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Abstract
The research on facial palsy, a unilateral palsy of the facial nerve, is a complex field with many different causes and symptoms.
Evenmodern approaches to evaluate the facial palsy state rely mainly on stills and 2D videos of the face and rarely on dynamic
3D information. Many of these analysis and visualization methods require manual intervention, which is time-consuming and
error-prone. Moreover, they often depend on alignment algorithms or Euclidean measurements and consider only static facial
expressions. Volumetric changes by muscle movement are essential for facial palsy analysis but require manual extraction.
We propose to extract an estimated unilateral volumetric description for dynamic expressions from 3D scans. Accurate
landmark positioning is required for processing the unstructured facial scans. In our case, it is attained via a multi-view
method compatible with any existing 2D predictors. We analyze prediction stability and robustness against head rotation
during video sequences. Further, we investigate volume changes in static and dynamic facial expressions for 34 patients with
unilateral facial palsy and visualize volumetric disparities on the face surface. In a case study, we observe a decrease in the
volumetric difference between the face sides during happy expressions at the beginning (13.8 ± 10.0 mm3) and end (12.8
± 10.3 mm3) of a ten-day biofeedback therapy. The neutral face kept a consistent volume range of 11.8−12.1 mm3. The
reduced volumetric difference after therapy indicates less facial asymmetry during movement, which can be used to monitor
and guide treatment decisions. Our approach minimizes human intervention, simplifying the clinical routine and interaction
with 3D scans to provide a more comprehensive analysis of facial palsy.
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1 Introduction

Advancements in imaging techniques provide novel insights
across various disciplines, particularly medicine. Especially
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in the area of facial palsy, a unilateral palsy of the facial
nerve [1–7], 3D scans offer new capabilities to analyze the
treatment progress [4, 8, 9]. The limited scope of 2D images
cannot capture the palsy’s full extent, such as the depth of
the nasolabial fold or the volume differences between the
two sides of the face. We think, that 3D models could bridge
this gap [1, 9]. Obtaining volumetric information can be an
indicator for facial changes [8, 10]. In reality, facial muscle
contractions lead to 3D volume shifts of facial soft tissues,
i.e., the muscle, fat tissue, and overlying skin. Movement is
the primary driver of volumetric changes. Hence, static anal-
ysis alone is insufficient to capture the full complexity of
facial palsy. In our work, we analyze the static state of the
face in combination with the dynamic properties of neutral
and happy expressions during volume changes. Our method
is also applicable to other dynamic expressions, such as the
six base emotions or the functionalmovements for evaluating
facial palsy [1, 11]. Including dynamic facial surface infor-
mation is crucial to bridging the gap between mimics and
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muscles. All of this together is highly relevant to describe
the two halves of the face objectively and holistically in
psychophysical experiments, especially in diagnosing facial
muscle diseases. Unilateral facial palsy, i.e., a facial nerve
disease with disturbed facial muscle function, is character-
ized by facial asymmetry. Themethodpresented shouldmake
it possible to accurately describe changes during therapy
or take targeted therapeutic measures based on volumetric
changes.

Many methods for processing 3D facial data involve
human interaction [9, 12]. It makes them time-consuming
and prone to errors. Automatic approaches, such as 3D-
morphable models [13–18], are not suitable for facial palsy
patients, because their underlying templates have been
trained predominantly on healthy faces. To avoid template-
based limitations and errors in the fitting process, we leverage
radial curves along the scan surface [8, 19–22]. These curves
are computed on the original scan surface and provide accu-
rate facial descriptions.Ourworkutilizes the radial properties
to estimate lateral facial volumes and to visualize dispari-
ties between the facial sides. Consequently, the highlighted
regions can support medical professionals in providing indi-
vidualized treatment plans.

First, we provide amethod to reliably place 3D facial land-
marks for patients with facial palsy and reduce the runtime of
exiting multi-viewmethods by 96.6% [22, 23]. Furthermore,
we generalize the processing pipeline, enabling integration
with any existing 2D landmark extraction technique to avoid
dependency on specific predictors.We analyze the stability of
landmark placement and assess the robustness against head
rotation estimation during video sequences.

Starting at the nose tip, we extract radial curves from the
3D scan to obtain a dense facial description [8, 19–21]. These
curves offer a detailed and structured description of the scan
surface for lateral comparisons. We emphasize disparities
in facial volume during static moments by projecting the
curves onto the face and visualizing the asymmetries between
the facial sides for neutral and happy expressions. Finally,
we track and visualize them during dynamic expressions to
combine volumetric changes associatedwith possiblemuscle
contractions. From a single 3D facial scan acquired during
routine clinical practice, we generate volumetric disparity
maps, enabling medical experts to assess patient changes
acrossmultiple visits tomonitor disease progression or assess
treatment efficacy. This non-invasive approach allows for
safe and repeated monitoring of patients with a standardized
capture setup. Our approach minimizes human intervention
during analysis, is fully automatic after parameter selection
and is available as open-source software.1

1 https://github.com/cvjena/corc and https://github.com/cvjena/mvlm.

2 Related work

Existing automated methods for assessing facial palsy [4, 6,
7, 24–28] rely on 2D images, either by using landmarks [2,
29, 30] or neural networks [2, 24, 31, 32] to estimate state
of the nerve damage. Most often, they attempt to replicate
existing gradingmethods such as Sunnybrook [33] or House-
Brackmann [3].However,many critical facial features cannot
be captured by 2D images alone, such as the depth of the face
or the volume differences between the two sides. Muscle
activity is the cause of any facial change. Thus, the use of
2D images alone is insufficient to interpret these changes. It
requires a combination with electromyography [11, 34–37].
We aim first to facilitate detailed analysis and visualization
of the facial palsy state based on 3D scans. After that, we
enhance it with electromyography data.

Automated facial palsy grading

Recent studies have explored the use ofmachine learning and
deep learning methods for 2D facial palsy grading [4, 6, 7,
24–28, 38], which have shown promising results in terms of
accuracy and efficiency [2, 24, 29–32, 39–42]. Most often,
they attempt to replicate existing grading [31, 33, 41, 43–
45] or attempt to utilize other facial features to estimate the
patient health state [29, 46–48]. Onemain advantage of these
approaches is their ability to analyze 2D facial images, which
are widely available and easily accessible, making them a
cost-effective solution for facial palsy diagnosis.

However, such machine learning methods also have some
limitations. For example, if not fully represented in the
training data, they may not capture the full range of facial
expressions and movements, which can be necessary for
accurate diagnosis. Furthermore, 2D methods may be more
susceptible to errors due to variations in image quality
and resolution or lighting and pose changes. Furthermore,
black-box models often resort back to shortcut learning by
leveraging biases in the dataset resulting in worse perfor-
mance applied to new data [49–56]. For example, a model
trained on data from a single hospital may not generalizewell
to data from other hospitals or may be biased toward certain
patient demographics [55, 57].

As 2D images cannot capture facial depth information, we
leverage 3D facial scans to understand facial asymmetry due
to the underlying volumetric differences.

3D facial landmarking

The most common approach to integrate 3D information
into facial palsy analysis is to extract 3D landmarks from
the scan. Hence, existing 2D grading systems could be
adopted [4]. However, existing 2D landmark positioning
methods frequently fail for facial palsy patients due to
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asymmetry in facial features. This issue gets even worse
during facial expressions. Consequently, manual interven-
tion is often required [9, 12]. Nevertheless, landmarks remain
the fundamental component for subsequent analyses as they
inject semantic information into the unstructured 3D point
cloud or scan [8, 13, 16, 22]. A universal and stable method
for 3D landmark extraction, adaptable to patients with facial
palsy, is required.

Reliable placement of 3D landmarks based on 2D images
necessitates camera parameters [4, 8]. Alternatively, given
only a 3D scan, simulated camera views enable multi-view-
based landmark prediction [22, 23]. This latter method is
more adaptable and applicable to any facial 3D scan. Our
work further refines the technique to enhance its generality
and compatibility with any existing 2D landmark extraction
method.

3Dmorphable models

Since 3D landmarks provide a sparse representation that fails
to capture the full complexity of facial anatomy, a more
detailed description is imperative to obtain an accurate facial
characterization. 3DMorphableModels (3DMMs) represent
a prevalent method for describing 3D facial scans [13–18,
58]. They utilize a learned template that encompasses a shape
and expression space to characterize the face. During the
template fitting process, 3D landmarks are critical for defin-
ing the rigid transformation regarding alignment and scaling
[13, 14]. Therefore, reliable landmark placement is essen-
tial for fitting, particularly for facial palsy patients. Adapting
3DMMs for facial palsy patients is challenging, because the
underlying templates are trained predominantly on healthy
faces [13, 17, 59]. Depending on the expressiveness of the
shape and expression space of the 3DMM, the fitting process
might eliminate detailed information on the face surface to
achieve a more overall fit [13]. Especially in [13], the expres-
sion space is learned via PCA [60] and changes of both face
sides are included in a single expression space vector. Other
works such as [17] separate the expression space into two
distinct spaces for each face side but still inherently rely on
using symmetric information during the fitting process. The
current research comprehensively describes the face surface
and creates highly detailed facial models. However, adapting
3DMMs directly to facial palsy patients is challenging and
requires further research.

Consequently, we refrain from using 3DMMs for lateral
comparisons, trading semantic knowledge for a more com-
prehensive description of the face surface. Current methods
for tracking volume changes in themid and lower face rely on
sparse features [10]. Their findings indicate that subtle facial
expressions lead to measurable volume changes, which we
aim to capture using a dense representation.

Radical curves

Some 3D palsy assessment methods require manual inter-
action [9, 12, 61, 62], while others attempt automation [8,
20, 22] but focus only on face surface analysis. Utilizing
radial curves [8, 21] shows potential for detailed anatomical
descriptions. Initially aligned using landmarks, the curves
remain on the original face scan surface, retaining their
features and overcoming template-based limitations. Radial
properties enable structured face surface descriptions to be
divided into distinct regions. Existing facial palsy approaches
demonstrated this [8, 22]. Nonetheless, the one-to-one map-
ping between curve points eliminates the influence of each
side on the other. We overcome limitations by generating lat-
eral face meshes using radial curves and revealing volume
disparities between both facial sides. Our fully automatic
approach minimizes human intervention, simplifying the
clinical routine and interaction with 3D scans while provid-
ing a more comprehensive analysis of facial palsy.

3 Data acquisition

We investigate volumetric changes in patients with facial
palsy. Facial muscle contractions lead to 3D volume shifts of
facial soft tissues, i.e., the muscle, fat tissue, and overlying
skin [10]. Given that the intricate network of facial mus-
cle activation is the principal driver of volumetric changes
[11], our focus is beyond static captures but includes dynamic
facial expressions. We used the 3dMD face system (3dMD
LCC, Georgia, USA) to capture these movement exercises,
which generates a 3D facial mesh using multiple 2D images
and infrared structured light. This setup ensures that themesh
faces towards the z-axis, and the face remains close to the
coordinate system’s center. The patients follow an instruc-
tion video. They are asked to maintain a neutral expression
for three seconds, followed by 3.5 seconds of mimicking a
shown happy expression. The recorded video is six seconds
long, and the 3D scans are captured at 30 frames per second.
We obtained 210 individual 3D face meshes per recording
in the wavefront (.obj) data format. Each patient repeats the
movement four times based on the images shown to capture
varieties of muscle activation and ensure reproducibility.

We recorded 34 patients (age: 25–72; 27 female, seven
male) suffering from postparalytic facial syndrome at their
ten-day bio-feedback treatment’s beginning and end with
the above-described recording setup [63]. Therefore, our
dataset consists of 272 video recordings of patients doing
a dynamic expression going from natural to happy. Our
data contains only patients with unilateral chronic synkinetic
facial palsy with symptoms persisting for over six months. A
common symptom of flaccid facial palsy is muscle atrophy.
The affected side has a lower volume than the healthy side
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[1]. Volume changes are expected due to the imbalance on the
affected and the contralateral side in the synkinetic patients.
For our visualizations, we will focus on six patients2, with
different palsy severities, to demonstrate the capabilities of
ourmethod.All remaining results for this case study are given
for our complete patient cohort.

4 Methods

Our goal is to achieve a fully automatic analysis of volu-
metric changes caused by facial tissue shifts during muscle
contractions. Furthermore, wewant to visualize the local vol-
umetric differences between the face sides. First, we extract
3D landmarks from the 3D scan by adapting existing meth-
ods to patients with facial palsy [22, 23]. We generalized the
multi-view landmarking approach to enhance compatibility
with any pre-existing 2D landmark extraction technique for
corresponding 3D landmark acquisition. Our method works
with static and dynamic expressions without fine-tuning the
feature extractors on our dataset.

To overcome the sparse nature of 3D landmarks, we
extract radial curves from the 3D scan using these landmarks
to obtain a dense facial representation [8, 22]. We construct
a volume-based characterization of the facial sides utilizing
the radial curves, see Fig. 3.

Lastly, we employ the lateral properties (side-by-side divi-
sion) of radial curves to produce a disparity heatmap and
compare it to the volumetric results. We aim to compre-
hensively analyze a cohort of patients with minimal human
intervention, including static moments and dynamic move-
ments. Our method can also be applied to point clouds
because it exclusively utilizes the vertices of the 3D mesh.

4.1 Scan preprocessing: multi-view landmark
extraction

A structured semantic representation of 3D facial features
via landmarks is crucial for many processing steps to inter-
act with an unstructured 3D point cloud or scan. These steps
include the fitting of 3D Morphable Models [13, 14, 16–18]
or head rotation estimation for radial curves [8, 19, 20, 22].
A standard approach involves using 3D landmarks estimated
from 2D images using known intrinsic and extrinsic cam-
era parameters or directly extracted from the 3D scan. The
latter approach, requiring only the 3D scans, offers greater
flexibility and broader applicability, especially when camera
parameters are unknown. Head rotations, occlusions, move-
ments, and facial palsy symptoms also contribute to landmark

2 All shown individuals agreed to have their images published in terms
with the GDPR.

Fig. 1 Camera locations to approximate 3D landmarks: The camera
positions are on a sphere around the original scan to generate lateral
views [22, 23]. Patient with unilateral facial palsy on the right side of
the face (left side of the image)

placement. Hence, a reliable and adaptable method for 3D
landmark extraction is essential.

We opt for a multi-view 3D landmark extraction method
based on [22, 23], which needs no knowledge about the 3D
scan parameters. In previous work [23], Paulsen et al. utilize
numerous simulated virtual camera views (n = 96) encir-
cling the face to capture all possible nuances. The camera
locations are randomly sampled on a half-sphere in front of
the face with the same distance to the face center. Further-
more, the authors employ RGB and depth images as inputs
for a custom-trained convolutional neural network to predict
potential landmark locations through generated heatmaps.
They designate the heatmaps’ maximal value as the pre-
dicted landmark location. With the known virtual camera
parameters andpredicted2D landmarks, the authors calculate
the potential intersections of the camera rays and predicted
landmarks to estimate the 3D landmark positions. Owing
to the high number of cameras and the potential for erro-
neous predictions due to occlusion, RANSAC was used to
identify the most reliable landmark from the line intersec-
tions. The authors accommodate two distinct landmark sets:
the BU-3DFE [59] (84 landmarks) and the DTU3D [64] (73
landmarks) schemes.

Implementation details

The original implementation takes 30s to extract the land-
marks for one single scan on an Nvidia GeForce RTX 3070
[22, 23]. Hence, processing a six-second video (at 30 frames
per second) would take around 5400s (90min). To pro-
mote use in clinical practice, we adapt their methodological
approach, focusing on improvements in speed and gener-
ality. As shown in [22], we achieve suitable landmarks with
only eight fixed camera locations. Our fixed camera locations
are: yaw angles of −40, −20, 20, and 40 degrees and pitch
angles of −30 and 30 degrees. Employing lateral views of
the face, as illustrated in Fig. 1, reduces potential symmetry
biases in the prediction models [5]. Since patients frequently
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Fig. 2 The figure shows the predicted facial landmarks of each land-
mark extraction technique (blue dots). The facial palsy patient shows
asymmetry during the happy expression in the eye contour, nose tip,

and mouth region. The visualization is normalized such that the palsy
side is on the left side of the face (right side of the image) (colour figure
online)

exhibit unilateral palsy where only one side of the face is
affected, we analyze each side independently. By limiting
rendering calls to two per camera view, one for RGB and
one for depth, we achieve considerable improvements in pro-
cessing speed. Additionally, we eliminate rendering pipeline
overhead, minimize superfluous memory access, and reduce
duplicate I/O operations and cache misses. We have substan-
tially decreased the computation time for a single surface
scan to one second. The processing time is reduced to 180s
for a six-second video.

Generalization and integration

We have also expanded the method’s versatility, allowing it
to be compatible with any pre-existing 2D landmark extrac-
tion technique. The original method relies on the maximal
heatmap value location as the predicted landmark aligns with
a generic approach to 2D landmark extraction. Consequently,
we can divide the workflow into generalized discrete steps:
multi-view rendering, 2D prediction, and 3D landmark esti-
mation. Only the 2D prediction step is specific to the chosen
predictor, and the other steps are independent of the predic-
tor. Adopting this strategy, we have natively integrated five
different extractors for landmark estimation [15, 22, 23, 65,
66], though our pipeline readily accommodates the integra-
tion of additional predictors. Figure2 presents the predicted
facial landmarks for each of the five 2D landmark extraction
techniques. We evaluate the stability of landmark placement,
especially for the nose tip, eye contour, and mouth region, by
assessing their robustness regarding head rotations over the
video sequence.

Our generalized approach offers enhanced flexibility and
is designed so that its integration has no adverse effects
on runtime performance, dependent only on the predictor’s
speed. Consequently, themethod can be adapted to any facial
3D scan and integrated with existing 2D landmark extraction
techniques with minimal effort, requiring no additional fine-
tuning.

Fig. 3 We highlight the extracted landmarks (a) and the resulting radial
curves � (b) on the face scan of a patient with facial palsy. In (c), the
curves �left describe the left (blue) and right �right (red) sides of the
face [22] (colour figure online)

4.2 Volume feature extraction: facial description via
radial curves

In amatrixX ∈ R
k×3 with k points, either a point cloud or the

vertices of a mesh, radial curves are a structured description
of the scanned surface [8, 19–22]. Radial curves, emitting
from a common start point and limited by amaximal distance
r to the start point, are surface descriptors defined by a tensor
� ∈ R

n×m×3 with n curves consisting of m curve points. In
the case of faces, the nose tip is the start point, and the chin
limits the distance [8, 19, 20], as depicted in Fig. 3.

To extract the curve group �, alignment is crucial to
compare facial regions later. Thus, we normalize X with
X̄ = (X − T ) · R−1

H . Hence, we use the estimated 3D land-
marks on the scan to obtain the orientation and position of
the face. The translation vector T ∈ R

3 is the nose tip, and
RH ∈ R

3×3 is the head pose obtained from the eye and
mouth landmarks [67]. If the 3D landmarks are misaligned,
the estimated head rotation matrix and the radial curves may
be skewed. Nonetheless, if misalignment remains consistent
throughout a video sequence, volume differences can still be
estimated, as the misalignment constantly affects both sides
of the face. In our experimental evaluation, we will assess
the stability of the head rotation estimation and its influence
on the radial curves.
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Given the normalized scan X̄ , each radial curve γα resides
on a plane pα , defined by normal dnα and vector along it dα ,
rotated through the nose tip with an angle α = 360◦

n . For
lateral descriptions, n has to be an even number and greater
equals than four [8, 20]. All points in X̄ that lie around the
plane pα with maximal distance δ are selected [8, 20]:

Sα =
{
xi ∈ X̄

∣∣∣|xTi dnα | < δ ∧ xTi · dα > 0
}

. (1)

With the 3dMDcamera system (3dMDLCC,Georgia, USA),
we empirically set δ = 0.8 mm to ensure a dense point set
Sα . Other sensorsmight require different values.A temporary
projection of Sα onto the plane pα simplifies ordering and
fitting, as seen in Fig. 4a.We sort the points by distance to the
nose tip [20] and afterward for a correct surface description
with a graph traversal algorithm [8]. A 2D spline approxi-
mates the curve γα in the ordered points S̄α . We equidistantly
sample m point between the nose tip and the most distant
point, shown in Fig. 4d. Lastly, we project the spline points
back into the original 3D coordinate system. After comput-
ing all n curves, we obtain �. Aligning the curve tensor to
the scan is only necessary for visualization and is done with
� := � · RH + T , as seen in Fig. 3. The curve tensor �

forms the foundation for generating lateral face meshes and
estimating volume. In previous studies, we have utilized cur-
vature measurements along individual curves, denoted as γα ,
to predict the severity of facial palsy [8, 20].

Lateral face mesh generation

The tensor � represents a structured face surface. The point-
wise difference between the lateral curve pairs (γα and
γ360−α) computes asymmetry [8]. However, this approach
neglects the overall state of each face, especially volume
information, which is measurable even for small movements
[10]. We overcome this limitation by estimating unilateral
facial volume using a watertight mesh of �. A watertight
mesh is a 2-manifold mesh [68], where every edge is part of
precisely two faces [69]. Despite receiving a mesh surface,
we create a new volumetric mesh to ensure watertight prop-
erties and support point cloud scanners. As we already have a
face surface descriptor �, we do need general surface recon-
struction algorithms [65, 70]. The left tensor �left includes
all curves γα with α ∈ [0, 180] and the right tensor �right all
curves γα with α ∈ [180, 360]. Please note that curve γ0 and
γ360 are identical, and the views are from the patient’s point
of view.

�left and �right construct the closed lateral face surfaces
Mleft and Mright, as seen in Fig. 4g. The borders of Mleft

and Mright are connected with an underlying sphere mesh,
as seen in Fig. 5b, and a side mesh along the vertical face
center, as seen in Fig. 5c. All steps are watertight, and we

apply the combined mesh for the volume approximations.
A tetrahedron volume can be computed using each triangle,
with the origin as the fourth point.Weobtain a correct volume
by ensuring the triangle winding order is counter-clockwise
[69].

Radial curve mesh generation

The generation algorithm is based on the radial curves ten-
sor �left and �right, see Fig. 4e. As each curve γ lies on the
face’s scan surface, the generated mesh also represents the
face surface, see Fig. 4g. The degree of detail is adjustable
by the number of points m and the number of curves n.
Each curve starts at the same point p0, which is the nose
tip of the face. The equidistantly sampled points ensure that
points between adjacent curves describe similar perimeter
locations. Between two adjacent curves γαi and γαi+1 , we
create a triangulation pattern shown in Fig. 4f. The triangula-
tionM includes all points, and the mesh is without holes and
watertight. Our approach relies only on the extracted radial
curve tensors �left and �right without any hyperparameters.
The outer edges ofMleft andMright connect to the underly-
ing sphere and side meshes, linking every edge precisely to
two faces.

Underlying sphere mesh

Several approaches are possible to close the volumebelow the
face mesh to enable volume calculations. First, we require a
south pole point S as a reference point. We use the endpoint
E1 of the curve γ180 and the endpoint E2 of the curve γ0
as orientation. Additionally, we use the nose tip C as a third
reference point, shown in Fig. 5a. S is the perpendicular inter-
section of the centerline and the line connecting E1 and E2
with the distance r , the same value as for the radial curve
extraction, to C . The case of E1, E2, and C being co-linear
cannot occur since these points reference anatomical facial
structures andwould otherwise indicate a severe facial defor-
mity or a severe error during previous extraction steps. We
could use the south pole point S and the boundary points of
the face to form simple triangles. However, different facial
shapes (e.g., a deep eye socket or mouth being open) will
lead to self-intersections [69]. A spherical approach prevents
trivial self-intersections. They are theoretically possible but
unlikely in practice, as the sphere is convex, and the headwill
fit inside the sphere. For each radial curve γα , we calculate the
arc on the corresponding sphere using the corresponding end-
point and S, ensuring alignment with the outer edges of the
surface mesh. We triangulate sphere segments like the facial
mesh, as depicted in Fig. 5b. Consequently, the underlying
sphere is closed and directly connected to the scan surface
mesh.
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Fig. 4 We visualize each curve extraction process step and the resulting triangulation Mright of the right facial surface scan. The color coding of
Sα , S̄α , and the γα indicate the order of the points. Details are found in the text [22]

Fig. 5 The side mesh (b) fills the gap between the facial and underly-
ing sphere mesh (a). The inner edges of the radial curves (a) serve as
orientation [22]

Face side mesh

The final component is the face side, closing the facial and
sphere mesh gap. A triangulation scheme as in Fig. 4f is not

feasible due to the different point densities. However, we can
use a constrained Delaunay triangulation to fill the gap [71,
72]. We use the curves γ0 and γ180 of the curve tensor � and
sphere meshes boundary edges to constrain the triangulation,
as depicted in Fig. 5a. The face side mesh is useable for both
the left and right sides of the face. This operation guarantees
a watertight mesh, as the boundary edges constrain the trian-
gulation. Therefore, we obtain three watertight meshes: the
facial meshMleft andMright, the underlying sphere- and the
face side mesh.

Volume estimation for lateral face sides

We create a 2-manifold mesh from the radial curve tensor
�left and �right, as described in Sect. 4.2. Please note that
self-intersections are possible but unlikely in practice. The
meshes are watertight and closed, allowing us to estimate the
patient’s lateral face volume; examples are shown in Fig. 10.
Summingup the signed tetrahedrons’ volumesyields the total
volume of the mesh [69]:

V =
n∑

i=1

1

6
· (p(1)

i × p(2)
i · p(3)

i ), (2)

where p(1)
i , p(2)

i and p(3)
i are the vertices of the triangle i . The

× operator denotes the cross product. We assume all tetra-
hedrons share the same origin [0, 0, 0]T as a fourth point.
Overlapping tetrahedron bodies cancel each other out due
to the triangle’s counter-clockwise winding order, thus pro-
viding a correct volume estimation. As before, the degree
of detail is adjustable by the number of points m and the
number of curves n. We observed that the relative difference
among the face sides is not affected significantly. We chose
n = 64 curves and m = 64 spline points in our analysis
to balance accuracy and computation time. The calculations
are conducted in the original coordinate system, resulting in
real-world values measured in millimeters.
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Fig. 6 Both visualizations show the disparities (maximum 1 cm)
between the left and right sides of the face between the neutral and
happy expressions [22]. The visualization is normalized such that the
palsy side is on the left side of the face (right side of the image)

4.3 Interpretable heatmaps: volume difference
visualization

Volume estimation provides crucial information about
the disparities between the left and right sides of the face.
Additionally, identifying the specific locations of volumet-
ric differences can aid doctors in optimizing the treatment
of facial palsy patients. We assume the left side is the palsy
side, and the right is the healthy side. Mirroring the curve
tensor �right along the vertical centerline, defined by γ0 and
γ180, yields �̄left, which describes the left side without palsy.
As the curve tensors and face scan align, we can directly
compare the points of �left and �̄left. Due to the equidistant

spline sampling, this pointwise correspondence enables us to
indicate where the palsy and contralateral sides differ.

For a 3D visualization, we create a vector field V between
pairwise points from�left to �̄left. The vector lengthmeasures
the side disparities. As the radial curves γα lie on the face’s
surface, the vectors also originate on the surface. For the
visualization, we use a sequential colormap (Imola) without
dark shades to reduce interference with shadows introduced
by the render engine [22, 73], as depicted in Fig. 6a. We set
the upper limit of the color range to 1 cm to ensure com-
parable visualizations between the different time steps. This
visualization aids doctors in identifying the affected areas of
the palsy side.

Additionally, we project the volumetric differences onto
the facial surface, see Fig. 6b. This visualization is more intu-
itive for doctors, who can more easily identify the affected
areas without interpreting a vector field or interacting with
the 3D renderer. We use identical color mapping for the vec-
tor field visualization. The projection requires computing the
intersectionbetweenV and the facial surfacemeshMleft. The
vertex colors are then assigned to the corresponding vector
length color range value. This approach is similar to [1], indi-
cating the differences between time steps but does not require
registration of the facial surfacemeshes. For example, Fig. 6b
shows that the chin area is affected more than the cheek area.

5 Volume analysis for facial expressions

3D facial analysis relies on 3D landmarks to interact with the
unstructured 3D point cloud or scan. Therefore, we assess the
reliability of 3D landmark extraction across a video sequence
by analyzing the consistency of head rotation angles. We
observe that head rotation angle consistency is a robust indi-
cator of landmark stability, forming a reliable foundation for
subsequent volume estimation. Next, we compare the static
neutral and happy expressions of 34 patients, highlighting
the volumetric differences between the left and right sides
of their faces. The volumetric differences are compared at
the beginning and end of ten-day biofeedback therapy. This
case study allows us to check whether our proposed algo-
rithm could be used to measure therapy success objectively.
Lastly, the method’s applicability is extended by analyzing
dynamic changes occurring during single expressions.

5.1 3D landmark reliability

The primary objective is to analyze volumetric changes
during dynamic movements. Ensuring the reliability of 3D
landmarks throughout the video sequence is essential. Hence,
we assess the stability of the 3D landmarks by analyzing the
smoothness of the head rotation angles. As a first step, the
visualized landmark positions qualitatively reveal each pre-
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Fig. 7 3D landmarks for the happy expression are obtained from five
predictors across six patients. Due to their significance in computing
head rotation, we emphasize the nose tip, eye contour, and mouth land-
marks. These landmarks are accurately positioned on asymmetrical

faces without requiring manual intervention or predictor fine-tuning.
The visualization is normalized such that the palsy side is on the left
side of the face (right side of the image). (Best viewed digitally.)

dictor’s performance, as seen in Fig. 7. The nose tip, eye
contour, and mouth landmarks are emphasized, given their
significance for computing head rotation. Should these land-
marks deviate strongly from their expected positions, head
rotation estimates become unreliable, potentially introducing
bias into volume estimations.

As demonstrated in Fig. 7, the original method detailed
by [22, 23] reliably positions the landmarks at their expected
locations. Slight differences in the placement of the land-
marks are visible between the different predictors. For the
eye contour landmarks, the BU-3DFE scheme [59] and the
68 scheme of face-alignment [66] place the landmarks on the
outer eye corner. In contrast, the other extractors place land-
marks in the inner eyelid. Of all the predictors assessed, only
Dlib [74] encounters difficulty accurately fitting landmarks
around the mouth area. Mediapipe [15] demonstrates con-
sistency in landmark placement around the mouth area. This

approach is possibly attributable to the numerous landmarks
that enforce local stability.

The reliability of 3D landmarks is quantified by cal-
culating the smoothness of head rotation across different
predictors. We define smoothness as the absolute difference
between the original angle signal and a smoothed signal
obtained by applying a Gaussian kernel with σ = 5. We fol-
low [67] to compute the head rotation angles based on the 3D
landmarks. The resulting time series for yaw, pitch, and roll
angles are depicted in Fig. 8. This metric allows for the quan-
tification of landmark stability throughout the video. Stable
landmarks will yield a low deviation from the smoothed sig-
nal, approaching zero. If the angle time series deviates from
the smooth signal, the landmarks shift their position between
consecutive frames. Table 1 presents the mean and standard
deviation of rotation smoothness for each predictor across all
three rotational angles for all recorded video sequences. The
quantitative results corroborate the visual assessment, indi-
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Fig. 8 The original and smoothed rotation angles (yaw, pitch, and roll)
for the different predictors for a single patient. The original method by
[22, 23] andMediapipe [15] are the most stable among the investigated

predictors. However,Dlib [74] has the most visible noise in the rotation
angles and indicates that the landmarks are not stable throughout the
video (best viewed online.)

Table 1 The mean and standard deviation of rotation smoothness are calculated for the various predictors

BU-3DFE [23, 59] DTU3D [23, 64] Dlib [74] Face-alignment [66] Mediapipe [15]

Pitch 0.17 ± 0.04 0.26 ± 0.12 0.68 ± 0.53 0.22 ± 0.02 0.19 ± 0.03

Roll 0.22 ± 0.09 0.32 ± 0.09 0.58 ± 0.19 0.34 ± 0.03 0.25 ± 0.07

Yaw 0.14 ± 0.05 0.25 ± 0.14 0.70 ± 0.44 0.30 ± 0.05 0.17 ± 0.03

Rotation smoothness is the absolute difference between the original and smoothed angles obtained using a Gaussian kernel with σ = 5. A low
score on this measure implies that the landmark predictor provides stable landmark placement throughout the video

cating that the original method by [22, 23] and Mediapipe
[15] exhibit the smoothest performance among the investi-
gated predictors. High mean and standard deviation values
for rotation smoothness forDlib [74] confirm the prior visual
observation of incorrect placement.

Computation of volumetric differences between the lat-
eral faces builds on head rotation measurements. A typical
assumption is constant head rotation during an exercise, yet
the angle graphs in Fig. 8 exhibit a notable rotation drift
around the three-secondmark.This drift correspondswith the
moment when the patient begins to mimic the happy expres-
sion. The rotation drift is observed across all predictors,
suggesting it likely stems from the underlying estimation
algorithm [67]. The mouth landmarks contribute to head
rotation estimation; the computed pitch angle increases as
the mouth corners move upwards during expressions like
the happy expression. Nevertheless, the effect on the pitch
angle does not significantly impact the estimation of lateral

face volume since the face halves are divided based on the
roll angle. The roll angle rotation shows minor drift dur-
ing the video sequence; see Table 1. Figure8 reveals five
spikes in the roll angle occurring within all predictors, likely
attributable to blinking events. The impact of angle deviation
on volume estimation can be disregarded since the deviation
is minor (approximately 2 degrees). For most facial regions,
a 2-degree cone around the face’s center along the nose back
affects volume estimation merely as a constant factor.

This analysis affirms the reliability of the 3D landmark
extraction for the method developed by [22, 23]. More-
over, it is shown that 2D predictors utilizing a multi-view
approach are also reliable, thereby endorsing the use of 3D
landmarks in volume estimation. Although amethod for esti-
mating head rotation without relying on landmarks would be
advantageous, the current approach is reliable, and the vol-
ume estimation remains unaffected by minor drifts in head
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Fig. 9 The volumetric disparities between the left and right sides of the face are displayed for the six facial palsy patients for the secondmeasurement.
Our visualizations are normalized such that the palsy-affected side is positioned on the left (right side of the image), and the maximal difference is
1.5 cm

rotation. In subsequent experiments, theBU-3DFE landmark
scheme is utilized for the head rotation estimation [8, 23, 59].

5.2 Static facial volume analysis

Having confirmed the reliability of the 3D landmarks, we
examine the volumetric differences between the neutral and
happy expressions. Therefore, we analyze our proposed
method as an objective evaluation tool in a case study
of 34 patients undergoing a ten-day biofeedback therapy

[63]. Static frames are automatically selected at 1.5 s post-
instruction and 1.5 s before the conclusion of the happy
expression to achieve comparable results across patients.
The volumetric disparities between the lateral facial sides
are depicted in Fig. 9 for six patients, utilizing radial curves
to project the differences in volume [8, 22]. The second
measurement of the four replicates per patient is presented;
the remaining measurements are included in the appendix
(B). All visualizations are normalized to present the palsy-
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affected side on the left and set the maximum difference to
1.5 cm. We used n = 64 curves and m = 64 spline points.

The mean volumetric differences between the neutral and
happy expressions, aggregated over all four repetitions at the
beginning and end of therapy, are listed in Table 2. Although
these variations are patient-dependent, we note considerable
and observable volumetric differences between the face sides
during happy expressions at the beginning (13.8±10.0mm3)
and end (12.8 ± 10.3 mm3) of the ten-day biofeedback
therapy. Furthermore, we performed a Wilcoxon signed-
rank test to assess the effect of the patient training [75–77].
The results of this test indicate that the volume changes
are statistically significant (p = 0.0305, z = −2.1627,
r = 0.3709). The neutral face kept a consistent volume range
of 11.8−12.1 mm3. The post-therapy reduction in volumet-
ric differences suggests decreased facial asymmetry during
movement, providing valuable insights for monitoring and
informing treatment decisions.

However, these values should be interpreted cautiously,
especially when analyzing only a single frame during a
dynamic facial expression. Factors such as frame selection,
patient non-compliance with movement, failure to relax into
a neutral state, or variance in the happy expression could
influence the results. Especially, patients might also learn
to activate their unaffected face side less to achieve a more
symmetrical face. Although the provided value alone does
not disclose the underlying cause for reduced volumetric dif-
ference, it is still an essential marker of facial symmetry.
Additionally, since our current analysis focuses on the abso-
lute difference between sides of the face, areas may negate
each other’s changes. This can be qualitatively observed
especially for patient four, see Fig. 9. As the mouth is open
during the happy expression, the total approximated facial
volume decreases, reducing the volumetric difference. This
occurrence could explain the reduction in volumetric dif-
ference for patient four but the high visual disparity in the
volumetric difference, see Fig. 9.

Some of the limitations of static analysis may bemitigated
by dynamic analysis, which can offer an enhanced under-
standing of the effects of facial palsy on facial volume. Thus,
we avoid the dependence on a single frame and the potential
impact of frame selection by using the entire video sequence.
Yet the static analysis provides a foundation for the dynamic
analysis, as it allows us to identify the areas of the face most
affected by facial palsy. The combination of radial curves and
semantic analysis via 3D morphable models could enhance
the localization of the volumetric differences. Additionally,
we abstain frommedically interpreting the results, given that
the study is not intended to offer medical recommendations.

5.3 Dynamic facial volume analysis

Lastly, we are interested in the dynamic analysis of the
facial volume during an instructed movement, as static anal-
ysis may not fully capture the impact of facial palsy on
facial volume. Thus, we analyzed a patient’s volumetric
changes and locations mimicking facial expressions as a case
study. During dynamic movements, temporal noise might
occur from the 3dMD camera system (3dMD LCC, Geor-
gia, USA), which propagates to the 3D landmarks, impacting
head rotation and lateral volume estimation. Thus, we apply a
sliding window of five frames to the 3D landmarks to reduce
the impact on subsequent processing steps to remove the
noise as displayed in Fig. 7. The radial curve range is set to
r = 85 mm, the distance between the nose tip and the chin.
Patients were instructed to mimic a happy facial expression
after a neutral phase that lasted about three seconds.We visu-
alize the time progression in Fig. 10. The top row displays
four face scans, the lateral meshes, and the projected volu-
metric differences of a patient during selected time steps. The
second row illustrates the volume of the left (blue) and right
(red) sides of the face, as well as the absolute volume dif-
ference between the two sides (black). The third row shows
the averaged one-to-one pointwise distance of V between the
affected and contralateral sides [8].

The initial difference might be due to inherent facial
asymmetries, muscle atrophy or compensatory hypertrophy,
a mixture of both, or inaccuracy in the method. However, as
it remains constant during the neutral phase, we assume our
method is stable throughout dynamicmovements. During the
movement phase, the volume difference increases, indicating
increasing facial asymmetry for both measurement methods.
Notably, volumetric analysis enables insight into the impact
of both sides. The palsy side mesh (left/blue) decreases in
volume, whereas the healthy side (right/red) experiences an
increase in volume. A change is expected as the facial mus-
cles contract [10]. The volume reduction on the palsy side
could be due to tissue pulled towards the healthy side. The
facial muscles of both sides form a more extensive inter-
woven network. Suppose one side (the healthy contralateral
side) is contracting stronger. In that case, this automatically
pulls over the facial soft tissue (that we observe as volume
change) from the palsy side to the healthy side, as the contrac-
tionon thehealthy side is not counterbalancedbya symmetric
activity on the palsy side.

For patient two, the observed volume difference increases
during movement, signaling a rise in facial asymmetry. This
observation aligns with the static analysis in Table 2. The
dynamic analysis reveals that selecting a single frame for
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Fig. 10 We measure the volumetric changes from a neutral to a happy facial expression. The palsy side (blue) decreases while the healthy
side (red) increases in volume, indicating a shift from the palsy side to the healthy side [22] (colour figure online)

static analysis may not fully capture the extent of facial
palsy’s impact on facial volume. Thus, dynamic analysis is
essential for a comprehensive understanding of the impact
of facial palsy on facial volume and should be considered in
future studies. Our method exhibits similar behavior to the
pointwise distance [8], indicating that it measures the same
asymmetry. However, pointwise distance cannot reveal the
palsy side’s impact on the healthy side, making volumetric
analysis more suitable for assessing this effect. Based on
pointwise disparities, our proposed visualization effectively
illustrates the volumetric differences between the healthy and
palsy sides. The dynamic analysis provides more insight into
facial volume changes. However, the combination of radial
curves and semantic analysis via 3Dmorphablemodels could
enhance the localization of the volumetric differences.

6 Conclusions and future work

We introduced a method for calculating volumetric facial
disparities, improving on existing approaches and providing
insights into the palsy side’s impact. In addition, our approach
offers visualization of volumetric differences, enhancing
understanding of facial asymmetry. Moreover, we can ana-
lyze changes during a single movement, extending the
method’s usefulness and bridging the gap from 2D static to
3D dynamic analysis.

As our approach is automatic and requiresminimal param-
eter tuning (number of radial curves n, spline pointsm, and δ

based on the sensor), we do not rely on any assumptions and
estimations about facial symmetry. The joint visualization,
see Fig. 10, of the volume differences, the facial expression,

and the difference heatmap helps to understand the behavior
of the facial muscles during a single movement. The pro-
jected volumetric differences between themeshes, see Fig. 6b
and 9, can be used to identify the affected areas of the face in
a static scan. Visualizations guide treatment decisions dur-
ing the clinical routine, and our approach can help doctors
better understand facial asymmetry. Frame selection is cru-
cial; our dynamic analysis provides a more comprehensive
understanding of facial palsy’s impact on facial volume. This
insight is significant for treating facial palsy, as the mus-
cle contractions create facial expressions. Our work offers
a combined tool to analyze facial volume changes during
dynamic movements, especially in facial palsy. We open
up future medical research to define instance exercises that
address counter-actions to volume shifts towards the healthy
side [1, 36].

The effectiveness of our approach depends on 3D scan
quality and intermediate facial landmark estimation, which
are only dependent on pre-existing 2D landmark estima-
tion. The growing accessibility of 3D sensors allows for the
application of our approach to a broader patient population
with facial palsy. We plan to integrate radial curves with
3D morphable models to discern patient-specific facial mus-
cle behavior, enabling automated detection of affected facial
regions. This integration would also negate the need to esti-
mate head rotation, which currently has a minimal effect on
volume estimation.

Appendix A Volumetric changes

See Table 2.
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Table 2 We list the absolute lateral volume difference for the neutral and happy expressions for all 34 patients

Begin therapy End therapy
ID Neutral Emotion Neutral Emotion

01 6.2 ± 4.0 8.0 ± 3.2 12.5 ± 4.2 5.3 ± 2.0

02 10.3 ± 0.8 2.2 ± 1.3 5.5 ± 1.3 5.3 ± 1.7

03 8.0 ± 0.9 17.3 ± 0.8 7.8 ± 3.4 17.1 ± 1.4

04 26.8 ± 1.1 9.7 ± 2.9 20.0 ± 0.7 6.5 ± 0.8

05 10.7 ± 2.5 8.6 ± 1.9 9.3 ± 5.0 2.1 ± 1.2

06 3.5 ± 1.9 12.8 ± 1.5 3.4 ± 1.4 8.0 ± 2.1

08 3.3 ± 2.1 3.4 ± 1.9 1.9 ± 0.9 1.7 ± 0.8

09 33.0 ± 1.3 17.2 ± 2.0 25.4 ± 1.7 16.0 ± 2.4

10 35.5 ± 2.3 28.2 ± 1.5 38.3 ± 1.2 24.0 ± 2.9

11 16.2 ± 2.1 5.3 ± 2.4 18.5 ± 1.2 2.2 ± 0.8

12 22.0 ± 2.4 22.6 ± 1.2 25.4 ± 2.3 23.7 ± 4.0

13 23.4 ± 1.8 19.1 ± 2.3 18.1 ± 6.6 20.3 ± 7.9

14 3.2 ± 0.5 8.3 ± 3.3 3.7 ± 0.8 5.9 ± 2.3

15 2.5 ± 1.5 11.2 ± 3.6 2.3 ± 1.4 14.2 ± 1.4

16 8.8 ± 2.7 19.9 ± 2.4 7.2 ± 1.9 17.7 ± 4.4

17 3.1 ± 1.0 15.0 ± 1.5 13.6 ± 3.2 7.1 ± 1.7

18 13.0 ± 1.7 29.3 ± 1.1 6.1 ± 3.0 26.0 ± 1.7

19 15.4 ± 5.0 16.3 ± 3.0 18.2 ± 2.2 9.9 ± 1.9

20 3.6 ± 1.0 11.6 ± 1.0 2.0 ± 0.9 11.4 ± 3.9

21 4.9 ± 3.3 10.0 ± 5.2 8.1 ± 1.7 13.5 ± 3.1

22 10.2 ± 1.1 3.2 ± 1.8 9.7 ± 1.7 2.0 ± 0.7

23 2.0 ± 1.3 2.3 ± 0.8 2.2 ± 0.5 5.1 ± 1.2

24 19.5 ± 3.5 28.7 ± 2.4 19.5 ± 1.3 24.4 ± 0.3

25 13.2 ± 6.5 32.8 ± 3.9 11.3 ± 0.6 23.0 ± 0.6

26 10.7 ± 1.9 11.3 ± 2.8 16.0 ± 2.5 20.1 ± 3.2

27 1.9 ± 0.7 2.7 ± 1.5 3.3 ± 0.6 2.3 ± 0.6

28 28.0 ± 4.2 44.6 ± 1.5 41.4 ± 1.8 48.3 ± 2.3

29 4.1 ± 1.5 7.3 ± 2.2 3.4 ± 2.0 4.0 ± 1.4

30 12.9 ± 1.6 5.6 ± 2.7 11.0 ± 1.7 11.5 ± 1.8

31 5.6 ± 3.1 18.7 ± 2.7 2.8 ± 0.7 14.2 ± 0.9

32 9.7 ± 1.5 2.7 ± 1.5 12.1 ± 3.1 4.0 ± 3.0

33 4.1 ± 1.8 14.2 ± 1.1 6.1 ± 2.3 8.3 ± 2.6

34 15.9 ± 3.9 3.0 ± 1.8 17.7 ± 1.1 2.1 ± 1.3

35 9.2 ± 3.2 13.9 ± 3.2 3.9 ± 4.2 10.0 ± 0.7

φ 11.8 ± 9.2 13.7 ± 10.0 12.1 ± 9.7 12.8 ± 10.3

All values are presented in cubic millimeters, aggregated from all four instances of the movement repetition (given as standard deviations per
patient). We observe a reduction in the volumetric difference at begin and end of the ten-day biofeedback therapy, indicating possible treatment
success. Note that we omit patient 07 as no valid scan was obtained at the treatment
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Appendix B Static volume

See Figs. 11, 12 and 13.

Fig. 11 The volumetric disparities between the left and right sides of the face are displayed for the six facial palsy patients for the firstmeasurement.
Our visualizations are normalized such that the palsy-affected side is positioned on the left (right side of the image), and the maximal difference is
1.5 cm
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Fig. 12 The volumetric disparities between the left and right sides of the face are displayed for the six facial palsy patients for the thirdmeasurement.
Our visualizations are normalized such that the palsy-affected side is positioned on the left (right side of the image), and the maximal difference is
1.5 cm
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Fig. 13 The volumetric disparities between the left and right sides of the face are displayed for the six facial palsy patients for the fourth
measurement. Our visualizations are normalized such that the palsy-affected side is positioned on the left (right side of the image), and the maximal
difference is 1.5 cm
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