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Abstract. Electromyography (EMG) is a method to measure muscle
activity. Physicians also use EMG to study the function of facial mus-
cles through intensity maps (IMs) to support diagnostics and research.
However, many existing visualizations neglect anatomical structures and
disregard the physical properties of EMG signals. The variance of facial
structures between people complicates the generalization of IMs, which
is crucial for their correct interpretation. In our work, we overcome these
issues by introducing a pipeline to generate anatomically correct IMs for
facial muscles. An IM generation algorithm based on a template model
incorporates custom surface EMG schemes and combines them with a
projection method to highlight the IMs on the patient’s face in 2D and
3D. We evaluate the generated and projected IMs based on their cor-
rect projection quality for six base emotions on several subjects. These
visualizations deepen the understanding of muscle activity areas and in-
dicate that a holistic view of the face could be necessary to understand
facial muscle activity. Medical experts can use our approach to study the
function of facial muscles and to support diagnostics and therapy.

Keywords: Medical Visualization · EMG Intensity Maps · Projections
· Emotion · Mimics · Facial Muscles

1 Introduction

Many medical imaging techniques utilize 2D or 3D visualizations to support
decision-making during clinical routine and research. To gain insight into the
⋆ Supported by Deutsche Forschungsgemeinschaft (DFG - German Research Founda-
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function of the facial muscles, medical experts utilize electromyography (EMG)
schemes applied to the face [11, 16]. Intensity maps (IMs) are a common way
to display the spatial relations among muscles [11,16,19]. Given the complexity
of the facial muscles and their 3D movement [7], IMs are a valuable tool for
studying the function of facial muscles and support diagnostics and therapy.
However, such visualizations often neglect the anatomical locations of surface
electrodes, the physical properties of EMG signals, the interaction of individual
facial muscles, and the individual’s facial structure for highlighting.

We overcome these limitations by introducing a pipeline for anatomically cor-
rect facial muscle intensity maps. First, we use a canonical template face model
as a base for the complex interwoven network of facial muscles [13, 18]. Based
on this model, we support two standard EMG schemes and interpolate between
surface electrodes incorporating the physical properties of EMG signals [11,16].
Lastly, we project the IMs onto the patient’s face in 2D and 3D to indicate mus-
cular activity. Our projection algorithm considers the patients’ facial head shape,
pose, and expression. As a result, we give physicians a tool to study the facial
muscles’ functions projected onto the patient’s face and support diagnostics and
therapy by releasing our work as independent open source libraries4.

2 Methods

The main limitations of current EMG IM visualizations are the lack of 3D
anatomical information in general and the missing relations of individual facial
structures, which is crucial for correct interpretation. First, we focus on gener-
ating anatomically correct IMs employing a canonical face template model [13].
We demonstrate the process using two standardized EMG schemes [11,16]. How-
ever, our method is not limited to these schemes and is extendable to custom
mappings to enable specialized research. Projecting the generated IMs onto the
patient’s face highlights the muscular activity in a 2D image or 3D face model.

2.1 EMG Intensity Map Generation

By definition, muscle activity is the electrical response of the muscle cells under
load measured in volts [22]. The acquired time series of the electrical response is
called an electromyogram (EMG). Experts visualize the spatial relations using
intensity maps (IMs) based on a planar grid structure neglecting anatomical
placement and three-dimensionality of the muscles and their movements (see
Figure 1) [16]. However, electrode placement is crucial for interpolation as the
EMG signal drops off quadratically with distance [22]. Furthermore, a categorical
colormap implies that large areas around the electrodes have the same intensity
intervals, which conflicts with the EMG’s physical properties.

We propose to circumvent these limitations by explicitly considering: anatom-
ical electrode locations, an interpolation comprising correct physical properties,

4 www.github.com/cvjena/electromyogram, www.github.com/cvjena/face-projection

www.github.com/cvjena/electromyogram
www.github.com/cvjena/face-projection
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Fig. 1: Displaying the intensity maps for a smiling expression for two different
EMG schemes (Fridlund scheme, upper row; Kuramoto scheme, lower row): The
first column shows the conventional approach neglecting anatomical structures,
and the second column shows the proposed intensity maps. The third and fourth
column shows the lateral mirrored maps focusing on the face’s left and right sides.

and a continuous colormap [5]. First, we define the anatomical electrode loca-
tions based on the facial structure inside the canonical face model [13]. Such an
approach offers several advantages: (i) The template model ensures a patient-
independent visualization, which is crucial for interpolation. (ii) Semantic facial
landmarks ensure proper electrode location definition, and (iii) we can utilize
existing models for correct facial landmark detection for the projections [18].

The canonical face model contains 468 facial landmarks [13], which we use to
determine the electrode locations in a planar view. We define the electrode loca-
tions for two standardized facial EMG schemes, Fridlund [11] and Kuramoto [16],
which we compare in our evaluation. Figure 2 displays the anatomical and cor-
responding locations on the canonical face model. Additionally, the warped view
helps to comprehend the spatial connections among the electrodes and the facial
landmarks. The blue dots mark the electrode locations, and the green squares
depict the hull boundary of the face model.

These electrode locations are crucial for approximating the EMG signal’s
spatial properties via interpolation in the next step. Points of the outer hull form
an interpolation boundary and act as electrodes without muscle activity, having
an amplitude of 0 V. We deploy radial basis function (RBF) interpolation to
approximate the EMGs’ spatial properties inside the canonical face model [9,28].
Specifically, a thin plate spline as a kernel function in the form of r2 ·log r models
the signal drop off [28], with r being the distance of each location to the center
point. As we ensured correct anatomical placement beforehand, the electrode
values can be interpolated without weights ensuring a valid spatial behavior
approximation of the EMG signal between the electrodes.
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Fig. 2: The anatomical electrode locations of the Fridlund (blue) [11] and Ku-
ramoto (green) [16] schemes are shown in (a). The matching locations (blue) on
the canonical face are shown as planar and warped views in (b, c) and (d, e).

Visualizing unilateral muscle activity is highly relevant for some medical dis-
eases, such as unilateral facial palsy [26]. In this case, the muscle activity is not
symmetric due to muscle inactivity or hypoactivity on the palsy side, compen-
satory hyperactivity of the contralateral side, or both combined. We can mitigate
interpolation artifacts by laterally mirroring along the midline of the face model
and interpolating each side separately. Thus, we enforce a symmetric interpo-
lation of the face sides and remove contralateral artifacts, giving insight into
the unilateral muscle activity. In Figure 1, we visually compare the conventional
approach [16] with our proposed method. We show the IMs of a smiling expres-
sion and use a sequential colormap (Imola) to visualize the continuous data [5].
2D grid interpolation neglects the anatomical electrode locations and gives the
impression of discrete areas of muscle activity, resulting in a distorted visual-
ization. The connection between electrode locations and interpolated values is
not apparent and might hinder the interpretation of the IMs. However, both ap-
proaches still capture the properties of the EMG schemes, as Fridlund specializes
in specific muscles, while Kuramoto is better for muscle activity regions [19].

2.2 Anatomical 2D Face Projection

We have seen in the previous section that interpolating the EMG signal’s spatial
properties is crucial for the IMs’ quality. However, the IMs are still 2D visual-
izations of the spatial relations between muscle activations without a patient’s
facial structure. We propose further enhancing the generated IMs’ quality by
projecting them onto the face while preserving anatomical properties. This step
enhances muscle activity visualization, improving the IMs’ interpretability.

One of the main advantages of the canonical face model is that we can deploy
existing facial landmark detection algorithms [18]. Thus, we can avoid fine-tuning
our data and ensure general visualization capabilities. Using the same 468 facial
landmarks allows us to generate a one-to-one mapping between the IMs and the
face5. However, during the acquisition of the EMG signals, the face is covered
5 All shown individuals agreed to have their images published in terms with the GDPR
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(a) Cables and
electrodes

(b) Projected
Fridlund IMs

(c) Head rotation
invariant

(d) Avoiding depth
clipping

Fig. 3: We show the projection of the IMs onto the face model. In (a), the face is
covered in cables and electrodes while acquiring the EMG signals. The restored
facial features with the overlaid muscle activity are shown in (b). Figures (c)
and (d) depict head rotation invariance and the prevention of depth clipping.

in cables and electrodes, as shown in Figure 3a. Hence, many facial features
are obstructed, and existing algorithms cannot detect them. We follow the work
of [3] and restore the original facial features, which visually improves the overlaid
muscle activity, as shown in Figure 3b.

As the interpolation approximates the EMG signal’s spatial relations over
the entire template model, areas without muscle activity also have interpolated
values, including the eyes, mouth, and lips; see Figure 1a. However, we remove
these areas for a more natural and intuitive impression of the face and muscle
activity by masking them out in the IMs. A consequence of deleting the areas
of the eyes and mouth is that the triangulation of the canonical face model is
no longer valid. Therefore, a newly calculated triangulation maps the template
model to the face [15, 24], depicted in Figure 4. We obtain corresponding pairs
(T

(i)
face, T

(i)
IM) for each triangle T (i) in the triangulation to compute the projection.

First, we extract the bounding boxes for each triangle pair, from which we
compute the affine homomorphism described by the matrix M ∈ R3×3. Each
pixel in the triangle T

(i)
IM is then mapped to the corresponding pixel in the

triangle T
(i)
face using M . Bicubic interpolation approximates intermediate pixel

values as the projection might contain different scales between the IM and the
face. Additionally, the projection algorithm discards pixels outside the triangle
to ensure a valid projection without overlap. As face parts might not be visible
during head rotation, shown in Figure 3c, depth clipping artifacts might occur.
We circumvent this issue by sorting the triangles from back to front using the
estimated depth values of each triangle [18]. Please note the default resolution
for IMs is 1024×1024 pixels, while the face images have a resolution of 256×256
pixels. Thus, we obtain a highly detailed projection with electrode locations and
the interpolated values blended onto the face, as shown in Figure 3b.

Since our projection solely depends on facial landmarks, we can project the
IMs onto any face [18]. Furthermore, our approach is independent of the facial
pose and rotation, as shown in Figure 3c. This advantage allows our method to
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(a) Triangle T
(i)
face
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(i)
IM
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(c) Affine transformation of

triangle T
(i)
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with opacity

M

Fig. 4: Triangle correspondence between the face and the IM: We compute the
affine matrix M between the bounding boxes (red) of T (i)

IM and T
(i)
face. Each pixel

of the IM is transformed to the corresponding pixel in the face using M .

be used on static images and videos, opening up the research of dynamic analysis
of muscle activity. The combination of interpolation and projection allows us to
visualize muscle activity more intuitively for medical professionals and patients.

2.3 Anatomical 3D Face Projection

Leveraging the 3D structure of the face will further enhance the interpretability
of muscle activity. Such a step would enable visualization in a virtual reality en-
vironment or with holographic displays6. To achieve this, we utilize the resulting
2D projection as the basis for the 3D transformation. As this projection already
ensures the anatomical correctness of the muscle activity, the 3D representation
is also anatomically correct. We present two 3D model generation approaches
based on depth sensors and monocular depth estimation models, respectively.

Our first approach operates on depth maps provided by cameras such as
the Intel RealSense D435. Given the RGBD data and the intrinsic camera pa-
rameters, the computed point cloud describes the 3D face structure. However,
replacing the RGB image with the projected 2D intensity map only changes the
vertex color of the point cloud. To obtain a mesh representation of the face, we
use Poisson surface reconstruction [14]. Reconstructed areas with lower confi-
dence than 0.03 are removed, and only the largest connected component is kept.
Lastly, using Laplacian smoothing along the z-axis ensures that the face’s sur-
face is smooth and contains no artifacts from the depth sensor [25,27]. We show
the resulting mesh from the depth sensor in Figure 5a.

Our second approach utilizes monocular depth estimation models to obtain
a 3D representation of the face. Hence, it does not require a depth sensor and
can be retrospectively employed on existing images and videos. Such monocular

6 We support LookingGlass Portrait (Looking Glass Factory Inc., New York, USA)
natively in our pipeline.
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(a) Depth sensor
projection

(b) Projection with
3DDFA [29]

(c) Projection with
DECA [10]

Fig. 5: We display three different 3D reconstruction variants with projected in-
tensity maps. They include a head scan reconstruction (a), the monocular depth
model 3DDFA (b) [29], and the 3D morphable model DECA (c) [10].

models are trained on large data sets of facial images with corresponding 3D
scans to approximate the underlying facial structure. Given an RGB image, the
3DDFA model [12,29] estimates the Basel Face Model [20] to obtain a 3D mesh
of only the face. The DECA model [10] predicts the FLAME model [21], which
includes the head, neck, and upper torso. They are not accurate compared to a
3D scan, and significant deviations occur due to the underlying template model
assumptions, as is visible in Figure 5b and Figure 5c. However, they are sufficient
for visualizing muscle activity on a 3D face.

3 Data Acquisition

Our dataset combines synchronous surface EMG and RGBD data recording for
healthy probands. We use an Intel RealSense D435 camera with a 1280 × 720
pixels resolution and a frame rate of 30 fps. All probands are seated in front
of the camera at eye level with a distance of 1.0 meters to ensure the face
is visible in the depth sensor’s field of view. Our surface EMG measurements
follow the work of Mueller et al. [19], merging doubled electrodes for Fridlund
and Kuramoto [11, 16]. Each proband has 62 surface electrodes attached while
mimicking voluntary facial expressions instructed by a video tutorial [23].

Our probands are recorded with and without applied surface electrodes to
restore the facial expression using CycleGANs [3]. Otherwise, existing landmark
detection methods would fail and result in incorrect projections. The restored
facial expressions are used for the projection in all visualizations, as shown in
Figure 3b. The processing of the EMG data follows the guidelines discussed
in [11, 16, 19]. The muscle activity is measured with 4096 samples per second.
We normalize each channel’s average to zero and remove power line noise with
a notch filter at 50 Hz. Furthermore, we apply an FIR band-pass filter in this
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Fig. 6: Muscle activity patterns for the base emotions [6] using Fridlund [11]
scheme: We show the original facial expression with the attached surface elec-
trodes, the generated corresponding intensity maps (IMs), and projection onto
the restored facial expression [3]. The Fridlund scheme visualizes individual mus-
cle activity during expressions. (Best viewed digitally.)

range because most muscle activity ranges from 10 to 500 Hz [11]. Lastly, we
compute the root mean square with a 128 ms sliding window to match video
frames and EMG data. Thus, data is synchronous with an error of up to 8 ms.

4 Evaluation

Our evaluation focuses on the visual quality and the possible insights gained
from the generated intensity maps of the resulting muscle activity patterns for
the six base emotions [6]. We do not assess the muscle activity patterns’ cor-
rectness regarding the defined facial action coding system [7], as this is not the
focus of our work and is still disputed [1,8]. However, our method allows medical
professionals to evaluate the correctness of the muscle activity patterns in future
research. We measure with the Fridlund [11] and Kuramoto [16] schemes jointly
during the recording but evaluate them separately to avoid visual interference.
The resulting muscle activity patterns are shown in Figure 6 and Figure 7 for
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Fig. 7: Muscle activity patterns for the base emotions [6] using Kuramoto [16]
scheme: We show the original facial expression with the attached surface elec-
trodes, the generated corresponding intensity maps (IMs), and projection onto
the restored facial expression [3]. The Kuramoto scheme visualizes the muscle
activity areas during expressions. (Best viewed digitally.)

six different probands varying in gender and age. Please note that we do not
normalize amplitudes between the emotions as they can contribute to their dif-
ferentiation, as visible in Figure 6 for sad and angry. Furthermore, we refrain
from adding the label locations to the visualizations to avoid visual clutter and
instead refer to the electrode locations in Figure 2. For the Fridlund scheme, we
observe that mainly single muscles are dominating, as expected [7], but also that
other facial areas are involved to a lesser extent. This observation could indicate
that the interwoven network of facial muscles is more active during facial ex-
pressions than previously thought [1,2,4]. The overall facial activations are even
more visible with the Kuramoto scheme, highlighting the importance of a more
holistic view of the facial muscles’ activity. Combining both schemes’ advantages
could benefit future work to understand the facial muscles’ activity better.

Our 2D IM projection algorithm works for different head shapes, orientations,
expressions, and probands, as visible in Figure 6 and Figure 7. Comparing the
surface electrode locations with the highlighted areas in the face, they largely
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overlap and thus confirm the correctness of our method. As we remove eye and
mouth areas from the IMs, the mouth opening for surprised and eye closing
for sad are not overlaid. Hence, our work allows for an individual analysis of the
muscle activity patterns for each proband, not only for a generic face model.

The 3D visualizations differ considerably between the probands and meth-
ods, respectively. Only the depth sensor-based approach correctly captures the
proband’s original head shape, whereas the monocular methods strongly resem-
ble the underlying template model. The projected IMs might lose some infor-
mation due to underlying model biases during the computation, as visible for
happy in Figure 7 where the mouth is not open but predicted open by the model.
However, the monocular methods are still helpful for visualizing muscle activity
patterns in 3D space, given that no depth sensor is available.

5 Conclusion

The proposed visualization methodology allows for an individualized analysis of
muscle activity patterns by projecting the intensity maps onto the face’s surface
in 2D and 3D. This is a significant step from a generic face model and can help
clinicians and researchers understand the variations in emotional expressions
between individuals and patients, including those of different genders and ages.
Our method is not limited to a specific head shape, orientation, or expression,
as visible in Figure 6 and Figure 7.

Evaluation of these maps can provide insights into how multiple muscles and
facial areas contribute to a particular emotional expression. Understanding the
subtleties of facial muscle activation can be extremely useful for diagnosing pa-
tients with facial diseases in biofeedback and facial rehabilitation. For patients
recovering from conditions like Bell’s palsy or stroke that often affect facial mus-
cles [17, 26], these visualizations could help therapists track recovery progress
and plan individualized rehabilitation programs. Knowledge gained from under-
standing the subtle use of facial muscles can be applied in additional fields, like
psychophysical experiments in psychology, acting, animation, advertising, etc.,
to make non-verbal communication appear more authentic and impactful.

Our evaluation results indicate that the muscle activity patterns are not as
simple as previously postulated [1, 7]. The detailed results and comprehensive
visual representations illustrated in this study establish a solid foundation for
further investigation in the field. There is still ongoing dispute on facial expres-
sions and muscles, and having such concrete visualizations and analysis could
potentially aid in resolving these issues. A more holistic view of the facial muscles’
activity seems to be necessary to understand the underlying processes better.
The results and visualizations of this research can aid psychologists in studying
and interpreting human emotions more accurately, thus enriching the science of
understanding human behavior. The novelty of this approach lies not only in the
specific techniques used but also in the fresh perspective it offers into the simul-
taneous mapping of muscle activations with corresponding facial expressions by
bridging the gap between mimics and muscles.
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