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Figure 1. Bridging the gap between mimics and muscles: Our method EIFER utilizes neural unpaired image-to-image translation to
decouple facial geometry and appearance for muscle-activity-based expression synthesis and electrode-free facial electromyography.

Abstract

The relationship between muscle activity and resulting fa-
cial expressions is crucial for various fields, including psy-
chology, medicine, and entertainment. The synchronous
recording of facial mimicry and muscular activity via sur-
face electromyography (sEMG) provides a unique win-
dow into these complex dynamics. Unfortunately, exist-
ing methods for facial analysis cannot handle electrode oc-
clusion, rendering them ineffective. Even with occlusion-
free reference images of the same person, variations in
expression intensity and execution are unmatchable. Our
electromyography-informed facial expression reconstruc-
tion (EIFER) approach is a novel method to restore faces
under sEMG occlusion faithfully in an adversarial man-
ner. We decouple facial geometry and visual appearance
(e.g., skin texture, lighting, electrodes) by combining a 3D
Morphable Model (3DMM) with neural unpaired image-to-
image translation via reference recordings. Then, EIFER
learns a bidirectional mapping between 3DMM expression
parameters and muscle activity, establishing correspon-
dence between the two domains. We validate the effective-
ness of our approach through experiments on a dataset of

synchronized sEMG recordings and facial mimicry, demon-
strating faithful geometry and appearance reconstruction.
Further, we synthesize expressions based on muscle activity
and how observed expressions can predict dynamic muscle
activity. Consequently, EIFER introduces a new paradigm
for facial electromyography, which could be extended to
other forms of multi-modal face recordings1.

1. Introduction
The relationship between muscle activity and facial expres-
sions presents a complex challenge with significant impli-
cations for various application areas, including psychol-
ogy [8, 17, 25, 27, 49, 64, 66, 78], medicine [4, 6, 18, 32, 34,
39, 40, 54, 71, 72, 80, 87], and animation [13, 29, 75, 77, 79,
91, 97, 105]. Despite its importance, many questions about
how muscle activity influences facial expressions and vice
versa remain unanswered. Synchronously recorded muscle
activity via surface electromyography (sEMG) and facial
expressions open a unique window into these dynamics.

The modeling of facial geometry, encompassing shape

1Project page: https://eifer-mam.github.io
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and expressions, with 3D Morphable Models (3DMMs) is
a longstanding research area [7, 13, 23, 37, 60, 61, 73, 96,
101]. Combined with advances in monocular 3D face re-
construction [19, 28, 69, 75, 77, 105], 3DMMs are a solu-
tion to bridge the gap between mimics and muscles. Thus,
we could generate synthetic facial expressions from muscle
activity and do electrode-free facial electromyography.

However, the electrodes affect the face reconstruction
even for a current state-of-the-art monocular 3D face re-
construction method [77], as seen in Figure 1. The re-
liance on occlusion-sensitive preprocessing and regulariza-
tion terms [19, 35, 36, 59, 81, 98, 104] renders fine-tuning
unfeasible for this data. Further, the appearance models [37,
73] used by these methods do not consider occlusion, which
affects the photometric optimization [19, 20, 28, 59].

To overcome these limitations, we frame the appear-
ance reconstruction as an adversarial problem [11, 35, 69],
leveraging unpaired occlusion-free reference images [102].
With neural unpaired image-to-image translation via a Cy-
cleGAN structure [48, 102], we jointly train two models that
place and remove sEMG electrodes from the appearance.
The double encoder-generator architecture is illustrated in
Figure 2. This approach offers two key advantages:
• Adversarial Challenge: We implicitly train the genera-

tors to produce photorealistic faces without requiring ad-
ditional perceptual losses [58, 98]. To avoid hallucina-
tions, we employ a minimal change regularization [9] and
multi-stage training such that the entire system converges
to a meaningful solution [55].

• Cycle Consistency: We use widely adopted pre-trained
encoder networks to estimate the 3DMM parameters [77].
In a cycle, one encoder handles electrode-free faces while
the other encoder replicates the same output for the
electrode-covered version of the face. Knowing that a
person’s shape and expression should not change during
a cycle, we constrain both encoders against each other.
We achieve this by replacing occlusion-sensitive regular-
ization terms [19, 20, 35, 36, 61, 77, 81, 104] with cycle-
consistent self-supervised alternatives.

Our setup trains the encoders to handle sEMG occlusions,
developing an electromyography-informed facial expres-
sion reconstruction (EIFER) approach. Our model then
learns the non-linear relationship between 3DMM expres-
sion space and measured muscle activity.

We evaluate EIFER’s performance using synchronized
sEMG recordings and facial mimicry, demonstrating its
ability to handle occlusion and accurately reconstruct facial
expressions, as shown in Figure 1. We also investigate the
bidirectional mapping’s capabilities for synthesis via mus-
cle activity and facial electromyography from videos.

In summary, our contributions are: 1) A method for
facial reconstruction under substantial sEMG occlusion.
2) Reframing the analysis-by-synthesis appearance recon-

struction as an adversarial unpaired image-to-image trans-
lation task. 3) Building a correspondence between 3DMMs
and muscle activity for physiological-based expression syn-
thesis and electrode-free facial electromyography.

2. Related Work
3D Morphable Models (3DMMs) are widely used for fa-
cial expression analysis and synthesis [7, 23]. Many
3DMMs [15, 37, 60, 61, 73, 96, 101] aim to split the face
into shape and expression components [24, 93]. However,
the expressions are driven by the underlying facial muscle
activity [4, 26, 40, 70, 71, 80, 87]. This link is not explicitly
modeled despite this relationship, resulting in a gap.

Several methods attempt to close this gap either via the
Facial Action Coding System [5, 26, 55, 56, 82], physics
simulations [46, 47, 67] or geometry modeling [42, 50,
53, 83, 91]. Unfortunately, none of these compare with
recorded sEMG muscle signals. Therefore, we simultane-
ously capture mimicry and muscular activity. This intro-
duces occlusions during analysis, which we have to handle.

Modern 3DMM parameter estimators utilize monocu-
lar 3D face reconstruction [3, 12, 14, 19, 20, 28, 41, 52,
59, 63, 69, 75, 77, 81, 99, 104, 105]. However, oc-
clusions lead to inaccurate photometric reconstruction, as
shown in Figure 1. This is likely due to the underlying
analysis-by-synthesis assumptions, such as the used appear-
ance model [15, 37, 60, 73, 96]. They may not assume oc-
clusions and, thus, diverge [19, 20, 28, 41, 77, 99].

To solve this, recent approaches use implicit neural ren-
dering to replace the appearance model [9, 11, 21, 22, 69,
77]. This offers flexibility to adapt to unseen occlusions
and replaces traditional rendering techniques [1, 19, 20, 28,
59, 99], promoting robust reconstruction [9, 11, 16, 60, 69].
Therefore, we apply neural rendering to handle the elec-
trode occlusion. Similarly to [77], our renderer uses facial
geometry and sparse color information from the input im-
age. Instead of minimizing the photometric difference be-
tween the input and reconstruction [15, 19, 20, 28, 31, 59,
60, 96, 104], a discriminator distinguished between the gen-
erated and an unpaired occlusion-free reference image [38].

During adversarial analysis-by-synthesis, a renderer re-
moves electrodes and generates realistic faces [9, 11, 16, 48,
60, 69, 89, 102]. However, this model might compensate for
incorrect expressions, similar to [9, 77]. Therefore, we em-
ploy separate models for electrode removal and placing [11,
102]. We introduce occlusion-robust cycle-consistent con-
straints to constrain both models [9, 48, 77, 102].

Lastly, we use expression parameters to solve down-
stream tasks [19, 31, 77], specifically synthesizing expres-
sions from muscular activity. The inverse direction leads to
a form of electrode-free facial electromyography. Both di-
rections integrate physiological information into 3DMMs,
overcoming the existing gap towards muscular activity.
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Figure 2. EIFER employs a double encoder-generator architecture in a CycleGAN-like framework [102] to reconstruct facial geometry
and generate photorealistic appearances with artificially applied and removed sEMG electrodes during Phase One. In Phase Two, EIFER
learns the bidirectional mapping between expressions and muscle activity, facilitating physiological-based synthesis and electrode-free
facial electromyography. Full arrows denote information flow, while dashed arrows denote information flow by regularization terms.

3. Method: Electromyography-Informed Fa-
cial Expression Reconstruction (EIFER)

EIFER follows analysis-by-synthesis reconstruction meth-
ods [19, 20, 28, 30, 59, 60, 69, 75, 77, 81, 99] to decou-
ple facial geometry and visual appearance to reconstruct
expression under surface electromyography (sEMG) occlu-
sion faithfully. We replace occlusion-sensitive regulariza-
tion terms used in photometric reconstruction by focusing
on cycle-consistent self-supervision in a CycleGAN-like
structure [102]. Thus framing the appearance reconstruc-
tion as an adversarial problem, our design implicitly ensures
realistic face generation without requiring additional train-
ing losses, such as perceptual [20, 35, 36, 58, 61, 81, 98],
identity [104], or emotion losses [19]. With synchronized
sEMG and expressions, we then learn a bidirectional map-
ping, equipping the 3DMM with physiological capabilities.

3.1. Model Architecture
EIFER employs two encoder-generator pairs, illustrated
in Figure 2. One pair places the electrodes during a cycle
while the other learns to remove them. To ensure consis-
tency, we constrain both pairs against each other. We de-
note all variables with a superscript describing occlusion-
free faces as (N)ormal and with electrodes as (S)ensor.
Face Embedding: We build upon the widely adopted
FLAME face model [61], a mesh consisting of n = 5023
vertices modifiable by shape β and expression φ parame-

ters, with two additional blendshape parameters for eyelid
closure φeye [104]. The model accounts for jaw movement
φjaw and head pose θpose, representing rigid head transfor-
mations. We predict the muscle activity via the expression
triplet (φ, φeye, φjaw).
Encoder Network: We use the recent SMIRK ap-
proach [77] by constructing an encoder model that con-
sists of three sub-encoders, each utilizing a MobileNetV3
backbone [45], to process an input image I . These sub-
encoders are responsible for predicting the parameters for
shape (Eβ), expression (including eyelids and jaw pose,
Eφ), and global transformations including camera position
(Eθ). Then, we compute a monochrome render of the face
(I3D) using a differential mesh renderer to represent the fa-
cial geometry [76], see Figure 2.
Generator Network: Advances in neural rendering [9, 11,
35, 77, 81] led to new methods that replace traditional ren-
dering techniques [19, 28, 37, 73]. Particularly, image-to-
image translation networks G(·) [77] learn to combine ren-
dered facial geometry with sparse color information from
the original input face, as shown in Figure 2.

The masking function M(·), introduced by [77], sam-
ples these pixels within the 2D facial landmark hull, visu-
alized in the CNS module in Figure 2. To circumvent in-
accurate landmarks on sEMG occluded faces, we use the
rendered geometry as the sampling area. We rely on the
pre-trained encoder networks for alignment. Notably, our
problem is more complex than simple photometric recon-
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struction [19, 28, 59, 62, 77, 105], as the generator must
learn to ignore or produce pixels related to sEMG electrodes
only via adversarial feedback. We use a ResNet network as
the backbone model [9, 11, 43, 102]. This ensures a similar
gradient flow as in [77, 102]. Our generator uses instance
normalization to produce fine details [89, 102].
Face Discriminators: We employ two neural discrimina-
tors [38, 48], DN(IN, IN

F ) and DS(IS, IS
F ), to distinguish

real and fake faces for the applied and removed sEMG elec-
trodes, respectively. This design implicitly enforces the
generation of realistic faces and removes the additional need
for perceptual losses to improve the visual quality [58, 98].
Expression-Electromyography-Estimators: We use a
six-layer MLP with ReLU activations [68] to learn the map-
ping between facial mimicry and muscular activity and vice
versa. The final layers are Tanh for EMG2Exp and a
ReLU [68] for Exp2EMG, respectively, to accommodate
non-negative sEMG values. Only the 3DMM expression
parameters are used, excluding identity information.

3.2. Cycle-Consistent Self-Supervision
Monocular 3D face reconstruction often relies on the
occlusion-sensitive facial features to guide the reconstruc-
tion path [19, 28, 35, 36, 69, 77, 81, 98, 104, 105]. This is
compromised under sEMG occlusion, where the extraction
is affected. Moreover, when the encoder predicts incorrect
expressions, the generator likely compensates for this er-
ror, which still leads to a solution to the adversarial prob-
lem [9, 28, 38, 48, 59, 69, 77].

Therefore, we propose cycle-consistent self-supervision
regularization terms insensitive to occlusion leveraging ref-
erence images during training. Nonetheless, the expression
extraction is still ill-posed. Thus, we leverage a multi-stage
training approach to guide the system to meaningful con-
vergence. For brevity, we denote the consecutive execution
of an encoder EN(·) generator GN→S(·) pair as CNS(·), and
cycle is CNSN(·). The same holds for the CSNS(·) cycle.
Cycle Consistency: To ensure correct reconstructions, we
self-supervise both cycles with the following losses:

Reconstruction Loss: After a full cycle, the reconstructed
image shall resemble the input image:

LReco =
∥∥CNSN(IN)− IN

∥∥2
2
+
∥∥CSNS(IS)− IS

∥∥2
2
.

Identity Loss: To ensure that the encoder-generator mod-
ule preserves the identity of an opposing input image, we
introduce an identity loss [85, 86, 102], LIdt. This loss min-
imizes changes when the image should not be altered:

LIdt =
∥∥CNS(IS)− IS

∥∥2
2
+
∥∥CSN(IN)− IN

∥∥2
2
.

This prompts the generator to learn the sensor locations and
stops the encoder from relying on default expressions [102].

Minimal Change Loss: We introduce a minimal change
loss term, LMC [9], to prevent the generators from introduc-
ing unwanted features or hallucinations:

LMC =
∥∥CNS(IN)− IN

∥∥2
2
+

∥∥CSN(IS)− IS
∥∥2
2
.

Face Geometry Consistency Relying solely on reconstruc-
tion losses does not guarantee that the encoder ES entangles
shape, expression, and pose parameters, impacting the bidi-
rectional mapping between expression and muscle activity.
Nonetheless, the facial geometry should remain consistent
during a full reconstruction cycle of artificial electrode re-
moval and placing. Hence, ES should mirror EN behavior,
but on the electrode-occluded face. We enforce this behav-
ior by freezing EN throughout training. We assume suffi-
cient pre-training and already regularized prediction capa-
bilities to prevent extreme and unrealistic expressions [77].

Occlusion Expression Loss: The expression encoder EN
φ

and ES
φ should predict the same for faces where the elec-

trodes have been artificially placed or removed:

LOccExp =
∥∥EN

φ(I
N)− ES

φ(I
S
F )
∥∥2
2
+
∥∥ES

φ(I
S)− EN

φ(I
N
F )

∥∥2
2
.

Occlusion Shape Loss: The shown facial expression be-
tween unpaired training images of a person might differ, but
the shape should not [7, 23, 24, 77, 93]. Thus, we ensure
shape consistency throughout both cycles:

LOccShp =
∥∥EN

β (I
N)− ES

β(I
S)
∥∥2
2
+
∥∥ES

β(I
S
F )− EN

β (I
N
F )

∥∥2
2
.

Global Transformation Loss: By modifying the sam-
pling area to the masking function M(·) based on the ren-
dered face I3D, we risk that the pose encoders offset the
FLAME model such that the entire image plane is used
for sampling. Hence, the generator would compensate by
coupling facial geometry and appearance again. To pre-
vent this, we introduce an additional constraint on the rigid
transformation of ES

φ, specifically on camera position, head
pose, and barycentric landmarks defined on the FLAME
model [19, 28, 61, 77, 104], within a full CNSN cycle:

LLmk =

K∑
i=1

∥∥∥kIN
3D
− kIS

F,3D

∥∥∥2
2
+

∥∥∥kIS
3D
− kIN

F,3D
,
∥∥∥2
2

and

LRigTra =
∥∥EN

θ (I
N)− ES

θ(I
S
F )
∥∥2
2
+
∥∥ES

θ(I
S)− EN

θ (I
N
F )

∥∥2
2
.

Full Objective: We define a joined loss function, LGEN,
which combines all Cycle Reconstruction and all Face Ge-
ometry Consistency loss terms. Adopting a CycleGAN
structure, we employ adversarial training to implicitly cre-
ate highly realistic faces. Specifically, we view the dis-
criminators as classifiers (a real (1) and fake (0) classifica-
tion), encouraging samples at the decision boundary using
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the least squares generative adversarial loss [65] LGAN as

LS
GAN(C

NS, DS, IS, IN) =
1

2

∥∥DS(IS)− 1
∥∥2
2
+

1

2

∥∥DS(CSN(IN))− 0
∥∥2
2
,

and same for LN
GAN. The generative parts of the model (en-

coder and generator jointly) and the discriminators train in
alternating passes [102], solving:

C̄NS, C̄SN = argmin
CNS,CSN

max
DN,DS

L(CNS, CSN, DN, DS) ,

with

L(CNS, CSN, DN, DS) = LGEN + LN
GAN + LS

GAN .

We weigh the loss terms during training with the follow-
ing lambdas, obtained by a hyperparameter search: λReco =
10, λIdt = 1.5, λMC = 0.5, λOccExp = 1.0, λOccShp =
0.1, λLmk = 2.5, λRigTra = 0.1

3.3. Training EIFER - Phase 1

Although the regularization terms prevent the encoders
from collapsing into unrelated expressions, the task remains
ill-posed. To address this, we employ a multi-stage training
procedure guiding each component to learn its correct task
and ensuring the entire system converges to a solution.
Stage 1 - sEMG Application and Removal: We first train
the generators to produce realistic faces. By freezing the
encoder weights, the generator focuses on learning the re-
lationship between geometry and pixels, retaining 50% of
pixels. Although this approach temporarily disregards ex-
pression, the generators learn the electrode locations and
solve the adversarial problem. As a result, the generators
develop the ability to produce realistic faces, a crucial foun-
dation for the subsequent stages.
Stage 2 - Estimating Occluded Expressions: The encoder
ES is unfrozen to adapt to electrode occlusion. Further, we
reduce the pixel amount to 10%, guiding the generator to-
wards the rendered facial geometry to reconstruct the face.
Stage 3 - Final Decoupling We retain only 1% of pixels,
forcing the generator to rely on the rendered face geometry.

3.4. Training EIFER - Phase 2

The instance normalization in the generators requires a
batch size of one [89]. However, neither of the MLPs would
converge during training. This enforces a two-phase ap-
proach, shown in Figure 2: training the encoders to handle
sEMG occlusions and then learning the bidirectional map-
ping between expression parameters and muscle activity.
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Figure 3. Three individuals mimic six basic emotions [25], with
synchronized sEMG heat-maps illustrating muscular activity [10].
These images showcase varying expression intensities and execu-
tions, emphasizing the need for a robust sEMG occlusion method.

4. Dataset - Mimics And Muscles

We recorded 36 participants (19 ♀, 17 ♂, age range: 18-
67 years) without a history of any neurological disease to
obtain synchronous facial expression and muscle activity.
Only beardless men were recruited to attach the surface
electromyography (sEMG) electrodes to the face. Partici-
pants performed a series of eleven facial functional move-
ments and six emotional expressions repeated four times
following an instruction video [25, 90]. Each individual
was recorded three times per recording session (two weeks
apart), twice with EMG and once without sEMG as refer-
ence. Samples of three individuals are depicted in Figure 3.

We used the Fridlund sEMG scheme [33] to obtain mus-
cle activation captured with a sampling rate of 4096/s [40,
71, 87]. The facial movements were captured using a
frontal-facing camera at 30 FPS. The recordings are syn-
chronized and processed according to established stan-
dards [4, 33, 40, 51, 57, 71, 74, 87, 88, 94, 100]. We
extracted the downsampled linear envelope of the muscle
activity signal, which is used to learn the correspondence
to the 3DMM expression space. Details on electrode lo-
cations, data preprocessing, and data set statistics can be
found in the supplementary material.

5. Experiments and Results

We compare EIFER to recent state-of-the-art monocular
3D face reconstruction techniques, including DECA [28],
EMOCAv2 [19], and SMIRK [77], which utilize the
FLAME model [61], and Deep3DFace [20] and FO-
CUS [59], which employ the BFM model [37, 73]. We
also compare with MC-CycleGAN [9, 11], which does not
rely on a face model. To ensure a fair comparison, we train
and fine-tune all models on a common 10% frame subset
of the reference recordings of the individuals, as shown in
Figure 3. Hence, the models learn the individuals’ char-
acteristics, and we assume that any deviations in behavior
are due to the occlusion. Additional results, including ab-
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Figure 4. Facial Geometry: We visualize the estimated face ge-
ometry under sEMG occlusion for three individuals mimicking ex-
pressions. MC-CycleGAN has no face model and is thus omitted.

lation studies, training hyperparameters, and visualizations,
are provided in the supplementary material.

5.1. Reconstruction Evaluation

The reconstruction quality, using the occlusion-free record-
ings as a baseline, is evaluated on two factors: facial geom-
etry and visual appearance of the restored faces.
Qualitative: We visualize the estimated facial geometry
in Figure 4. While most methods capture the general ex-
pression, they vary in intensity and alignment, as seen for
happy. EIFER correctly maintains the shape parameters for
the same individual with different expressions. This indi-
cates that other methods’ face encoders struggle to disen-
tangle shape and expression, which is crucial for learning
expression-muscular activity mapping.

We further investigate the visual reconstructions, shown
in Figure 5. Most existing methods inherently remove elec-
trodes due to the used appearance model [37, 73]. However,
only SMIRK, which forwards visual features to the neural
generator, retains them. Despite the same information flow,
EIFER ignores artifacts by solving the adversarial task.

Deep3DFace achieves consistent results in extracting fa-
cial texture under occlusion across various expressions for
the same individual. In contrast, FOCUS, which relies on
the same appearance model [37, 73], fails this task, indicat-

Figure 5. Appearance reconstruction and electrode removal:
Among the state-of-the-art methods, only SMIRK fails the recon-
struction. MC-CycleGAN and EIFER keep the nuanced features.

Method SSIM (↑) GMSD (↓) PSNR (↑) MDSI (↓) FID (↓)

Baseline N-N 0.86±0.07 0.12±0.04 27.95±3.71 0.34±0.04 7.41± 3.72
Baseline N-S 0.39±0.05 0.33±0.01 13.69±1.27 0.62±0.02 285.42±38.18

DECAF 0.53±0.04 0.29±0.01 12.43±0.65 0.46±0.01 165.24±31.80
SMIRKF 0.47±0.06 0.31±0.02 14.45±1.41 0.58±0.02 275.80±46.38
Deep3DFaceB 0.48±0.05 0.31±0.01 14.42±1.39 0.58±0.03 219.28±43.29
FOCUSB 0.46±0.05 0.32±0.02 13.95±1.35 0.58±0.03 227.71±50.21

MC-CycleGAN† 0.66±0.08 0.24±0.03 19.38±2.39 0.45±0.02 54.39±24.32

EIFERF 0.66±0.09 0.24±0.03 19.42±2.57 0.44±0.03 52.56±27.75

Table 1. Reconstruction quality: We evaluate the reference
recordings with the reconstructions, with upper and lower limits
established by comparing reference recordings to themselves and
sEMG-occluded recordings. We mark the best performance per
metric and denote the underlying 3DMM face models with B for
BFM [37, 73], F for FLAME [61], and † for no model.

ing that electrodes significantly impact its performance.
MC-CycleGAN and EIFER, both trained adversarially,

create photorealistic reconstructions. EIFER achieves simi-
lar results to MC-CycleGAN with only 1% of the pixel in-
formation, albeit with slightly degraded quality around the
mouth. Thus, EIFER combines the strengths of SMIRKs’
encoding and MC-CycleGAN reconstruction.
Quantitative: We report the appearance reconstruction
with the occlusion-free baselines in Table 1. We use the
metrics: Structure Similarity Index (SSIM) [92], Gradient
Magnitude Similarity Deviation (GMSD) [95], Peak Signal-
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Figure 6. Comparison of Synthesized Facial Expressions: Using all expression encoder models, we synthesize various expressions (on
a shape-free face) estimated from recorded muscle activity. For a fair comparison, we evaluate all on the electrode-occluded and the by
MC-CycleGAN [9, 11] restored recordings. EIFER achieves comparable performance on occluded recordings, whereas other methods
struggle to produce accurate results even on occlusion-free faces. Video reconstructions are provided in the supplementary material.

To-Noise Ratio (PSNR), Mean Deviation Similarity Index
(MDSI) [103], and Frechet Inception Distance (FID) [44].

We observe that all methods exceed the lower limit set
by occluded recordings. Notably, state-of-the-art methods
perform similarly to MC-CycleGAN and EIFER for simi-
larity measures. Regardless of traditional or neural render-
ing, MC-CycleGAN and EIFER outperform simple photo-
metric reconstruction in the FID metric. This highlights the
strength of adversarial training for face generation. More
downstream tasks for an objective evaluation, such as ex-
pression classification, are provided in the supplementary.

5.2. Synthesis of Expressions - EMG2Exp
We investigate synthesizing facial expressions from muscu-
lar activity, establishing a correspondence between muscle
activity and 3D Morphable Model (3DMM) expression pa-
rameters. To evaluate the effectiveness of EIFER, we addi-
tionally train the same MLPs architecture, EMG2Exp, with
expression extracted from state-of-the-art (SOTA) methods
on two datasets: the sEMG occluded recordings and MC-
CycleGAN restored recordings, see Figure 5. The latter
ensures a fair comparison of the generalized SOTA model
performance such that the underlying 3DMMs are compara-
ble. We employ the same optimization strategy as EIFER’s
second training phase. However, due to differences in ex-
pression space ranges between FLAME [19, 61, 77] and
BFM [20, 37, 59, 73], the final loss term is not directly com-
parable. Given the challenges of defining a clear ground

truth for facial expressions, we use visual evaluation to as-
sess our method’s performance. We show the synthesized
expressions on a shape-free face in Figure 6.

EIFER accurately synthesizes facial expressions from
muscle activity, matching the recording frame. In con-
trast, SOTA models are significantly impacted by sEMG
occlusion, leading to inaccurate expression synthesis. This
is likely due to the inherent inaccuracies in extracted ex-
pressions, which limits the range of synthesis. As ex-
pected, restored visual appearance tests yield better results,
but DECA and EMOCAv2 still struggle to synthesize cor-
rect expressions. Notably, only SMIRK’s occlusion-free
variant accurately synthesizes the fearful expression, while
SMIRK, Deep3DFace, and FOCUS produce visually simi-
lar results to EIFER. However, EIFER works directly with
sEMG occluded faces, eliminating the removal step.

Our analysis reveals current limitations in synthesizing
expressions based on muscle activity, particularly concern-
ing expression intensity. The masseter muscle’s minimal
activity during mouth-opening poses a challenge, as it re-
quires only slight activation to maintain an open mouth [40,
87]. This limitation affects the synthesis of disgusted and
surprised expressions. Additionally, voluntary eye blinking
is not fully captured by any method, as it is not accounted
for by the Fridlund sEMG schematic [33]. Video examples
illustrating these limitations are provided in the supplemen-
tary material. This highlights the importance of individual
differences in muscle activation patterns in future research.
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Model MSE (↓) RMS (↓) SMAPE (↓) Spearman ρ (↑)

O
cc

lu
de

d

DECAF 10.86±75.44 1.75± 2.79 70.65±36.58 0.37±0.19
EMOCAv2F 22.13±81.00 3.23± 4.96 77.52±26.48 0.34±0.18
SMIRKF 6.79±59.74 1.62± 2.04 75.15±34.81 0.36±0.19
Deep3DFaceB 12.34±74.08 5.86±22.88 72.82±37.52 0.35±0.18
FOCUSB 14.20±75.37 5.94±22.47 77.21±36.14 0.34±0.18

R
es

to
re

d

DECAF 6.52± 59.82 1.58± 2.82 70.99±35.20 0.37±0.20
EMOCAv2F 28.82±121.55 3.96± 8.25 82.67±32.30 0.34±0.18
SMIRKF 6.44± 30.37 1.69± 1.90 74.07±36.66 0.36±0.19
Deep3DFaceB 8.36± 68.11 1.64± 2.38 69.17±33.92 0.36±0.19
FOCUSB 9.73± 80.42 5.70±23.15 75.22±37.33 0.35±0.19

EIFERF 5.09± 33.97 1.45± 1.73 67.71±32.54 0.38±0.19

Table 2. Muscle Activity Prediction Metrics. We measure the
difference between the linear envelopes of ground truth and the
sEMG prediction over a five-fold cross-validation. We denote the
face models with B for BFM [37, 73] and F for FLAME [61].

We present the potential of synthesizing expressions
from muscular activity for future research in physiological-
based animations and sEMG-based facial motion capture.

5.3. Analysis of Muscular Activity - Exp2EMG

Learning the mapping from facial expression to muscle ac-
tivity proposes electrode-free facial electromyography. For
a fair comparison, we train the same EIFER MLP archi-
tecture on the expression parameters extracted by the other
state-of-the-art methods. We follow the same training pro-
tocol for EMG2Exp and compared two datasets: sEMG oc-
cluded and MC-CycleGAN restored recordings.

Each model’s performance is evaluated in Table 2 based
on five-fold cross-validation. We observe that all mod-
els learn the envelope shape (measured by Spearmans ρ
[84]) but differ in predictive strength (measured by mean
squared error, root mean square, and symmetric mean ab-
solute percentage error [2]). Building on the base SMIRK
encoder model, which already achieves high performance,
EIFER effectively handles sEMG occlusion without requir-
ing prior electrode removal by MC-CycleGAN. Both BFM
and FLAME face models perform similarly for the restored
recordings, except EMOCAv2 [19], which exhibits difficul-
ties in mapping likely due to overestimated expression pa-
rameters. This suggests that the trained facial encoder is
more crucial than the employed face model.

We highlight two muscles, one active (M. zygomati-
cus) and one inactive (M. corrugator supercilii), during the
happy expression in Figure 7. We focus on EIFER (on
occluded recordings) and SMIRK (on restored recordings)
since both have shown promising results for both geometry
estimation (see Figure 4) and expression synthesis (see Fig-
ure 6). Both models underestimate the amplitude and fail
to capture the initial activity surge, likely due to the elec-
tromechanical delay between muscle activity and visible
movement [4, 94]. However, we rule out synchronization
issues as the offset is handled correctly. Static snapshots of
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Figure 7. Estimated Muscle Activity: We show M. zygomati-
cus and M. corrugator supercilii during the happy expression.
Both models restore the temporal aspect of muscle activity, though
EIFER achieves this on occluded recordings.

the muscle activity in the form of topological heatmaps are
provided in the supplementary material. Our results demon-
strate that the 3DMM expression space of FLAME [61] and
BFM [37, 73] link to muscle activity and vice versa.

6. Social Impact and Limitations

EIFER presents a new paradigm for facial electromyogra-
phy, estimating muscle signals from expressions in a data-
driven manner. An in-depth comparison with methods, such
as the Facial Action Coding System [26], remains open and
is outside this study’s scope. Our results’ generalizabil-
ity is uncertain due to the small sample size (N = 36).
Thus, we provide both Exp2EMG and EMG2Exp models
for FLAME [61] and BFM [37, 73] to encourage further
scrutiny. We rely upon both 3DMMs disentanglement of
shape and expression and the face encoder capabilities for
establishing this correspondence [24, 93]. For a more de-
tailed discussion, please see the supplementary material.

7. Conclusion

Our work presents a novel approach to physiological-based
face synthesis and analysis, electromyography-informed fa-
cial expression reconstruction (EIFER), which addresses
the challenge of occlusion-sensitive regulation terms by
leveraging unpaired references. Our findings have signif-
icant implications for multi-modal facial analysis, and we
believe that the concepts of EIFER can be extended to other
occlusion forms. We demonstrate that EIFER handles oc-
clusion through extensive experiments and faithfully recon-
structs facial geometry with nuanced visual reconstruction.
EIFER estimates robust 3DMM parameters, synthesizes ex-
pressions, and predicts muscle activity using dynamic fa-
cial expressions. With these promising results, we plan to
explore temporal aspects and muscle regularization during
EIFER training with bootstrapping.
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Thies, Christian Richardt, and Christian Theobalt. Inverse-
facenet: Deep monocular inverse face rendering, 2018. 2

[53] Juni Kim, Zhikang Dong, and Pawel Polak. Face-GPS: A
Comprehensive Technique for Quantifying Facial Muscle Dy-
namics in Videos, 2024. 2

[54] Mariska Kret, Jeroen Stekelenburg, Karin Roelofs, and Beat-
rice De Gelder. Perception of Face and Body Expressions
Using Electromyography, Pupillometry and Gaze Measures.
Frontiers in Psychology, 4, 2013. 1

[55] Chenyi Kuang, Zijun Cui, Jeffrey O. Kephart, and Qiang Ji.
AU-Aware 3D Face Reconstruction through Personalized AU-
Specific Blendshape Learning. In Computer Vision – ECCV
2022, pages 1–18. Springer Nature Switzerland, Cham, 2022.
2

[56] Chenyi Kuang, Jeffrey O. Kephart, and Qiang Ji. AU-
Aware Dynamic 3D Face Reconstruction from Videos with
Transformer. In 2024 IEEE/CVF Winter Conference on Ap-
plications of Computer Vision (WACV), pages 6225–6235,
Waikoloa, HI, USA, 2024. IEEE. 2

[57] Eriko Kuramoto, Saori Yoshinaga, Hiroyuki Nakao, Seiji
Nemoto, and Yasushi Ishida. Characteristics of facial muscle
activity during voluntary facial expressions: Imaging analysis
of facial expressions based on myogenic potential data. Neu-
ropsychopharmacology Reports, 39(3):183–193, 2019. 5

[58] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4681–4690,
2017. 2, 3, 4

[59] Chunlu Li, Andreas Morel-Forster, Thomas Vetter, Bernhard
Egger, and Adam Kortylewski. Robust model-based face re-
construction through weakly-supervised outlier segmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 372–381, 2023. 2, 3, 4,
5, 7

[60] Ruilong Li, Karl Bladin, Yajie Zhao, Chinmay Chinara,
Owen Ingraham, Pengda Xiang, Xinglei Ren, Pratusha
Prasad, Bipin Kishore, Jun Xing, et al. Learning forma-
tion of physically-based face attributes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3410–3419, 2020. 2, 3

[61] Tianye Li, Timo Bolkart, Michael J. Black, Hao Li, and
Javier Romero. Learning a model of facial shape and expres-
sion from 4D scans. ACM Transactions on Graphics, 36(6):
1–17, 2017. 2, 3, 4, 5, 6, 7, 8

[62] Yaojie Liu, Amin Jourabloo, William Ren, and Xiaoming
Liu. Dense face alignment, 2017. 4

[63] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris Mc-
Clanahan, Esha Uboweja, Michael Hays, Fan Zhang, Chuo-
Ling Chang, Ming Guang Yong, Juhyun Lee, Wan-Teh Chang,
Wei Hua, Manfred Georg, and Matthias Grundmann. Medi-
aPipe: A Framework for Building Perception Pipelines, 2019.
2

[64] Jiawei Mao, Rui Xu, Xuesong Yin, Yuanqi Chang, Binling
Nie, Aibin Huang, and Yigang Wang. Poster++: A simpler
and stronger facial expression recognition network. Pattern
Recognition, page 110951, 2024. 1

[65] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen
Wang, and Stephen Paul Smolley. Least squares generative
adversarial networks, 2017. 5

[66] Fernando Marmolejo-Ramos, Aiko Murata, Kyoshiro
Sasaki, Yuki Yamada, Ayumi Ikeda, José A. Hinojosa, Kat-
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A. Implementation and Model Details
We provide an overview of the model architectures
and experimental setups used in EIFER to facilitate re-
implementation. This, combined with the publicly available
source code2, allows for a deeper understanding of EIFER’s
inner workings and suggests that the model architecture has
a minor impact on the overall training pipeline.

EIFER is composed of three primary model components,
which are duplicated for both the CSN and CNS cycles. No-
tably, during the evaluation of EMG2Exp and Exp2EMG,
the CSN cycle plays a crucial role. However, it is essential
to recognize that the CSN cycle cannot be trained in isola-
tion from the other component, as the two cycles are inter-
connected and interdependent.

2Project page: https://eifer-mam.github.io

All models are implemented in PyTorch [37], and we
utilize PyTorch3D [39] for rendering the FLAME [28] mesh
to disentangle facial geometry from appearance.

A.1. Encoder and Face Model
We adopt the triple encoder structure from SMIRK [40] and
utilize MobileNetV3 as the backbone network. This allows
us to initialize EIFER with pre-trained SMIRK models, pro-
viding several benefits.

Firstly, the pre-trained models are assumed to be robust
to rough alignment without facial landmarks, as demon-
strated in the ablation studies of [40]. Secondly, we assume
accurate facial feature extraction for non-sEMG occluded
faces, enabling the other encoder to mimic the correct one
under occlusion. Lastly, this initialization ensures compa-
rability with existing SMIRK results, as the updated model
parameters are robust to sEMG occlusion. The model ar-
chitecture is illustrated in Figure 8.

Figure 8. EIFER Encoder Architecture We utilize the tripe
encoder setup of SMIRK [40] to predict the FLAME parame-
ters [28]. Therefore, each sub-encoder can be used independently
of the given task. In our case, EIFER updates the pre-trained mod-
els to handle sEMG occlusion.

We employ the intermediate FLAME [28] face repre-
sentation, comprising 300 shape and 50 expression com-
ponents to utilize pre-trained weights. Additionally, we in-
clude three components for jaw movement and two blend-
shapes for the eyelids [54]. The position sub-encoder es-
timates the head rotation and position, modeled by camera
parameters.

We use these shape and expression parameters to con-
struct the 3D FLAME mesh. A differential renderer [39]
then generates a monochromatic render of the frontal face
view. This rendered face contains essential facial geom-
etry information following the same denomination as in
[26, 40]. The generator model must restore the face cor-
rectly from this rendered face.
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A.2. Generator Model
The generator model aims to reconstruct the input face
faithfully. Unlike traditional rendering approaches [7, 8, 14,
26], we employ implicit neural rendering [2, 3, 40] for its
robustness.

To disentangle facial geometry and appearance, we use
image-to-image translation techniques. However, the input
face image contains both geometry and appearance infor-
mation. To address this, we use the rendered face image,
computed by the encoder networks, as the primary driver.
Additionally, we forward random pixel information from
the input face to the generator, similar to [40], to recreate
skin texture and lighting conditions.

The generator models take geometry and random appear-
ance pixels as input, effectively functioning as an image-to-
image translation network or style transfer model. Unlike
traditional rendering approaches that rely on an appearance
model [8, 17, 26, 38], we are not constrained by explicit as-
sumptions, allowing us to adapt the generator models to our
specific requirements.

To train the generator to ignore sEMG electrodes, we
employ an unpaired reference image with a different ex-
pression and a discriminator. This setup has two benefits:
(1) the model learns to ignore pixels describing sEMG elec-
trodes, and (2) the generated faces must be photorealistic to
convince the discriminator, eliminating the need for addi-
tional perceptual losses.

However, this adversarial problem poses challenges,
such as generative models creating incorrect features or hal-
lucinating wrong expressions. We refer the reader to the
main paper for details on regularization terms that address
these issues.

Unlike recent works [21, 40, 53], we use a ResNet [20]
as the backbone architecture for our generator models. Al-
though this differs from the typical Unet architecture, it al-
lows for a similar gradient flow.

We modify the architecture to replace Conv2DTranspose
layers with a single Upsample and Conv2D layer, elimi-
nating the pixelated output and checkerboard patterns in
SMIRK (see visualization in the main paper). This im-
proves the overall quality of the generated images.

We employ instance normalization as the primary activa-
tion function throughout the network [45], which enhances
the reconstruction quality and information flow in the op-
timization problem. However, instance normalization re-
quires a batch size of one to avoid mirroring the behavior of
standard batch normalization [45].

We adopt the multi-phase approach outlined in the main
paper to address this limitation, as parallel-trained models
like EMG2Exp cannot converge with small batch size. This
approach ensures stable training and convergence.

Our ResNet Generator, shown in Figure 9, consists of
9 residual blocks with a feature depth of 64, similar to the

parameter amount of the original UNet in SMIRK [40].

Figure 9. EIFER Generator Architecture: Our EIFER gener-
ator architecture is based on the ResNet [20] backbone, which
serves as the neural generator for restoring faces. We incorpo-
rate skip connections to facilitate information flow, similar to the
U-Net [41, 53] architecture employed in SMIRK [40]. However,
we introduce two modifications: (1) we utilize instance normal-
ization [45] to generate nuanced details, and (2) we replace the
Conv2DTranspose layers with a combination of upsampling and
convolutional layers to eliminate the checkerboard patterns.

A.3. Updated Masking Function
The masking function, originally proposed in [40], selects a
random pixel to represent facial appearance. However, this
function relies on computing facial landmarks in the input
images to define a suitable sampling area. Unfortunately,
this is not feasible under sEMG occlusion, as demonstrated
in Figure 15.

We reformulate the sampling area based on the rendered
FLAME face model to address this limitation. This is made
possible by the sufficient pre-training of the encoder mod-
els, allowing us to tackle this complex problem without re-
quiring a retrained sEMG occlusion-robust facial landmark-
ing model.

As a result, EIFER implicitly becomes a robust facial
landmarking tool under occlusion, as shown in the ablation
studies. We illustrate the information flow of the updated
masking function in Figure 10.

Figure 10. Update Information Flow For the Pixel Masking: As
we cannot rely on the facial landmarks convex hull as a sampling
area, we utilize the monochrome rendered facial geometry instead
for the masking function M(·) [40]. This has the advantage that
we can utilize the learned alignment capabilities of SMIRK [40].
The selected sampling area covers the facial area well.
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A.4. Discriminators
We employ a simple yet effective discriminator model in-
spired by previous works [2, 18, 53], distinguishing be-
tween generated faces and their unpaired reference images.
Specifically, we compare generated faces with removed and
applied sEMG electrodes, ensuring that the generator pro-
duces realistic faces consistent with the input data.

To train the generator, we utilize the least square GAN
loss [33], which encourages the generator to produce more
realistic faces by enforcing generation near the decision
boundary. This loss function helps to stabilize the train-
ing process and improve the overall quality of the gener-
ated faces. Consequently, the problem of distinguishing be-
tween real and fake faces is now reduced to a two-class de-
cision problem. Our discriminator network consists of a
3-layer convolutional neural network with two output neu-
rons, which classify input images as real or fake.

A.5. Multi-Stage Training
We adopt a multi-stage training approach for the two
encoder-generator pairs and the two-phase training proto-
col to overcome the batch size limitation. This approach is
critical due to the challenging nature of our problem, where
facial features are obstructed by electrodes, making expres-
sion extraction difficult.

Inspired by previous works [2, 3], we employ a two-stage
training strategy. In the first stage, we train the entire archi-
tecture with frozen encoders and provide more appearance
pixels to the generator. This allows the model to learn to
disregard the correct facial expression and focus on gener-
ating faces that can fool the discriminators while implicitly
encoding facial geometry in the appearance.

In the subsequent stages, we enforce the disentanglement
of geometry and appearance by (1) enabling the encoder on
sEMG occluded faces to update its weights and (2) grad-
ually reducing the available appearance information. As a
result, the model is forced to rely on the estimated facial
geometry to restore correct faces over time.

Combining this multi-stage approach with the regular-
ization terms introduced in the main paper ensures that the
encoders correctly compute shape, expression, and position.
This approach is crucial for achieving convergence, as it
would otherwise require significantly more training effort.

A.6. EMG2Exp And Exp2EMG Architecture
We utilize simple multi-layer perceptrons (MLPs) to learn
the non-linear relationship between the input data and
the desired output for both our EMG2Exp (Synthesis)
and Exp2EMG (Analysis) networks. These MLPscapture
the complex relationships between the electromyography
(EMG) signals and the corresponding facial expressions and
vice versa. By employing MLPs, we effectively model the
non-linear interactions between the input and output data.

As previously discussed, these models are trained in the
second phase of EIFER, as the first phase requires a batch
size of one. Therefore, we could not guarantee convergence
of the training. By training them separately in the second
phase, we can ensure that they learn the complex relation-
ships between the input and output data effectively.

We provide a detailed illustration of both the EMG2Exp
and the Exp2EMG models in Figure 11. In terms of ar-
chitecture, we employ a simple yet effective design, utiliz-
ing ReLU activations [34] for all intermediate layers. This
choice of activation function allows the models to learn non-
linear relationships between the input and output data.

The final layer of each model is designed to accom-
modate the specific requirements of the output data. For
the EMG2Exp model, we use a Tanh activation function,
which allows the model to produce output values in the
range of -1 to 1 (the typical ranges for the 3DMM expres-
sion space), suitable for representing facial expressions. In
contrast, the Exp2EMG model uses a ReLU activation func-
tion in the final layer, as the sEMG signals are non-negative
and require a non-negative output range.

During our experiments, we explored various expression
encoder models, including DECA [14], EMOCAv2 [7], FO-
CUS [26], and Deep3DFace [42]. To accommodate the
unique characteristics of each model, we adapted the input
and output dimensions of our architecture accordingly, tak-
ing into account each model’s specific expression param-
eter dimensions. This allowed us to effectively integrate
these different expression encoder models into our frame-
work and evaluate their performance in our experiments.
Therefore, we compare the expression independently of the
model architecture, gaining more insights into their under-
lying 3DMM and encoder capabilities instead.

Figure 11. EMG2Exp and Exp2EMG Architectures: The sim-
ple MLP architecture learns the non-linear mapping between facial
expression and muscle activity. Thus, the models learn the corre-
spondence between these two domains.
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B. Dataset - Mimics And Muscles

We created a custom dataset that simultaneously captures
facial mimicry and muscle activity, bridging the gap be-
tween these two aspects. To our knowledge, this is the first
dataset of its kind.

This dataset provides new insights into the complex
dynamics between facial expressions and muscle activity.
We provide a detailed description of the recording setup,
recording scheme, surface electromyography schemes, data
processing, and general data statistics to facilitate a deeper
understanding of the dataset.

B.1. Recording Setup
In our experimental setup, a set of participants was in-
structed by an instruction video [48] to perform different fa-
cial movements. Each movement was repeated three times;
thus, we can compare the repetitions against each other.
Each movement task varied in time, ranging from 10 to 30
seconds. First, the following eleven facial movements were
performed in that order:

1. Face-At-Rest
2. Forehead-Raise
3. Eye-Gentle
4. Eye-Tight
5. Smile-Closed
6. Smile-Open
7. Nose-Wrinkler
8. Cheeks Blow
9. Lip-Pucker

10. Snarl
11. Depress-Lip

Afterward, the participants had to mimic the six basic
emotions [11] four times in total random order. The par-
ticipants were shown faces to recreate. This ensured that no
memory effect of previous repetitions could set in. Each ex-
pression was shown for three seconds, followed by a three-
second interval for repetition. At 4.5 seconds, we assume
the height peak during the expression.

We repeated the experiment twice with sEMG electrodes
attached to measure muscle activity and once without elec-
trodes as a reference. The duplicate sEMG measurement
was conducted to ensure the reliability of the sEMG results.
Additionally, we repeated the entire experiment two weeks
later to account for potential changes in muscle activity and
minimize inaccuracies that may arise from the participants’
daily state. This allowed us to capture a more comprehen-
sive and accurate representation of the participants’ muscle
activity over time.

Our participants were recorded with a frontal-facing
Intel RealSence Depth Camera D415 (Intel Corporation,
Santa Clara, California, U.S.) at 1280 × 720 resolution.
Unfortunately, the obtained 3D information was unreliable

and inaccurate in supporting the monocular 3D facial re-
construction but suitable enough for foreground and back-
ground separation.

We employ the same data collection setup as in [19,
36, 44]. To minimize skin impedance, all participants
thoroughly cleaned their faces with non-refatting medical
soap. The electromyography recording setup used reusable
surface electrodes (Ag–Ag–Cl discs, diameter: 4 mm,
DESS052606, GVB-geliMED, Bad Segeberg, Germany) to
measure muscle activity. Reference electrodes (H93SG,
Kendall, Germany) were bilaterally attached to the mastoid
bone to provide a stable reference point. The muscle signals
were amplified using sEMG amplifiers (ToEM16G, gain
100, frequency range 10–1,861 Hz, DeMeTec, Langgöns,
Germany). Then they converted with an analog to digi-
tal converter (Tom, resolution: 5.96 nV/Bit, sampling rate:
4096/s, cutoff frequency: 2048 Hz, DeMeTec, Langgöns,
Germany). The digitized data were then sampled using ATI-
SArec (GJB Stentechnik, Ilmenau, Germany).

Our experimental setup allowed us to simultaneously
record both the Fridlund [15] and Kuramoto [19, 25, 36]
surface electromyography (sEMG) schemes. However, it
is essential to note that the Kuramoto scheme provides re-
gional information on muscle activity, whereas the Frid-
lund scheme offers more precise activation data. The elec-
trode locations are illustrated in Figure 12, and our medi-
cal partners ensured accurate anatomic placement. A de-
tailed description of the electrode channels is provided in
Table 3, which reveals that some Fridlund electrodes over-
lap with Kuramoto electrodes in specific locations. For a
more comprehensive understanding of the sEMG schemes
and electrode placement, we refer the reader to previous
studies [19, 36, 44].

While our primary focus is on the facial muscles re-
sponsible for expressions, we also recorded the activity of
the M. masseter, a digestive muscle, and the M. tempo-
ralis. The facial muscles have been linked to specific fa-
cial movements through the Facial Action Coding System
(FACS) [12], which is also included in Table 3. Notably,
since we directly recorded facial expressions and muscle
activity, we can bypass the intermediate Action Unit (AU)
proxy variable in our approach. This unique aspect of our
study offers benefits for improving and investigating the es-
tablished FACS, providing new insights into the relationship
between facial muscles and expressions.

B.2. Participant Cohort

We recruited 36 participants (19 ♀, 17 ♂, age range: 18-67
years) without a history of any neurological disease to ob-
tain synchronous facial expression and muscle activity for
this study. We specifically selected beardless male partic-
ipants to ensure the accurate application of surface elec-
tromyography (sEMG) electrodes. Although our sample
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Figure 12. sEMG Electrode Locations: We highlight both sur-
face electromyography schemes on their corresponding anatomi-
cal locations. Both Fridlund [15] (F, blue) and Kuramoto [25] (K,
red) are attached to both face sides, but drawn here only on one for
clarity. Please note that Fridlund is a bipolar scheme (denoted by
the two smaller dots per electrode), and Kuramoto is monopolar
by using K24 as reference.

size is limited and may not represent an entire population,
we aimed to achieve a balanced distribution of male and fe-
male participants across various age ranges. While the gen-
eralizability of our findings to a broader population remains
uncertain, we expect the results to be consistent within this
cohort, providing a reliable basis for further investigation.

To account for potential occlusions caused by the sur-
face electromyography (sEMG) electrodes on key facial
features, we recorded the same participants without elec-
trode occlusion. This additional recording protocol allowed
us to establish a reference dataset, which serves as a base-
line for evaluating the accuracy of shape and expression re-
construction. By comparing the reconstructed results with
the unoccluded recordings, we can assess the effectiveness

Fridlund Kuramoto Muscle Action Unit Movement

F1, F2 K1, K2 medialer frontalis AU1 inner brow raiser
F3, F4 K3, K4 lateraler frontalis AU2 outer brow raiser
F5, F6, F7, F8 K19 glabellae AU4 brow lowerer

depressor supercilii
corrugator supercilii

F17, F18 K5, K6 orbicularis oculi AU6 cheek raiser
F9, F10 K7, K8 levator labii superioris AU9 nose wrinkler
F9, F10 K7, K8 levator labii superioris AU10 upper lip raiser
F19, F20 - zygomaticus minor AU11 nasolabial deepener
F19, F20 (K15, K16) zygomaticus major AU12 lip corner puller
F13, F14 - depressor anguli oris AU15 lip corner depressor
F15, F16 K9, K10 mentalis AU17 chin raiser
F11, F12 (K20) philtrum, orbicularis oris AU22 lip funneler
F11, F12 (K20) orbicularis oris AU23 lip tightener
F11, F12 (K20) philtrum, orbicularis oris AU24 lip pressor
F21, F22 K17, K18 masseter AU26 jaw drop
F11, F12 - philtrum, orbicularis oris AU28 lip suck
- K13, K14 temporalis - -

Table 3. Electrode Channels and Muscles: With our two sEMG
electrode schemes, we capture the majority of facial muscles.
We also included the according action units [12], providing in-
sights into further research in the future. Please note channel
names surrounded by brackets are just roughly attributable to
the muscles, and K11 and K12 do not exist in the Kuramoto
scheme [19, 25, 36, 44].

of our approach in capturing the nuances of facial expres-
sions despite electrode placement.

B.3. Video Preprocessing

We provide a visualization of the original recording cap-
tured by the Intel RealSense camera, showcasing both RGB
and depth data, in Figure 13 for a representative participant.
To focus the model’s attention on the most relevant facial
regions, we employed the BlazeFace model [1] to compute
the facial bounding box. However, not every frame yielded
a valid bounding box, likely due to minor face orientation
or unaccountable lighting changes. To address this, we in-
terpolated missing bounding boxes using the position from
the previous frame, assuming minimal participant move-
ment due to the attached electrodes hindering a lot of move-
ment. Additionally, Aruco markers placed on the left side
of the frame facilitated synchronization across different data
streams.

Following the extraction of bounding boxes, we lever-
aged rough depth information to segment the face from the
background, thereby mitigating potential influences from
external factors, such as people in the background. Sub-
sequently, we applied a matting estimation technique us-
ing MODNet [22] to refine the segmentation results. Please
note that the cables around the shoulder and neck area still
make this segmentation challenging and might introduce ar-
tifacts. The outcome of this process is illustrated in Fig-
ure 13, also with artifacts above the right shoulder area. In
conjunction with the recorded muscle activity data, these
preprocessed frames were then utilized to train the EIFER
model.
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(a) Raw Input Video of Intel Re-
alSense

(b) Visualize Depth Map of the Intel
RealSense

(c) Estimated Face
Bouding Box via
BlazeFace [1]

(d) Foreground mask-
ing via depth map and
MODNet [22]

(e) Cropped and ex-
tracted face for the
training

Figure 13. Video Preprocessing: We illustrate the preprocessing
steps of the recorded facial videos for EIFER training, where we
remove the background to facilitate facial expression extraction
by the encoder models. Please note that you can see the Aruco
markers on the left side of the raw input frame, which is used for
the synchronization.

B.4. Electromyography Signal Preprocessing

We adhere to established protocols for processing the
recorded electromyography (EMG) signals, as described in
previous studies [16, 19, 36, 44, 50]. Specifically, we fo-
cus on the Fridlund scheme [15] due to its direct association
with the corresponding muscles. As illustrated in Figure 14,
our processing pipeline is uniformly applied to all sEMG
recordings, including those for the M. depressor anguli oris
(F19, F20) during the functional movement of smiling. The
resulting signal exhibits the three repetitions of the move-
ment. Notably, we refrain from normalizing the data during
this preprocessing step, intentionally delaying normaliza-
tion until the training phase to preserve participant-specific
characteristics and avoid loss of information.

Unlike most research that typically operates on high-
resolution sEMG (HR-sEMG) signals at 4096 Hz, we need
to synchronize our signal with the recorded video at 30
frames per second (FPS). We employ a Fast Fourier Trans-
form (FFT)-based downsampling approach [47], carefully
ensuring that the essential frequency features are preserved.
As the example demonstrates, the downsampling operation
effectively maintains the signal’s overall shape and fine-
grained nuances. By successfully recording muscle activ-
ity and facial expression, we can explore the relationship
between these two modalities, enabling a more comprehen-
sive understanding of the underlying mechanisms.

Figure 14. Muscle Signal Preprocessing: Illustration of the data
processing pipeline for a single sEMG measurement of the depres-
sor anguli oris muscle during the ”Smiling” movement. Note the
variability in the linear envelope of the measured muscle activity,
even for repeated instances of the same movement.

B.5. Synchronization

We implemented an automated triggering system that si-
multaneously initiated both data streams to ensure precise
synchronization between the video recording and surface
electromyography (sEMG) signals. Additionally, we incor-
porated visual and sEMG-based synchronization triggers,
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which were repeated twice to guarantee accurate alignment;
see Figure 13 for the Aruco markers. This dual-triggering
approach allowed us to align the video sections with the
corresponding sEMG signals confidently. However, de-
spite this rigorous synchronization protocol, some record-
ings still exhibited low confidence levels, necessitating their
exclusion from the dataset. To provide transparency and ac-
count for these variations, we report the number of suitable
recording snippets employed during training and evaluation
for each facial movement in Table 4. This information pro-
motes a more nuanced understanding of the dataset’s com-
position and the reliability of our results.

Facial Movement Total Recordings Usable Failed

Face-At-Rest 141 105 36
Forehead-Raise 141 106 35
Eye-Gentle 141 106 35
Eye-Tight 141 106 35
Cheeks-Blow 141 106 35
Smile-Closed 141 105 36
Smile-Open 141 106 35
Nose-Wrinkler 141 107 34
Lip-Pucker 141 106 35
Snarl 141 106 35
Depress-Lip 141 105 36

angry 560 528 32
disgusted 560 528 32
fearful 560 528 32
happy 560 528 32
sad 560 528 32
surprised 560 528 32∑

4911 4332 579

Table 4. Synchronization Results: We show how many record-
ings (at 30 FPS) of the synchronized facial expression and muscle
activity are available for training and evaluation. Please note that
the occlusion-free reference recording can be used fully.

B.6. Limitations
Our dataset is subject to several limitations that warrant con-
sideration. Firstly, the facial expressions mimicked by par-
ticipants may not accurately reflect natural, evoked expres-
sions, as noted in previous studies [7, 11, 35]. However, this
limitation does not compromise our ability to predict mus-
cle activity from expressions and vice versa, as the mea-
sured facial muscle activity and recorded facial expressions
still exhibit a strong correlation. This alignment ensures we
can investigate the relationship between muscle activity and
facial expressions despite the potential differences between
mimicked and natural expressions.

Secondly, the surface electromyography (sEMG) elec-

trodes used in our study introduce significant occlusion,
which poses a challenge for feature extraction as illustrated
in Figure 15. Existing methods are not trained on such data,
and we cannot determine the potential bias these methods
may introduce into our model [4, 5]. This highlights the
need for more robust facial feature extraction to handle oc-
clusions and ensure accurate predictions effectively.

Figure 15. Examples of Occluded Facial Expressions with Pre-
dicted Landmarks: We present several examples of different fa-
cial expressions from three study participants. In addition to the
original images, we overlay the predicted landmarks, as obtained
using the methods described in [1, 29]. Notably, the predicted
landmarks, if at all, exhibit inaccuracies, particularly in the outer
regions of the face. This is of concern, as the outer part of the
face is used to compute the convex hull for the masking function
in SMIRK [40], and the strong offset observed in this region may
impact the accuracy of the masking process.

Further, our recording setup is limited in capturing char-
acteristic comprehensive muscle activity measurements.
Specifically, certain muscle activities, such as the voluntary
evoked eyelid closure, are controlled by the palpebral part
of the M. orbicularis oculi, are not accounted for in the Frid-
lund scheme [15]. This omission is because the Fridlund
scheme focuses on a specific set of facial muscles and the
palpebral part of the M. orbicularis oculi is not included in
this set. Additional measurements or specialized electrodes
would be required to capture this activity, as discussed in
previous studies [43]. This limitation highlights the need for
more research concerning recording setups that can capture
a broader range of muscle activities, enabling a more com-
plete understanding of the complex relationships between
facial muscles and expressions [16].

Our dataset has limitations, including its size and focus
on functional movements, which may restrict the general-
izability of our findings and the model’s effectiveness in
handling complex movements or subtle variations in facial
expressions. Additionally, the impact of extreme facial ex-
pressions or diseases like facial palsy on our approach is
unclear and warrants further investigation.

Our dataset was recorded within a medical study in Ger-
many, subject to strict data privacy regulations. As a re-
sult, we are limited in the number of faces we can display
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and the participants who agreed to share their data for new
research databases. However, we will publish our trained
models, EMG2Exp and Exp2EMG, which do not contain
person-identifiable information, ensuring compliance with
data protection regulations [10].

C. Experimental Setup
We compare EIFER to several state-of-the-art monocu-
lar 3D face reconstruction methods. Our comparison in-
cludes three models that employ the FLAME 3DMM [28]:
DECA [14], EMOCAv2 [7], and SMIRK [40]. We also
evaluate two models that use the BaselFaceModel [17, 38]:
Deep3DFace [42] and FOCUS [26]. Additionally, we com-
pare MC-CycleGAN [2, 3], which does not rely on a face
model and implicitly learns the reconstruction. All models
are available as PyTorch [37] implementations.

However, none of these methods were trained or tested
on faces with sEMG electrodes attached. Moreover, our 36
participants were not part of their training data, making their
faces completely unseen.

To ensure a fair comparison, we fine-tune all models
on a common subset of occlusion-free reference recordings
(10% of available frames). This approach has two bene-
fits: First, it adapts the models to our data without occlu-
sion, eliminating the need to account for their in-the-wild
performance. Therefore, we assume they will perform best.
Second, when applying the models to the sEMG-occluded
faces of the same individuals, any behavior change can be
attributed to the electrodes. This allows us to assess the
models’ invariance to this type of occlusion.

In contrast, EIFER trains on the same subset of
occlusion-free faces (and uses the occluded faces, also 10%
of available frames) as a reference to guide the reconstruc-
tion via adversarial challenge. As a result, all models have
seen the same occlusion-free faces, making the comparison
on the remaining 90% of frames fair.

We report the training hyperparameters for the first phase
of EIFER, which focuses on expression reconstruction un-
der sEMG occlusion.

We employ two AdamW [30] optimizers to train the
encoder-generator pairs and discriminators independently.
Both optimizers use a learning rate of 2 · 10−4 and a weight
decay of 10−3. A cosine annealing learning rate scheduler
adapts the learning rate during training. Again, we can only
employ a batch size of one to facilitate the strength of in-
stance normalization.

EIFER is trained for 20 epochs, divided into three stages:
10 epochs for the first, 5 for the second, and 5 for the last.
We use 80% of the 10% available frames for training and
20% for validation. Note that the reported results in the
main paper are on the 90% unseen frames.

During training, EIFER receives the triplet (IN, IS),
where IN ∈ R224×224×3 is a color image of the occlusion-

free face and IS ∈ R224×224×3 is a color image of the
sEMG-occluded face. We apply random data augmenta-
tions to the frames, including random cropping, sharpening,
and horizontal and vertical flipping.

During the second phase of EIFER, we train EMG2Exp
and Exp2EMG using the following hyperparameters. We
employ the Adam optimizer [24] with a learning rate of
10−3 and no additional learning rate scheduling or early-
stopping. We use a batch size of 512 and train for 200
epochs. All results in the main paper are reported on a five-
fold cross-validation.

Both models are trained on the tuple (A,φ), where
A ∈ R22 represents the 22 measured muscle signals us-
ing the Fridlund sEMG scheme. We normalize the muscle
signals A by the maximum measured muscle activity for
each participant. This normalization accounts for individ-
ual intensity and muscle strength differences, allowing for a
more comparable analysis across participants. Please note
that this maximum value has been used to restore the re-
constructed activity during the Exp2EMG predictions. φ
denotes the 3DMM expression space parameters. The di-
mension of φ varies across models:
• For EIFER and SMIRK [40], φ ∈ R55 (50 expressions,

two eyelids, three jaw).
• For DECA [14] and EMOCAv2 [7], φ ∈ R53 (50 expres-

sion parameters and three jaw).
• For FOCUS, φ ∈ R100.
• For Deep3DFace, φ ∈ R64.
Please note that FLAME [28] models the jaw movement
intentionally separate, and BFM [17, 38] models this im-
plicitly via the expression space. This allows us to compare
the expression space differences between FLAME [28] and
BaselFaceModel [17, 38].

D. Visualizations And Videos

We provide additional visual examples for each main ex-
periment, including videos to highlight our approach’s dy-
namic aspects and highlight our methods’ advantages.

D.1. Isolated Shape Visualization

In our experiments, we observed that the same individual
was reconstructed with varying facial geometries. To in-
vestigate this, we analyzed the shape parameters of both
FLAME [28] and BFM [17, 38] under neutral expressions,
excluding camera or pose parameters. Notably, EMO-
CAv2 [7] employs the same encoder as DECA [14], result-
ing in identical shape parameter estimates. Our analysis re-
vealed that all models, except EIFER, exhibited differences
in geometry for the same individual. This discrepancy may
explain why the expression parameters, compensating for
the visual reconstruction, potentially affect the quality of
muscle activation predictions in our later experiments.
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Figure 16. Isolated shape parameters of the facial reconstruction.
Many models have slightly different shape geometries for the same
individual, indicating that the encoder might use the expression
space to substitute the reconstruction.

D.2. Reconstruction

We provide additional visual examples for facial geometry
extraction and appearance reconstruction. We also demon-
strate the reconstruction using only expression parameters
on a neutral face to evaluate the encoder’s disentanglement
ability during sEMG occlusion. Examples include Face-
At-Rest, Eye-Tight, Smile-Open, Snarl, and Nose-Wrinkler.
These are the following figures:

• Face-At-Rest: 3D Geometry Figure 17
• Face-At-Rest: Isolated Expression Figure 18
• Face-At-Rest: Appearance Reconstruction Figure 19
• Eye-Tight: 3D Geometry Figure 20
• Eye-Tight: Isolated Expression Figure 21
• Eye-Tight: Appearance Reconstruction Figure 22
• Smile-Open: 3D Geometry Figure 23
• Smile-Open: Isolated Expression Figure 24
• Smile-Open: Appearance Reconstruction Figure 25
• Snarl: 3D Geometry Figure 26
• Snarl: Isolated Expression Figure 27
• Snarl: Appearance Reconstruction Figure 28
• Nose-Wrinkler: 3D Geometry Figure 29
• Nose-Wrinkler: Isolated Expression Figure 30
• Nose-Wrinkler: Appearance Reconstruction Figure 31

D.3. EMG2Exp
We provide additional visual examples of synthesized facial
expressions based on muscle activity for all methods, in-
cluding the six base emotions and eleven functional move-
ments for more participants, as shown in Figure 32. We also
compare the results using MC-CycleGAN [2, 3] restored
recordings for a fair comparison.

Our method directly generates highly realistic faces from
occluded faces, whereas other methods require occlusion-
free faces. This demonstrates the robustness of EIFER
in handling sEMG occlusion. However, SMIRK [40] is
the only method to reconstruct the Depress-Lip movement,
demonstrating its ability to encode rare and subtle facial ex-
pressions. In contrast, EIFER could not learn this move-
ment, even under occlusion, highlighting a potential area
for improvement.

We observe an interesting phenomenon where the model
can synthesize the Eye-Tight movement but not the Eye-
Gentle movement. This suggests that the model can pick up
on different muscular patterns depending on the strength of
the same movement. However, it remains unclear whether
the differences between voluntary and enforced movements
exhibit similar patterns. Notably, EIFER is the only method
that can restore the Lip-Pucker movement.

We also observe that the jaw movement is challenging
to learn, as the M. massester muscle is only slightly active
during jaw opening. Although this task is easy to solve
visually, the muscle activity appears insufficient. Further-
more, we find that the performance of the two 3DMMs
(FLAME [28] and BaselFaceModel [17, 38]) depends on
the encoder model. This suggests that a well-trained en-
coder model is more important than the capabilities of the
3DMM expression space.

This finding highlights the importance of disentangle-
ment of shape and expression in 3DMMs, as well as the
significance of the encoder model [9, 10]. Although this
task remains ill-posed, our results have implications for new
research directions in medicine and psychology.

D.4. Exp2EMG
We provide additional examples of EIFER’s muscle activity
prediction beyond the single active and inactive muscle vi-
sualized in the main paper for the happy expression. These
can be found in Figure 33, Figure 34, and Figure 35. Cer-
tain muscles are typically active during specific facial ex-
pressions, while others remain inactive. However, we also
notice decreased activity in some muscles, accompanied by
activation in others. This phenomenon, which is not well-
studied [19], suggests that facial muscles may be more in-
terconnected than currently assumed [11, 12], warranting
further investigation.

EIFER can accurately predict the muscle activity en-
velope without requiring additional personal information
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However, we refine the prediction by multiplying it by the
participant’s maximum observed activity (in µV ), allow-
ing us to estimate the relative activity and actual muscle
strength. Even without this refinement, EIFER remains a
powerful tool for predicting muscle activity.

We observe that EIFER accurately fits the shape of the
original signal in all reconstructions but occasionally strug-
gles to estimate the signal amplitude correctly. We at-
tribute this to the per-participant normalization during train-
ing, which may cause the model to underestimate the gen-
eral signal amplitude if participants require varying levels
of muscle activity to evoke changes in facial mimicry.

Several potential reasons for this phenomenon deserve
further exploration:
1. Are there differences in voluntary and evoked expression

patterns?
2. Do participants exhibit unique muscle activity patterns

for certain expressions due to pathological conditions?
3. Are there learning effects between sessions, such as

changes in reaction time, execution speed, or intensity?
To drive progress in understanding and addressing these

open questions, we are releasing our models EMG2Exp and
Exp2EMG to the research community, inviting collabora-
tion and exploration to uncover the underlying causes of
these phenomena and push the boundaries of facial expres-
sion analysis.
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Figure 17. Facial Geometry Reconstruction during Face-At-Rest

Figure 18. Isolated Facial Expression Reconstruction during Face-At-Rest
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Figure 19. Facial Geometry Reconstruction during Face-At-Rest

Figure 20. Facial Geometry Reconstruction during Eye-Tight
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Figure 21. Isolated Facial Expression Reconstruction during Eye-Tight

Figure 22. Facial Geometry Reconstruction during Eye-Tight
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Figure 23. Facial Geometry Reconstruction during Smile-Open

Figure 24. Isolated Facial Expression Reconstruction during Smile-Open
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Figure 25. Facial Geometrie Reconstruction during Smile-Open

Figure 26. Facial Geometry Reconstruction during Snarl
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Figure 27. Isolated Facial Expression Reconstruction during Snarl

Figure 28. Facial Geometry Reconstruction during Snarl
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Figure 29. Facial Geometry Reconstruction during Nose-Wrinkler

Figure 30. Isolated Facial Expression Reconstruction during Nose-Wrinkler
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Figure 31. Facial Geometry Reconstruction during Nose-Wrinkler
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Figure 32. Physiological-based Expression Synthesis via Muscle Activity: We demonstrate synthesized facial expressions from recorded
muscle activity. State-of-the-art methods, such as SMIRK and FOCUS, struggle to reconstruct expressions under sEMG occlusion. We see
improved results on the MC-CycleGAN [2, 3] restored faces, but only SMIRK performs well across all emotions. In contrast, our method,
EIFER, achieves comparable synthesis quality directly from occluded images without needing electrode removal.
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Figure 33. Muscle Activity via Expression Parameters We demonstrate the reconstruction of muscle activity from expression parameters,
achieving fair results with minor amplitude signal issues. We visualize this capability for the six base emotions [11].
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Figure 34. Muscle Activity via Expression Parameters We demonstrate the reconstruction of muscle activity from expression parameters,
achieving fair results with minor amplitude signal issues. We visualize this capability for the six different functional movements [48].
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Figure 35. Muscle Activity via Expression Parameters We demonstrate the reconstruction of muscle activity from expression parameters,
achieving fair results with minor amplitude signal issues. We visualize this capability for the remaining five functional movements [48].

35



Figure 36. Topological EMG Heatmaps: We compare the topological heat maps during the peak muscle measurement of muscle activity
for each movement. Further, we display the predicted muscle activity based on each method. SI units are committed for clarity but can be
taken from the other muscle activity prediction figures (Figure 33, Figure 34, Figure 35).
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E. Ablation Studies
In addition to the results presented in the main paper, we
conduct further ablation studies to explore alternative appli-
cations of EIFER. We investigate various downstream tasks
to assess the model’s versatility and potential uses beyond
its original purpose.

E.1. Convolutional Based Expression Classification
We leverage the six base emotions [11] mimicked by our
participants as reference annotations, serving as ground
truth labels for image-based classification. This way, we
evaluate whether the appearance reconstruction accurately
resembles the target facial expression, providing an addi-
tional objective criterion for assessing appearance quality.

We employ several convolution-based Facial Expres-
sion Recognition (FER) classifiers: Poster++ [32], Resid-
ualMaskingNet [31], EmoNext [13], and Segmentation-
VGG [46]. All required preprocessing steps are strongly
followed, as outlined in the paper and corresponding code
repositories. While this model selection is not exhaustive,
it gives a broad overview of existing classifiers trained on
public datasets. However, since we cannot directly assess
the accuracy of the mimicked expression, we establish two
baselines: (1) an upper baseline using occlusion-free ref-
erence recordings, and (2) a lower threshold using sEMG-
occluded recordings. Any model should perform better than
the lower baseline.

We present the results in Table 5 to Table 8. Notably,
none of the reconstruction methods achieve the original up-
per limit on the occlusion-free videos. This discrepancy
may be attributed to several factors: First, the methods may
struggle with frames that differ from the training database’s
image quality and recording style, simulating a distribution
shift or in-the-wild application scenario. Second, the ap-
pearance reconstruction may introduce biases invisible to
the human eye but affect the models’ performance [4, 5].
Lastly, the reconstruction may not retain the essential facial
features that the models rely on, indicating potential infor-
mation loss during the reconstruction. While the underly-
ing cause is beyond the scope of this study, it is an essential
area of research that can help uncover the black-box nature
of FER classification models.

E.2. Landmarks under Occlusions
We demonstrate in Figure 15 that existing landmarking
models struggle to predict landmarks accurately under
sEMG occlusion. However, EIFER, trained without land-
mark information, still aligns well with the facial geome-
try. We leverage this alignment to predict landmarks, as
defined on the FLAME model [14, 28, 40]. Although we
lack groundtruth annotations for the landmarks, visual in-
spection reveals that EIFER’s predictions outperform those
of existing models [1, 29], as shown in Figure 37. While

Angry Disgusted Fearful Happy Sad Surprised Average

Upper Limit (N) 65.97 82.29 53.12 94.08 75.00 70.49 73.49
Lower Limit (S) 14.02 15.91 46.02 54.92 84.47 60.04 45.90

DECA 7.01 0.00 0.00 0.00 0.00 21.97 4.83
EMOCAv2 61.45 3.39 79.89 2.82 8.94 6.15 27.11
SMIRK 31.44 4.92 22.73 56.06 81.06 53.03 41.54
Deep3DFace 0.25 1.50 5.46 32.17 16.42 89.58 24.23
FOCUS 0.26 0.00 0.00 1.56 0.00 92.23 15.67
MCGAN 47.97 75.61 33.94 75.61 73.17 58.94 60.87

EIFER 48.67 61.55 27.84 71.78 67.23 56.44 55.59

Table 5. Emotion Classification Accuracy for Poster++[32]: We
report the FER image-based classification results for the appear-
ance reconstructions.

Angry Disgusted Fearful Happy Sad Surprised Average

Upper Limit (N) 56.60 72.57 36.81 84.67 8.33 57.29 52.71
Lower Limit (S) 13.64 0.00 2.65 25.19 0.00 81.82 20.55

DECA 0.19 0.00 82.01 0.57 0.00 0.00 13.79
EMOCAv2 2.23 7.91 4.47 3.95 1.12 1.12 3.47
SMIRK 16.10 4.73 5.68 7.77 0.57 68.37 17.20
Deep3DFace 4.96 15.54 3.97 60.60 2.24 68.98 26.05
FOCUS 2.07 1.31 40.57 18.44 0.26 47.15 18.30
MCGAN 45.12 64.43 21.14 52.85 2.64 39.63 37.64

EIFER 48.67 62.69 14.20 55.11 3.22 39.39 37.22

Table 6. Emotion Classification Accuracy for
ResidualMaskingNet[31]: We report the FER image-based
classification results for the appearance reconstructions.

Angry Disgusted Fearful Happy Sad Surprised Average

Upper Limit (N) 48.96 0.00 14.24 97.21 21.88 69.44 41.95
Lower Limit (S) 19.32 0.00 30.68 61.93 31.82 34.28 29.67

DECA 0.00 0.00 0.00 0.19 11.74 5.11 2.84
EMOCAv2 60.89 0.00 16.20 6.21 51.40 48.04 30.46
SMIRK 70.27 0.00 17.42 60.61 13.83 9.28 28.57
Deep3DFace 1.24 0.00 3.97 65.34 4.23 66.75 23.59
FOCUS 0.00 0.00 0.00 20.52 0.26 35.49 9.38
MCGAN 21.54 0.00 5.89 90.24 8.94 43.70 28.39

EIFER 48.11 0.00 2.65 94.70 8.52 35.80 31.63

Table 7. Emotion Classification Accuracy for
EmoNextBase[13]: We report the FER image-based classi-
fication results for the appearance reconstructions. Please note
that the model has never predicted disgust for any image.

Angry Disgusted Fearful Happy Sad Surprised Average

Upper Limit (N) 21.53 0.00 11.46 78.75 69.10 1.74 30.43
Lower Limit (S) 16.86 0.00 5.49 71.97 22.35 0.19 19.48

DECA 0.19 0.00 0.19 0.38 5.30 3.98 1.67
EMOCAv2 63.69 0.00 10.06 18.08 31.28 52.51 29.27
SMIRK 38.83 0.00 2.65 45.45 24.81 25.57 22.89
Deep3DFace 0.99 0.00 1.99 40.40 20.65 48.14 18.69
FOCUS 1.81 0.00 0.52 31.43 1.30 40.93 12.67
MCGAN 51.42 0.00 2.85 69.11 14.84 12.20 25.07

EIFER 61.74 0.00 1.70 72.54 10.04 15.72 26.96

Table 8. Emotion Classification Accuracy for
SegmentationVGG19[46]: We report the FER image-based
classification results for the appearance reconstructions. While
SegmentationVGG19 performs well on the benchmark datasets,
the application to our unseen data results in strong performance
degradation.
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EIFER shows improved alignment, there is still room for
improvement.

Figure 37. Landmark Prediction under sEMG occlusion: We
see that EIFER can be used to predict the 2D facial landmarks
under occlusion, whereas existing methods [23, 29] produce inac-
curate predictions.

F. Extended Limitations Discussion

Facial Action Coding System: EIFER presents a novel
data-driven approach for estimating muscle signals from fa-
cial expressions using electromyography. Comparing this
paradigm to traditional methods, such as the Facial Action
Coding System (FACS) [12], is an open research direction
that we leave for future work. Existing FACS regression
methods do work on our occluded images. Instead, we rely
on MC-CycleGAN recordings [2, 3] to make a fair com-
parison. However, as shown in Section E.1, the appearance

reconstructions of these models differ from occlusion-free
reference recordings. Further research is necessary to en-
sure the suitability of our dataset for a comprehensive com-
parison study.
Generalization: Our results’ generalizability is uncertain
due to the limited sample size (N = 36). Additionally,
our cohort is based in Germany, which may introduce cul-
tural biases that could impact the results when applied to
other populations. We tested a wide range of standardized
facial expressions [11, 48], but participants did not perform
them voluntarily. This may affect the generalizability of
spontaneous facial expressions, which might exhibit differ-
ent muscle activity patterns. However, our results still cap-
tured facial mimicry and muscle activity, suggesting that the
learned correspondence remains valid. Our study only in-
cludes healthy participants without pre-existing neurologi-
cal diseases affecting the facial nerve. Therefore, conditions
like facial palsy or Parkinson’s disease may impact the pre-
dictions. EIFER may not address facial asymmetry typical
in facial palsy, as it may have learned a symmetry bias from
our data [4, 5]. Furthermore, our models might not recover
synkinetic effects (involuntary movements on the contralat-
eral face side). To address this, we currently record patients
with unilateral synkinetic chronic facial palsy to validate
our approach for medical use cases.
Data Availability: Our dataset was recorded in Germany
as part of a medical study, subject to strict data privacy reg-
ulations. Due to these regulations, we are restricted in shar-
ing participant data and faces. However, we will release
our trained models, EMG2Exp and Exp2EMG, which do
not contain person-identifiable information, ensuring com-
pliance with data protection regulations [10].
Disentanglement: Our approach relies on the disentan-
glement of shape and expression in 3D Morphable Mod-
els (3DMMs), specifically FLAME [28] and BaselFace-
Model [17, 38], as well as the face encoder’s ability to es-
tablish this correspondence [10, 49]. The behavior of other
3DMMs, such as FaceScapes [51, 52], ICT-FaceKIT [27],
or FaceWarehouse [6], is unclear and requires further inves-
tigation. A necessary condition for exploring these mod-
els is the availability of well-pre-trained encoder models.
Without these, the correspondence between facial expres-
sions and muscle activity might not be learnable.
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[Sup5] Tim Büchner, Niklas Penzel, Orlando Guntinas-
Lichius, and Joachim Denzler. The power of properties:
Uncovering the influential factors in emotion classifica-
tion. arXiv preprint arXiv:2404.07867, 2024.

[Sup6] Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and
Kun Zhou. FaceWarehouse: A 3D Facial Expression
Database for Visual Computing. IEEE Transactions on
Visualization and Computer Graphics, 20(3):413–425,
2014.

[Sup7] Radek Danecek, Michael J Black, and Timo Bolkart.
EMOCA: Emotion Driven Monocular Face Capture
and Animation. CVPR, page 12, 2022. 21

[Sup8] Yu Deng, Jiaolong Yang, Sicheng Xu, Dong Chen,
Yunde Jia, and Xin Tong. Accurate 3d face recon-
struction with weakly-supervised learning: From single
image to image set. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition
workshops, pages 0–0, 2019.

[Sup9] Bernhard Egger, William A. P. Smith, Ayush Tewari,
Stefanie Wuhrer, Michael Zollhoefer, Thabo Beeler,
Florian Bernard, Timo Bolkart, Adam Kortylewski,
Sami Romdhani, Christian Theobalt, Volker Blanz,
and Thomas Vetter. 3D Morphable Face Models-Past,
Present, and Future. ACM Transactions on Graphics,
39(5):157:1–157:38, 2020.

[Sup10] Bernhard Egger, Skylar Sutherland, Safa C Medin, and
Joshua Tenenbaum. Identity-expression ambiguity in
3d morphable face models, 2021.

[Sup11] Paul Ekman. An argument for basic emotions. Cogni-
tion & emotion, 6(3-4):169–200, 1992.

[Sup12] Paul Ekman and W Friesen. Facial Action Coding
System: A Technique for the Measurement of Facial
Movement. Palo Alto: Consulting Psychologists Press,
1978.

[Sup13] Yassine El Boudouri and Amine Bohi. EmoNeXt: An
Adapted ConvNeXt for Facial Emotion Recognition. In
2023 IEEE 25th International Workshop on Multimedia
Signal Processing (MMSP), pages 1–6, 2023.

[Sup14] Yao Feng, Haiwen Feng, Michael J. Black, and Timo
Bolkart. Learning an animatable detailed 3D face
model from in-the-wild images. ACM Transactions on
Graphics, 40(4):1–13, 2021. 21

[Sup15] Alan J. Fridlund and John T. Cacioppo. Guidelines for
human electromyographic research. Psychophysiology,
23(5):567–589, 1986.

[Sup16] Paul F. Funk, Bara Levit, Chen Bar-Haim, Dvir Ben-
Dov, Gerd Fabian Volk, Roland Grassme, Christoph
Anders, Orlando Guntinas-Lichius, and Yael Hanein.
Wireless high-resolution surface facial electromyogra-
phy mask for discrimination of standardized facial ex-
pressions in healthy adults. Scientific Reports, 14(1):
19317, 2024.

[Sup17] Thomas Gerig, Andreas Morel-Forster, Clemens
Blumer, Bernhard Egger, Marcel Luthi, Sandro Schoen-
born, and Thomas Vetter. Morphable face models - an
open framework. In 2018 13th IEEE International Con-
ference on Automatic Face & Gesture Recognition (FG
2018), pages 75–82, 2018. 21

[Sup18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial
nets. Advances in neural information processing sys-
tems, 27, 2014.

[Sup19] Orlando Guntinas-Lichius, Vanessa Trentzsch, Nadiya
Mueller, Martin Heinrich, Anna-Maria Kuttenreich,
Christian Dobel, Gerd Fabian Volk, Roland Graßme,
and Christoph Anders. High-resolution surface elec-
tromyographic activities of facial muscles during the
six basic emotional expressions in healthy adults: A
prospective observational study. Scientific Reports, 13
(1):19214, 2023.

[Sup20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[Sup21] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional ad-
versarial networks. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
1125–1134, 2017.

[Sup22] Zhanghan Ke, Jiayu Sun, Kaican Li, Qiong Yan, and
Rynson W.H. Lau. Modnet: Real-time trimap-free por-
trait matting via objective decomposition. In AAAI,
2022.

[Sup23] Davis E. King. Dlib-ml: A machine learning toolkit.
Journal of Machine Learning Research, 10:1755–1758,
2009.

[Sup24] Diederik P. Kingma and Jimmy Ba. Adam: A Method
for Stochastic Optimization, 2017.

[Sup25] Eriko Kuramoto, Saori Yoshinaga, Hiroyuki Nakao,
Seiji Nemoto, and Yasushi Ishida. Characteristics of fa-
cial muscle activity during voluntary facial expressions:

39



Imaging analysis of facial expressions based on myo-
genic potential data. Neuropsychopharmacology Re-
ports, 39(3):183–193, 2019.

[Sup26] Chunlu Li, Andreas Morel-Forster, Thomas Vet-
ter, Bernhard Egger, and Adam Kortylewski. Ro-
bust model-based face reconstruction through weakly-
supervised outlier segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 372–381, 2023.

[Sup27] Ruilong Li, Karl Bladin, Yajie Zhao, Chinmay Chinara,
Owen Ingraham, Pengda Xiang, Xinglei Ren, Pratusha
Prasad, Bipin Kishore, Jun Xing, et al. Learning forma-
tion of physically-based face attributes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3410–3419, 2020.

[Sup28] Tianye Li, Timo Bolkart, Michael J. Black, Hao Li,
and Javier Romero. Learning a model of facial shape
and expression from 4D scans. ACM Transactions on
Graphics, 36(6):1–17, 2017. 21

[Sup29] Yaojie Liu, Amin Jourabloo, William Ren, and Xiaom-
ing Liu. Dense face alignment, 2017.

[Sup30] Ilya Loshchilov and Frank Hutter. Decoupled Weight
Decay Regularization, 2019.

[Sup31] Pham Luan, Vu Huynh, and Tran Tuan Anh. Fa-
cial expression recognition using residual masking net-
work. In IEEE 25th International Conference on Pat-
tern Recognition, pages 4513–4519, 2020.

[Sup32] Jiawei Mao, Rui Xu, Xuesong Yin, Yuanqi Chang, Bin-
ling Nie, Aibin Huang, and Yigang Wang. Poster++: A
simpler and stronger facial expression recognition net-
work. Pattern Recognition, page 110951, 2024.

[Sup33] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau,
Zhen Wang, and Stephen Paul Smolley. Least squares
generative adversarial networks, 2017.

[Sup34] Warren S. McCulloch and Walter Pitts. A logical calcu-
lus of the ideas immanent in nervous activity. The bul-
letin of mathematical biophysics, 5(4):115–133, 1943.

[Sup35] Ali Mollahosseini, Behzad Hasani, and Mohammad H.
Mahoor. Affectnet: A database for facial expres-
sion, valence, and arousal computing in the wild.
IEEE Transactions on Affective Computing, 10(1):18–
31, 2019.

[Sup36] Nadiya Mueller, Vanessa Trentzsch, Roland Grassme,
Orlando Guntinas-Lichius, Gerd Fabian Volk, and
Christoph Anders. High-resolution surface electromyo-
graphic activities of facial muscles during mimic move-
ments in healthy adults: A prospective observational
study. Frontiers in Human Neuroscience, 16:1029415,
2022.

[Sup37] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In Ad-

vances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[Sup38] Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami
Romdhani, and Thomas Vetter. A 3D Face Model
for Pose and Illumination Invariant Face Recognition.
In 2009 Sixth IEEE International Conference on Ad-
vanced Video and Signal Based Surveillance, pages
296–301, Genova, Italy, 2009. IEEE. 21

[Sup39] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Geor-
gia Gkioxari. Accelerating 3d deep learning with py-
torch3d. arXiv:2007.08501, 2020.

[Sup40] George Retsinas, Panagiotis P Filntisis, Radek
Danecek, Victoria F Abrevaya, Anastasios Roussos,
Timo Bolkart, and Petros Maragos. 3d facial expres-
sions through analysis-by-neural-synthesis, 2024.

[Sup41] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-net: Convolutional networks for biomedical im-
age segmentation. In Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October
5-9, 2015, Proceedings, Part III 18, pages 234–241.
Springer, 2015.

[Sup42] Jiaxiang Shang, Tianwei Shen, Shiwei Li, Lei
Zhou, Mingmin Zhen, Tian Fang, and Long Quan.
Self-supervised monocular 3d face reconstruction by
occlusion-aware multi-view geometry consistency. In
European Conference on Computer Vision, pages 53–
70. Springer, 2020.

[Sup43] Katharina Steiner, Marius Arnz, Gerd Fabian Volk, and
Orlando Guntinas-Lichius. Electro-stimulation system
with artificial-intelligence-based auricular-triggered al-
gorithm to support facial movements in peripheral fa-
cial palsy: A simulation pilot study. Diagnostics, 14
(19):2158, 2024.

[Sup44] Vanessa Trentzsch, Nadiya Mueller, Martin Heinrich,
Anna-Maria Kuttenreich, Orlando Guntinas-Lichius,
Gerd Fabian Volk, and Christoph Anders. Test-retest
reliability of high-resolution surface electromyographic
activities of facial muscles during facial expressions
in healthy adults: A prospective observational study.
Frontiers in Human Neuroscience, 17:1126336, 2023.

[Sup45] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lem-
pitsky. Instance normalization: The missing ingredient
for fast stylization. ArXiv, abs/1607.08022, 2016.

[Sup46] S. Vignesh, M. Savithadevi, M. Sridevi, and Rajeswari
Sridhar. A novel facial emotion recognition model us-
ing segmentation VGG-19 architecture. International
Journal of Information Technology, 15(4):1777–1787,
2023.

[Sup47] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
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