as graph nodes on
which a graph convolution can be applied. The authors of [29]
utilize a supervoxel-based method to generate nearly uniform
segments. For each segment, attributes are generated, then a
Random Forest classifier creates an initial label, which is re-
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Fig. 3: The Bildstein station 5 scene shows an urban area in
Semantic3D dataset [30] without surface normalization. The
coordinate system corresponds to the sensor position (red dot).
We can observe the coordinates for two points on the asphalt
with values z = 2.2m and z = −7.19m.

fined using a supervised graph-based model at the end. Similar
to [11], our proposed method uses unsupervised segmentation
to split the scene in a first step. However, in our approach, we
capture local information of the points in each segment using
an additional sub-network. We make use of extensive local
knowledge, based on geometrical attributes of the neighboring
segments through edge convolutions. Thus, our approach aims
to reduce complexity and memory consumption combining
ideas of [11] and [10] to overcome the limitations of global
features of the PointNet approach [9].

III. DEEP LEARNING USING ATTRIBUTES AND ELEVATION
MODELLING

Our proposed deep learning-based framework can manage
large-scale point clouds of outdoor scenes with high spatial
resolution. To achieve this goal, we segment a scene by
grouping geometrically and visually similar points together.
Next, our network classifies segments instead of individual
points using an architecture similar to PointNet. In Sec. III-A,
we describe our whole pipeline in detail. The modeling of
additional geometric information features is covered in Sec.
III-B. Afterwards, we recapture edge convolutions in Sec. III-C
and how they are used in our case. Finally, we propose an
efficient organization of the input data in Sec. III-D

A. Pipeline and Attributes

An overview of our whole approach is given in Fig. 1. In the
first step, the Normalized Digital Surface Model (NDSM) of
the scene is computed, stored, and used as part of the input in
the fourth step. We will come back to this model later in Sec.
III-B. Simultaneously, an unsupervised segmentation based on
[11] is performed to reduce the complexity of the data. We
selected this approach, as the size of the segments depends
mainly on the local geometric homogeneity. In this way, small
segments can be obtained for objects such as bollards or
trash can, as well as large segments for uniform surfaces

Fig. 4: The Digital Surface Model (DSM) represents earth’s
surface and includes all objects on it. In contrast, DTM is a
representation of a terrain’s surface without any objects. In the
NDSM the terrain is normalized to zero, which allows direct
measurement of object heights.

such as roads or walls. Typically, a high-resolution scene can
contain millions of points. The analysis of all individual points
is computationally expensive and sometimes even redundant.
In Fig. 5b and Fig. 7b we visualize segments created by
unsupervised segmentation.

As a result, instead of working with millions of points, our
approach needs to analyze several thousand segments. Each of
them contains a discrete subset of points with a fixed number
of elements. We accomplish segmentation using a particular
set of attributes computed for each point. Nearby points with
similar characteristics should be part of the same group. Those
attributes include linearity, planarity, scattering and verticality
[19]. They are used again in the classification step as additional
feature input.

In the second step, each segment is considered as an
independent 3D shape containing n points in R3 with x-,
y- and z-coordinates. These shapes are used as input to our
classification sub-network based on PointNet [9]. The latter
is composed of two multi-layer perceptron blocks separated
by an aggregation function, which combines the information
from all points in the segment (see Fig. 2a). The output of
the aggregation function is a feature vector, which serves as
input for the semantic segmentation sub-network. Thus, the
feature vector includes a set of attributes, which are invariant
under permutation and spatial transformations that characterize
segment properties.

In the following step, NDSM is applied to augment the fea-
ture vector with minimum, maximum, and average elevation
for each segment. A more detailed explanation follows in Sec.
III-B. Additionally, a segment’s length, volume, surface, and
the number of points are determined and added as attributes.
As a result, the feature vector contains eleven additional
attributes. The feature vector is used as input in the semantic
segmentation sub-network, which applies edge convolution
operations (see Sec. III-C and Fig. 2b) to convolve segments
considering a local neighborhood. Finally, a joint architecture
is applied between both networks in an end-to-end learning
process. An output score is computed for each segment.

B. Normalized Digital Surface Model

Terrain elevation may vary a lot in forestry areas. In urban
areas, the terrain most often is flat or has only fluctuation
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TABLE I: An overview of the attributes we use to enrich the
feature vector of each segment in the semantic segmentation
sub-network. The majority of them are taken from [31], where
a more detailed explaination can be found.

Attribute Definition

Normalize z min
Normalize z max NDSM
Normalize z mean

Linearity
λ1 − λ2
λ1

Planarity
λ2 − λ3
λ1

Scattering
λ3

λ1
Verticality

∑3
j=1 λj |[uj ]i|

Length λs1
Surface λs1 · λs2
Volume λs1 · λs2 · λs3
Number of points |Si|

in altitude. Fig. 3 shows a scene of the Semantic3D dataset,
which we later use in our experiments. The LiDAR sensor is
located over a small hill, and it is represented as a red dot. The
coordinate system corresponds to the sensor position. Thus, the
points above it have positive z values, while points below it
have negative z values. Fig. 3 shows two points, where the
altitude difference is greater than nine meters on the ground
level. In the absence of global geo-information for calibration,
the LiDAR sensor is the center of the reference system.
Consequently, a normalization of the surface is desirable.

Additionally, in point cloud datasets, pairs of classes like
high and low vegetation or building and hardscape can have
small inter-class variances. For instance, in [30], the class for
low vegetation includes flowers and small bushes. On the other
hand, the high vegetation class includes trees and large bushes.
The two are separated using a simple threshold value of two
meters. In another example, garden walls belonging to the
hardscape class pose similar geometric attributes to building
walls. However, the latter are much taller than garden walls.

To allow direct measurement of object heights, we define
a set of ground models. They also help in simplifying the
distinction between elevated and non-elevated objects. The
Digital Surface Model (DSM) represents the earth’s surface
and includes all objects on it. In contrast to DSM, the Digital
Terrain Model (DTM) is a representation of a terrain’s surface
without any objects. Typical objects include cars, plants, and
buildings. The DSM can be directly obtained as the outer
hull of the point cloud or terrain’s elevation data (Fig. 4).
Finally, the Normalized Digital Surface Model (NDSM) pro-
vides valuable information in which the terrain is everywhere
set to a standard of zero. It is generated by subtracting the
digital terrain model from the digital surface model as

NDSM = DSM −DTM . (1)

Several filtering algorithms have been developed in the last
decades. In our approach, we use the progressive morpho-
logical filter (PMF) proposed in [32] to distinguish between
ground and non-ground points. Afterward, we define a radius

TABLE II: Number of points and number of segments for
examples of the Paris-Lille-3D dataset [35].

Training data Points (Millions) Segments

Lille 1.1 29.8 4681
Lille 1.2 29.7 4469
Lille 2 21.2 2605
Paris 37.3 8936

Test data

Dijon 9 10.0 988
Ajaccio 2 10.0 1083
Ajaccio 57 10.0 1305

and use an interpolation algorithm to complete the DTM. We
selected PMF as it is implemented in the GDAL open source
library. It is convenient, acceptably fast, and we acquired
satisfactory terrain models. However, there are alternatives like
cloth simulation filter [33], that could be used, as well. In
fact, in some cases, surface models are already available from
other sources like satellite LiDAR data. From NDSM, we
can extract the maximum, minimum, and average elevation
of the points within a segment. These attributes represent
extra information to enrich a segment in addition to geometric
attributes. Finally, all of the previously mentioned attributes
are added to the feature vector that serves as input for our
semantic segmentation sub-network.

C. Edge Convolution for Segments

In the following, we adopt the edge convolution operation
introduced by the authors of [10] as it is an essential part
of our pipeline. Please note, edge convolutions are originally
defined for points. We extend them to be used in conjunction
with segments and consequently within our sub-network for
semantic segmentation (see Fig. 2b).

As a prerequisite, we first introduce the notations which
will be used throughout this section. C = {c1, ..., cn} denotes
a F -dimensional point cloud consisting of n points, where
C ⊆ RF . Thus, in the case F = 3, each element contains
3D coordinates ci = (x̄i, ȳi, z̄i). This representation can be
extended to include additional information representing color,
verticality, scattering, among others.

We use the unsupervised segmentation method called geo-
metric partition with global energy defined in [11]. It computes
the point cloud partition using a set of dg geometric features
fi ∈ Rdg for each point ci. In particular, the set of feature dg
includes linearity, planarity, scattering, and verticality. Accord-
ing to [31] those attributes are defined using the eigenvalues
λ1 > λ2 > λ3 of the covariance matrix defined for each point
and its neighborhood (see Table I )

As a result, the point cloud C is divided in a set segment
ofs S with m components, S = {s1, ..., sm}, where si ⊆ C.
The average values of the previously mentioned attributes in a
segment are used to enrich the feature vector in the segmenta-
tion sub-network. The attributes length, surface, and segment
volume are also concatenated. They are defined in [11], using
the eigenvalues λs1 > λs2 > λs3 of the covariance matrix of
the points into a segment (see Table I). S has dimension F ,
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(a) Ground-truth (b) Segmentation (c) Our result

Fig. 5: Qualitative results for Forest 3D dataset [34]: (a) Ground-truth with labels for trees, terrain and dead wood. (b) False
color representation of the unsupervised segmentation output. (c) The final output for our semantic segmentation pipeline.

which is the feature dimensionality of a given layer. Thus, in
the first layer, it corresponds to the input dimension (F = 3).
Each following layer conducts convolutions on the output of
the previous layer.

Consider a directed graph G = (V, E) representing the struc-
ture of a segmented point cloud using nodes V = {1, ..., n}
and edges E ⊆ V × V . In our approach, we construct G as
the k-nearest neighbor (k-NN) graph in RF . Directed edges
are defined as (i, ji1), ..., (i, jik) and sji1 , ..., sjik are the k
closest segments to si. Furthermore, we define edge features
eij : hΘ(si, sj), where hΘ : RF × RF ⇒ RF ′

is a non-linear
function parameterized by the set of learnables parameters Θ.
In this paper, we set hΘ(si, sj) to be an asymmetric edge
function of the form hΘ(si, sj) = hΘ(si, sj − si), combining
both the global shape structure (captured by si) and local
neighborhood information (captured by sj − si).

The output of edge convolution [10] at node si is defined
by applying an aggregation operation on the k edge features
associated with si. In our case, the aggregation operation is
defined as maximum value and hΘ as a mlp:

s′i = max
j : (i,j)∈E

hΘ(si, sj) . (2)

D. Batch Division Strategy

To reduce the impact on the performance of the proposed
method, we propose a smart batch division strategy. As
mentioned in section III-A, a point cloud initially contains A
points. After over-segmentation, we reduce it into B segments.
These values are different for every scene, depending mainly
on the size, the density, and the number of objects. Table II
shows the number of points and segments for the Paris-Lille-
3D dataset, which we later use in our experiments, as well. The
semantic segmentation sub-network needs to infer the class of
the segment Si the global feature vector from the classification
sub-network of Si and of its k nearest neighbors. Therefore,
the minimum batch size bz must be equal to k+ 1 when only
one segment is inferred. A batch size, bz = N � k + 1
depends on the GPU memory size. Consequently, an efficient
organization of the input segments increases the number of
inferred segments for a batch. This is necessary to reduce the
computation time and to use the GPU resources as best as
possible. The methodology is explained below.

TABLE III: Quantitative results for the Forest 3D dataset [34]:
F1-score is averaged over all three classes. We achieved similar
results. Our approach performs slightly better overall and in
particular for the class tree.

Precision Recall F1
tree terrain d.w. tree terrain d.w. avg

HOR [17] 95.0 66.3 81.8 97.9 81.2 22.6 69.3
SHOT [17] 93.3 74.6 65.4 98.4 87.3 17.4 66.5
3DMI [17] 96.0 86.2 66.0 98.7 79.7 53.1 79.6

Ours 96.3 85.3 74.3 99.6 82.5 48.5 80.1

First, the k-NN is computed for each segment. Next,
an arbitrary initial input segment S0 and its k-NN,
S0knn

= {S0,1, ..., S0,k} is selected. We define the initial
batch subset as batch0 = {S0 ∪ S0knn

}. Additionally,
each neighbor segment S0,j has its own subset of k-NN,
S0,jknn

= {S0,j,1, ..., S0,j,k}. Later, in an iterative process
until we obtain N elements in the batch subset, we assign
as Si+1 ∈ Siknn

the segment Si,j with the largest intersection
between its subset Si,jknn

and the batch subset. The batch
subset is updated as batchi+1 = batchi ∪ Si,jknn

.

IV. EXPERIMENTS

In this section, we compare our results with the state-of-the-
art using multiple outdoor LiDAR datasets covering forestal
and urban areas. Each series of experiments focuses on a dif-
ferent aspect covering quality improvements, scalability, and
the augmentation procedure for the geometric attributes. The
performance values of competing approaches mentioned in
the following were taken from the literature. We implemented
our framework (see Fig. 2) in Python 3.5 using open source
libraries and TensorFlow 1.14 as deep learning framework.
Training and testing were done using a single Nvidia Tesla
v100. During training, we used the ADAM optimizer [36] with
initial learning rate α = 0.001.

A. Forest Areas

To evaluate our approach in a typical geoscience scenario
we used the 3D Forest dataset [34]. It consists of 467, 211
points recorded using a terrestrial LiDAR scanner. The
dataset covers an area containing multiple trees with labels
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TABLE IV: Quantitative results for the Forest 3D dataset [34] labeled with four classes using 2-fold cross-validation based
on the split proposed in [17]. Both folds perform differently. At the same time, dividing the class tree leads to an overall
improvement of performance compared to our result presented in Table III.

Splits Precision Recall F1
leaves terrain dead wood trunk leaves terrain dead wood trunk avg

Fold 1 – Like [17] 84.2 95.1 86.1 95.1 95.7 96.2 78.7 78.6 88.4
Fold 2 – Reversed 89.6 90.4 81.5 81.6 94.4 86.6 52.6 80.2 81.3

Average 86.9 92.8 83.8 88.3 95.1 91.4 65.7 79.4 84.9

for the semantic classes tree, terrain, and dead wood. An
additional miscelaneous class exists for partial objects and
background scatter. We follow the experimental setup by [17]
and remove that class from the evaluation. Furthermore, we
adapt their splits for training and testing sets in our initial
experiment. A visualization of the complete dataset and its
ground-truth labeling can be found in Fig. 5a. After applying
unsupervised segmentation, we have segments as visualized
using false-color composition in Fig. 5b.

1) Default Setting: For evaluation of semantic segmentation
quality, we follow [17] in using the common criteria precision,
recall and F1-score. The latter is the harmonic mean of the
first two performance measures. Thus, it is a good indicator
for the overall best performance. We summarize our results
in Table III, where the best performances for each measure
are highlighted in bold font, respectively. As can be seen,
our approach demonstrates the highest F1-score, as well
as the best performance for the most prominent class
tree. A qualitative comparison between our result and the
ground-truth is shown in Fig. 5. In addition to obtaining
best performance, our method has a lower computational
effort than the method described in [17]. It does not need
to compute features for every single point. Although Fig. 5
indicates the point cloud as a flat surface, and it is a hill with
a high degree of inclination. We observed that our method is
not affected by the terrain surface. We believe this to be the
result of our surface normalization process (NDSM).

2) Four Class Setting: A typical task in biological sciences
is to measure tree trunks to infer biomass prediction, tree
volume, and wood density [37], Thus, we carried out a second
set of experiments on the Forest 3D dataset for that task. In
particular, we divided the class tree manually into two new
sub-categories. Those classes are leaves and tiny branches
and trunk and significant branches. Fig. 6a shows the new
ground-truth point cloud with four classes. For the evaluation,
we applied the same protocol as in the previous experiment.
However, we extend it to a two-fold cross-validation strategy.
Fold 1 corresponds to the configuration proposed in [17],
which we used in the previous experiment. In contrast, Fold 2
has reversed splits for training and testing. Thus, we can see
how much impact the selected area used for training has.

The results of this experiment can be found in Table IV.
Accordingly, a qualitative comparison between our result and
the ground-truth is visualized in Fig. 6. As can be seen, our
approach exhibits high performance for all classes, including

(a) Ground-truth (b) Our result

Fig. 6: Forest 3D dataset [34] with four labeled classes: (a)
Ground-truth with labels for leaves and tiny branches, terrain,
dead wood and trunk and significant branches. (b) The final
output for our semantic segmentation pipeline.

the new two classes. It is important to note that by sepa-
rating the class tree into two sub-classes, the performance
has improved in general. We believe this is due to better
defined classes and, thus, less intra-class and more inter-class
variance. In the three-class setting, the tree class is based on
features that describe both leaves and trunks. However, they
have completely different geometric characteristics, such that
this class spans a wider area in feature space. Please also note
that the results of both cross-validation runs are considerably
different in their performance. The reversed training strategy
resulted in a performance drop of almost 10%. It indicates that
performance rates reported in [17] are optimistic.

B. Urban Areas

In our second set of experiments, we focus on LiDAR point
cloud data recorded in urban areas. For that task, we compare
our approach with state-of-the-art in the Semantic3D dataset
[30] and Paris-Lille-3D dataset [35]. In the former, we show
the scalability of our approach to large-scale point clouds with
millions of 3D points. Afterward, we look into the feature
augmentation procedure for our proposed geometric attributes.

Please note, the evaluation of the test data is computed
directly at the dataset provider using intersection over union
(IoU) [43] and overall accuracy (OA) for Semantic3d and
IoU for Paris-Lille-3D as performance measures, respectively.

1) Semantic3D Dataset: Semantic3D [30] consists of 30
labeled urban scenes with a total of over three billion points.
Each point is represented by RGB color values and x, y-, z-
coordinates for geometric information. The dataset has eight
classes covering human-made terrain, natural terrain, high
vegetation, low vegetation, building, hardscape, scanning ar-
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TABLE V: Results on Semantic3D [30] for both the semantic-8 and reduced-8 setting. Values represent intersection-over-union
(IoU) scores per class. Classes are human-made terrain (C1), natural terrain (C2), high vegetation (C3), low vegetation (C4),
building (C5), hardscape (C6), scanning artifacts (C7) and car (C8). Additionally, IoU avg. is the averaged intersection-over-
union over all the classes and OA is the overall accuracy.

IoU for each class IoU OA
Method C1 C2 C3 C4 C5 C6 C7 C8 avg.

Semantic-8 Benchmark
SPGraph [11] 91.5 75.6 78.3 71.7 94.4 56.8 52.9 88.4 76.2 92.9
PointGCR [25] 93.8 80.0 64.4 64.4 93.2 39.2 34.3 85.3 69.5 92.1
SnapNet [12] 89.6 79.5 74.8 56.1 90.9 36.5 34.3 77.2 67.4 91.0
PointNet++ [21] 81.9 78.1 64.3 51.7 75.9 36.4 43.7 72.6 63.1 85.7
TMLC-MS [19] 91.1 69.5 32.8 21.6 87.6 25.9 11.3 55.3 49.4 85.0
TML-PC [38] 80.4 66.1 42.3 41.2 64.7 12.4 0.0 5.8 39.1 74.5

Ours 91.1 69.5 65.0 56.0 89.7 30.0 43.8 69.7 64.4 89.6

Reduced-8 Benchmark
SPGraph [11] 97.4 92.6 87.9 44.0 93.2 31.0 63.5 76.2 73.2 94.0
MSDeepVoxNet [39] 83.0 67.2 83.8 36.7 92.4 31.3 50.0 78.2 65.3 88.4
RFMSSF [40] 87.6 80.3 81.8 36.4 92.2 24.1 42.6 56.6 62.7 90.3
SEGCloud [41] 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3 61.3 81.1
SnapNet [12] 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4 59.1 88.9
3DFCNN-TI [42] 84.0 71.1 77.0 31.8 89.9 27.7 25.2 59.0 58.2 84.8
TMLC-MSR [19] 89.8 74.5 53.7 26.8 88.8 18.9 36.4 44.7 54.2 77.2
TML-PCR [38] 72.6 73.0 48.5 22.4 70.7 5.0 0.0 15.0 38.4 74.0

Ours 84.5 70.9 76.6 26.1 91.4 18.6 56.5 51.4 59.5 87.9

(a) Ground-truth (b) Segmentation (c) Our result

Fig. 7: Qualitative result for one test scene of the Semantic3D dataset [30]: (a) Ground-truth for classes human-made terrain,
natural terrain, high vegetation, low vegetation, buildings, hardscape, scanning artifacts, cars. (b) False color representation of
the unsupervised segmentation output. (c) The final result for our approach.

tifacts and cars. For benchmark purposes, there exist two set-
tings. The Semantic-8 benchmark uses complete point clouds
with the number of points mentioned above. In comparison,
the Reduced-8 dataset consists of the same training data as
the original set. However, the testing set is reduced in size for
faster testing [30].

For Semantic-8, we trained our approach using both color
and geometric information, while for Reduced-8, we trained
using only geometric information. The RGB information or
intensity values depend on the recording sensors and are fre-
quently affected by light conditions. Additionally, those values
are not always available. Thus, using the Reduce-8 bench-
mark, we also show how geometric attributes are sufficient to
segment point clouds semantically. Our results for Semantic-
8 and Reduced-8 setting are summarized in Table V. We
report performance for measures overall accuracy (OA) and
average IoU. Additionally, we show individual performance

for the eight classes using their respective IoU. Please note,
that OA does not take imbalanced classes into account and is
dominated by the performance of most frequently occurring
classes. As before, the best results for each class and total
performance are highlighted in bold font.

For the Semantic-8 setting in the upper part of Table
V, it is visible that classes such as building, human-made
terrain, natural terrain, and high vegetation achieve high
scores. At the same time, classes such as low vegetation,
hardscape, scanning artifacts, and cars achieve low scores,
decreasing the overall average performance on the benchmark.
In comparison, in the Reduced-8 setting (bottom), classes
hardscape and low vegetation show low performance for
our approach. There is often a confusion between low
vegetation and building structures, mainly when the low
vegetation objects are small bushes with low elevation. This
confusion of our algorithm between those two classes is
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TABLE VI: Quantitative results for the Paris-Lille-3D dataset [35], where we compared two different fusion variants. The
dataset has labeled classes ground (C1), building (C2), pole (C3), bollard (C4), trash can (C5), barrier (C6), pedestrian (C7),
car (C8) and vegetation (C9). Early fusion is preferable for this dataset.

IoU for each class IoU
C1 C2 C3 C4 C5 C6 C7 C8 C9 avg

KP-FCNN [44] 99.5 94.0 71.3 83.1 78.7 47.7 78.2 94.4 91.4 82.0
MS3-DVS [39] 99.0 94.8 52.4 38.1 36.0 49.3 52.6 91.3 88.6 66.9
HDGCN [45] 99.4 93.0 67.7 75.7 25.7 44.7 37.1 81.9 89.6 68.3
RF-MSSF [40] 99.3 88.6 47.8 67.3 2.3 27.1 20.6 74.8 78.8 56.3

Ours (early fusion) 99.3 92.1 37.7 60.7 78.9 35.6 28.2 83.2 84.5 66.7
Ours (late fusion) 98.5 84.5 36.7 34.9 27.8 34.1 24.0 68.5 64.6 52.6

(a) Segmentation (b) Early fusion result (c) Late fusion result

Fig. 8: Qualitative results for the Paris-Lille-3D dataset [35] for the test point clouds Ajacio (top) and Dijon: (a) Output of
the unsupervised segmentation method in false color composition, (b) our results for early fusion, and (c) our results for late
fusion. Colors in results indicate classes ground, buildings, pole, bollard, trash can, barrier, pedestrian, car and vegetation,
respectively. In late fusion there is a lot more confusion between small object classes.

also visible in Fig. 7. In general, our approach does not
reach state-of-the-art results for this dataset but establishes
a competitive performance of almost 90% overall accuracy
for the scenes. While classifying segments is more efficient
than a point-wise classification of most of the competing
works, it can also lead to misclassifications of larger areas.
The configuration of the unsupervised segmentation step also
has a significant influence on performance. However, we did
not optimize this step in our experiments, yet.

2) Paris-Lille-3D: In addition to Semantic3D [30], we
evaluated our approach on another urban LiDAR dataset called
Paris-Lille-3D [35]. It is a benchmark dataset for point cloud
classification with dedicated training and testing sets. The
training set consists of four scenes with nine labeled classes
including ground, building, pole, bollard, trash can, barrier,
pedestrian, car and vegetation. In comparison, the test set
consists of three scenes. Each point cloud of the dataset has
exactly ten million points. There is no RGB information, but
reflectance values, which we did not use in our experiments.
Our approach was trained exclusively using geometric infor-

mation based on x-, y-, z-coordinates.
In contrast to our previous experiments, we not only wanted

to estimate the best performance but analyze the feature
augmentation step. The input for our semantic segmentation
sub-network has two sources (see Fig. 1). Those sources are
the output of the aggregation function of the classification sub-
network and a vector composed of eleven additional attributes.
Thus, for this dataset, we tested two different alternatives for
the fusion of these features, namely early fusion and late
fusion. In early fusion, the eleven attributes are concatenated
directly to the output of the aggregation function (see Fig.
2b). That vector is used as input in our semantic segmentation
sub-network. In late fusion, the semantic segmentation sub-
network is only trained using the output of the aggregation
function of the classification sub-network. Instead, the eleven
attributes are concatenated to the last set of mlp-layers (see
Fig. 2b).

In Table VI, we give an overview of the results for both
analyzed fusion cases. KP-FCNN outperforms all methods,
and we achieve results in the same range as the remaining
ones. Our method using early fusion obtains the better result
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TABLE VII: F1-score for the Paris-Lille-3D dataset [35], where we compared our method using different input data for the
semantic segmentation sub-network. The dataset has labeled classes ground (C1), building (C2), pole (C3), bollard (C4), trash
can (C5), barrier (C6), pedestrian (C7), car (C8) and vegetation (C9).

F1 for each class F1
Configuration C1 C2 C3 C4 C5 C6 C7 C8 C9 avg

all 86.0 78.9 51.5 39.8 46.2 28.3 27.0 72.3 61.9 54.63
d+ 3f 82.9 77.6 46.7 43.9 38.5 36.8 5.1 74.6 58.3 51.79
d+ 8f 71.5 69.6 43.4 17.7 36.2 16.5 0.0 70.0 52.5 41.96
d 69.6 71.8 41.9 0.0 30.7 10.8 0.0 65.6 56.3 38.55
11f 84.3 76.3 40.6 0.0 0.0 29.1 0.0 79.2 56.9 39.73

for the trash can class. The class barrier is often confused with
the building and vegetation classes, when the barrier is not well
separated from a building or has bushes on top, respectively.
We observed that several times the error is originated in the
over-segmentation step. Segments contain parts of vegetation
mixed with parts of the barrier. The problem could be re-
duced by changing the unsupervised parameters or selecting
another method. It can be seen that our approach performs
considerably better using early fusion as opposed to late
fusion. The best-classified classes are ground, building, cars,
and vegetation that also correspond to the more prominent
objects in the scenes. In contrast, the small class pole is
often misclassified as a tree trunk (vegetation class). In both
fusion setups, the class pedestrian (C7) shows the weakest
performance. Additionally, barriers are often confused with
buildings.

With late fusion, we intended to force the network to focus
more on the eleven attributes for the classification decision.
In the Paris-Lille-3D dataset, street and sidewalk belong to
the same class (ground). As can be seen in Fig. 8(c), there is
a small difference in elevation between street and sidewalk,
which has the height of a brick. In late fusion, that difference
in the height of the segment leads the network to consider it
as the class barrier. In contrast, early fusion considers it as a
ground class.

Our method aims at being an automatic learning method
without applying post-processing algorithms. However, it is
evident from Fig. 8(c, top), that for late fusion, the class
building presents the largest amount of false positives reflected
in small segments. Thus, a possible post-processing option
for improvement could be first merged adjacent segments of
the same class. Then, segments on the ground with labels
building need to be refined. Independent of such an algorithm,
we conclude that incorporating basic attributes in the final
steps hinder their effectiveness. However, we believe it to be
beneficial in cases where prior knowledge indicates that certain
geometric attributes are crucial for correct classification.

C. Ablation Study
The semantic segmentation sub-network introduced in sec-

tion III takes as input the feature vector of dimension d
generated for the classification sub-network and additional
attributes presented on Table I. In this last experiment, we
test five configurations of the input data for the semantic
segmentation sub-network. Configuration (all) is our default
model, which takes as input the concatenation of the feature

Fig. 9: Precision for the Paris-Lille-3D dataset [35], where
we compared our method using different input data for the
semantic segmentation sub-network. Classes are listed in Table
VII. There is a clear advantage of using additional attributes
in this study.

vector and the eleven attributes. In comparison, (d+3f) takes
as input the feature vector of d = 256 and the three features
related to the NDSM. For (d + 8f) the feature vector and
the attributes are used excluding the three NDSM features.
Configuration (d) takes as input only the original feature
vector, while (11f) only uses the eleven attributes (see Table
I).

We ran this experiment on the Paris-Lille-3D dataset [35].
However, the testing part is not publicly available. Therefore,
exclusively for this experiment, we divided the official training
dataset into a training and validation part. For training we used
the scenes Lille 1-1, Lille 2, and Paris, while for validation
we used the scene Lille 1-2. During training, we combined
ADAM optimizer [36] as mentioned above with an early
stopping strategy to avoid overfitting. We did not apply any
data augmentation technique.

Table VII shows the F1-score for all nine classes and the
average F1 for the validation segments. We can observe that
the (all) configuration presented the highest precision with
exception to the pedestrian class, which is particularly hard
to classify in our approach. Fig. 9 shows the precision for
each of the classes for the five configurations. The classes



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 11

Fig. 10: Recall for the Paris-Lille-3D dataset [35], where
we compared our method using different input data for the
semantic segmentation sub-network. Classes are listed in Table
VII. The recall results also show, that additional attributes
improve classification performance in comparison to only
using the original feature vector (d).

bollard and trash present high precision but lower recall (see
Fig. 10). These classes correspond to the objects with smaller
size and less presence in the dataset. The (all) model presents
the best and most uniform results for both precision and
recall measures. The architecture of our network does not
require a large context during inference. However, it uses
additional features to overcome this limitation. By using more
information as input, the network can distinguish the objects
with small sizes such as bollards, trash cans, and pedestrians.
In summary, we can clearly observe the advantageous effect
of using additional information in this study.

V. CONCLUSIONS

In this paper, we showed how edge convolution could be
adopted for segment-wise semantic segmentation. We pro-
posed a deep learning pipeline, where regions are classified
instead of individual points, and geometric attributes are
used as additional features. Furthermore, we demonstrated the
inclusion of normalized elevation information. It helped to
distinguish between objects of low inter-class variances, such
as trees and small bushes based on their relative height above
ground. In our experiments, we analyzed quality, scalability,
and feature augmentation procedure.

For a forest LiDAR dataset, we established a new top per-
formance with 80.1% F1-score. Especially the segmentation
of individual trees with precision and recall of 96.3% and
99.6, respectively, is notable. Additionally, we were able to
achieve competitive performances on popular urban 3D point
cloud benchmarks. On Semantic3D dataset, we obtained an
OA of 89.6% and average IoU of 64.4% For the urban dataset
Paris-Lille-3D, we reached 66.7% mIoU. Our results on the
feature augmentation process indicate that a fusion before

edge convolution is preferable when compared to adding
information directly in front of the classification layer.
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