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Abstract. Comprehending facial expressions is essential for human in-
teraction and closely linked to facial muscle understanding. Typically,
muscle activation measurement involves electromyography (EMG) sur-
face electrodes on the face. Consequently, facial regions are obscured by
electrodes, posing challenges for computer vision algorithms to assess
facial expressions. Conventional methods are unable to assess facial ex-
pressions with occluded features due to lack of training on such data. We
demonstrate that a CycleGAN-based approach can restore occluded fa-
cial features without fine-tuning models and algorithms. By introducing
the minimal change regularization term to the optimization problem for
CycleGANs, we enhanced existing methods, reducing hallucinated facial
features. We reached a correct emotion classification rate up to 90% for
individual subjects. Furthermore, we overcome individual model limita-
tions by training a single model for multiple individuals. This allows for
the integration of EMG-based expression recognition with existing com-
puter vision algorithms, enriching facial understanding and potentially
improving the connection between muscle activity and expressions.

Keywords: Image Restoration · Facial Features · CycleGAN · Minimal
Change.

1 Introduction

Facial expression recognition [12] is crucial in various research areas such as
psychology, medicine, and computer vision. In computer vision, occlusion of
facial features presents a challenge for existing algorithms, as most assume a fully
visible face and lack consideration for occluded features in available datasets.

We focused on detecting six basic emotions (anger, disgust, fear, happiness,
sadness, and surprise) defined by Ekman and Friesen [4], which are characterized
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by specific facial muscle activation. Accurate measurement of muscle activation
typically requires recordings detected via surface electrodes (sEMG). These elec-
trodes and their cables cover parts of the faces. Combining EMG-based facial ex-
pression recognition with computer vision algorithms can enhance understanding
of the underlying facial muscle activity. Our study involved 36 healthy subjects
performing the six basic emotions four times, with recordings taken both with
and without attached sEMG surface electrodes. This allowed for comparison be-
tween mimicked and targeted expressions. We employed the ResMaskNet [20]
architecture for emotion detection but found that it struggled to handle oc-
cluded facial features. This resulted in only prediction of anger and surprised.
Mimicked expressions, like disgusted, were recognized only 2 out of 528 times.

Büchner et al. [3] attempted to restore facial features by interpreting face
coverage as a learnable style between uncovered and covered faces. Despite
promising results, the method has drawbacks: it requires separate models for
each individual, and it memorizes uncovered faces resulting in inadequate hallu-
cination of occluded features, see Figure 3. We extended Büchner et al.’s work
by introducing new regularization terms to the optimization problem, enabling
a single model to be trained for multiple individuals. We increased individual
accuracy from 33.8% (random guessing) up to 90% and demonstrated emotion
detection on individuals not part of the training set, providing generalizability
to unseen individuals. Fine-tuning the general model to specific individuals with
minimal data further improved results.

We conducted ablation studies to enhance the backbone network, signifi-
cantly reducing the number of parameters and computational cost while main-
taining comparable results. We evaluated emotion classification accuracy and the
following qualitative metrics: Frenchet Inception Distance (FID) [17], Structural
Similarity Index (SSIM) [25], and Learned Perceptual Image Patch Similarity
(LPIPS) [27]. These advancements are crucial for EMG-based facial expression
recognition applications. The reduced parameters, improved generalization, and
enhanced visual quality enable a more efficient, robust implementation. Addi-
tionally, these improvements could benefit live or therapeutic applications re-
quiring visual feedback.

2 Related Work

Restoring occluded facial features is challenging due to their invisibility in the
input images. Generative approaches, such as Generative Adversarial Networks
(GANs) [6], can learn anatomically correct facial features from non-occluded
faces, making them suitable for this task.

GANs have demonstrated strong results in image generation, particularly in
medical applications [26]. However, they are typically trained on specific datasets
and struggle to generalize to unseen data. Facial generation research [16,10,11]
employs GANs to create realistic faces from specific datasets, indistinguishable
from real faces [24]. These works focus on non-occluded faces, thus generating
only non-occluded facial images.
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Restoring hidden facial features is more challenging since GANs must learn
facial features from non-occluded faces. Li et al. [15] used GANs to restore ar-
tificially altered faces; however, the unrealistic changes limit its applicability
to real-world data. Moreover, the restored facial expressions do not match the
original ones. Alternative methods attempt to use GANs for transferring facial
attributes [18] to modify faces.

Some approaches attempted to generalize GANs to unseen data. For instance,
Zhu et al. [28] demonstrated that CycleGANs can translate images between
domains without paired data, allowing each generator to learn a specific domain
style. CycleGANs can thus translate covered faces to uncovered faces in medical
applications, treating sEMG coverage as a domain style.

Abraiam and Eklund [1] used CycleGANs to restore obfuscated faces in MRI
images, focusing on patient privacy and side views with no facial expression dif-
ferences. However, they did not evaluate the quality of restored faces. In contrast,
our work focused on facial feature restoration and quality evaluation.

We build upon Büchner et al. [3], using the CycleGAN architecture for facial
feature restoration. While their architecture remained unchanged, every individ-
ual required a separately trained model which could hallucinate facial features.
We introduce a new regularization term to the optimization problem, enforcing
minimal changes and also enabling a single model to be trained for multiple
individuals.

3 Method

Restoring facial features can be viewed as a style transfer problem, as sur-
face electrodes are applied consistently across individuals. Following Büchner
et al. [3], we use the CycleGAN architecture for facial feature restoration, with
covered faces as the source domain and uncovered faces as the target domain.
The two generators and discriminators are trained adversarially, using GAN
loss [6], cycle consistency loss [28], and identity loss [22]. However, the base
model (Figure 3) hallucinates facial features or changes uncovered areas, affect-
ing the original facial expression. This issue arises due to the absence of this
constraint in the original training objective.

3.1 CycleGAN Architecture for Facial Feature Restoration

The CycleGAN architecture by Zhu et al. [28], consists of two generators and
two discriminators, shown in Figure 1. The generators, trained adversarially [6],
translate images between domains while maintaining cycle consistency [28], al-
lowing the translated images to be reverted to the original domain. Discrimina-
tors distinguish between real and fake generated faces. To improve visual quality,
generators are trained using an identity loss [22], preserving color composition
between input and output. We hypothesize that the identity loss encourages gen-
erators to learn input faces’ facial features, enabling better feature restoration.
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Fig. 1: The CycleGAN architecture for facial feature restoration: The generators
GA and GB translate images between domains A and B. The minimal change
regularization ensures that the generators do not modify uncovered areas.

Our generator’s backbone network is a residual neural network [7]. The
generator comprises two down-sampling blocks, n residual blocks, and two up-
sampling blocks. In ablation studies, we explored the impact of varying residual
block numbers in the generator. We found that n = 5 provided a balance be-
tween visual quality and computational cost and inference time. To minimize
artifacts from deconvolution layers, we replace them with nearest-neighbor up-
sampling layers followed by convolution layers. We use instance normalization
as our normalization layer, because they are more suitable for style transfer [23].
This required a batch size of 1 during training to effectively learn the task.
We maintained the discriminator architecture from [28,3], using the PatchGAN
architecture [9]. We fixed the number of discriminator layers to 3, as this is
sufficient for solving the task.

3.2 Optimization Problem with Minimal Change Regularization

The GAN loss (Equation 1) describes the adversarial interaction between the
generator and discriminator. The generator attempts to fool the discriminator by
generating uncovered faces. Cycle consistency loss (Equation 2) ensures accurate
reattachment of the surfaces electrodes. The identity loss (Equation 3) enables
the generator to learn the covered facial features:

LGAN = DA(A,GA(B)) +DB(B,GB(A)), (1)

Lcycle = λA · LL1(GB(GA(A)), A) + λB · LL1(GA(GB(B)), B), (2)

Lidt = λidt(·LL1(GB(A), A) + ·LL1(GA(B), B)). (3)

While the identity loss helps generators to learn facial features, it is insufficient
for correct facial feature restoration. As seen in Figure 3, the generator hal-
lucinated facial features not present in the original face, contrary to our goal.
Limitations shown in [3] result from changes in uncovered face areas.
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In style transfer tasks, every pixel of the input image might change according
to the target domain’s style. However, we wanted to enforce the generator to only
change covered areas, preserving original facial features. We introduced a new
regularization term (Equation 4) to the optimization problem, penalizing the
generator for significant changes and reducing the reconstruction error between
input and output images:

LMC = λMCA
· LL1(GB(B), B) + λMCB

· LL1(GA(A), A). (4)

Due to the GAN loss, generators must still remove surface electrodes to de-
ceive the discriminator. We introduced hyperparameters λMCA

and λMCB
to

weight the regularization term, enabling control over each domain’s regulariza-
tion amount. Notably, this regularization allows for simultaneous training on
multiple individuals. Since surface electrodes are positioned consistently across
individuals, the model learns to preserve uncovered face areas. Consequently,
the model is not limited to a single individual and can be applied to unseen
individuals. The final optimization problem (Equation 5) comprises the GAN
loss, cycle consistency loss, identity loss, and minimal change loss:

L = LGAN + Lcycle + Lidt + LMC . (5)

The optimization problem’s individual components can be weighted using the
corresponding λ hyperparameters. Setting λMCA

and λMCB
to 0 reverts to the

original CycleGAN optimization problem.

4 Dataset

We evaluated our method on 36 test subjects [21] without medical conditions
affecting facial expressions, such as facial paralysis. Using frontal cameras at
1280× 720 pixels resolution and 30 fps, we recorded subjects mimicking the six
basic emotions [4] four times each. The instruction order was randomized, and
we conducted two recording sessions per subject, two weeks apart, obtaining
alternating facial expressions videos with neutral expressions in between.

Each subject had two recordings without surface electrodes (baseline) and
four recordings with surface electrodes to ensure accurate sEMG measurements.
We used Fridlund and Cacioppo’s [5] and Kuramoto et al.’s [13] schemes, ap-
plying 62 surface electrodes in total. The dataset comprised 71 recordings with
electrodes and 138 without. We had 1704 emotions as ground truth for uncovered
expressions and 3312 emotions requiring accurate reconstruction for electrode-
covered faces. An overview of the six basic emotions with and without surface
electrodes is shown in Figure 3.

5 Experiments and Results

Our experiments focused on accurate facial feature reconstruction, validated
with emotion classification accuracy on restored faces and their visual qual-
ity. To assess visual quality, we used the Fréchet Inception Distance (FID) [8],
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Emotion Classification Accuracy Visual Metrics
sEMG Anger Disgusted Fearful Happy Sad Surprised Overall SSIM (↑) LPIPS (↓) FID (↓)

Without 61.6% 72.5% 28.1% 90.8% 47.1% 85.2% 64±10% 0.63±0.08 0.10±0.04 0.50±0.74
Attached 88.0% 0.3% 20.2% 21.9% 3.8% 68.8% 34±10% 0.38±0.05 0.25±0.02 10.46±2.10
Removed 66.2% 49.0% 11.9% 72.1% 42.5% 60.8% 54±16% 0.66±0.09 0.08±0.04 0.35±0.48

Table 1: Evaluation of emotion classification without (groundtruth), with, and
removed surface electrodes and visual quality metrics: We achieved a higher
classification rate on restored faces than on covered faces.
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Fig. 2: Time series excerpt of emotion activations by ResMaskNet [20]: Dashed
lines represent predicted emotions for uncovered faces, while solid lines repre-
sent predictions for covered faces. ResMaskNet struggles to correctly classify
emotions for covered faces and predominantly activates for angry or sad. A neu-
tral expression is never predicted for covered faces. (Best viewed digitally.)

the Structural Similarity Index (SSIM) [25], and the Learned Perceptual Im-
age Patch Similarity (LPIPS) [27]. We employed the Residual Masking Network
(ResMaskNet) [20], a ResNet-18 [7] architecture with a mask branch, for emo-
tion classification. We did not fine-tune the model on uncovered or covered faces,
ensuring unbiased performance analysis and demonstrating correct restoration.
On the uncovered faces we have a mean accuracy of 64.1% as baseline. However,
if test subjects fail to accurately replicate emotions, the estimation prediction
may deviate from the ground truth. For unobstructed faces, one individual has a
correct classification accuracy of 37.5%, while another achieves 91.5%. Thus, we
expect a high variance in the emotion classification accuracy. We classified the
1704 uncovered face expressions and 3312 covered face expressions as a baseline
for emotion classification accuracy, see Table 1. The emotion with the highest ac-
tivation was selected as the predicted emotion, excluding the neutral expression.
The accuracy for covered faces is 33.8%. The model predominantly predicts the
emotions angry and surprised, as shown in Figure 2, indicating performance
no better than random guessing between two classes. Emotions like disgusted
and sad are predicted correctly only 23 times out of the expected 1104 times.
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Fig. 3: Quality difference for backbone network sizes: The third column shows
the base model without minimal change regularization, leading to hallucinated
features. In contrast, the remaining columns incorporate minimal change regu-
larization and tuned hyperparameters, showcasing improved restoration. (Best
viewed digitally.)

Our goal was to improve emotion classification accuracy using our method with-
out altering the ResMaskNet architecture. We aimed to restore faces through a
data-centric approach, enhancing emotion classification performance.

Backbone Network Size We conducted experiments to determine an op-
timal backbone generator network size for achieving satisfactory results. The
CycleGAN architecture was trained on various subsets for different depth and
feature size combinations of the training data. Quantitative results are displayed
in Table 2. Our findings indicate that emotion classification accuracy does not
significantly improve with more training data. We measured a five percent point
difference to the baseline accuracy and the ResMaskNet does not random guess
between two classes anymore. However, the visual quality of restored faces in-
creased with both larger amounts of training data and larger backbone networks.
Fine details, highlighted in Figure 3, are better preserved with larger backbone
networks and might not be measurable with these metrics. Considering the trade-
off between visual quality and training time, we opted for a generators with three
residual blocks and a feature dimension of 64. All further experiments utilize
these model configurations.
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Features Depth Emo. Max Emo. Acc. (↑) SSIM (↑) LPIPS (↓) FID (↓)

32 3 0.88 0.56±0.17 0.70±0.06 0.07±0.02 0.17±0.07
5 0.83 0.56±0.15 0.70±0.07 0.07±0.02 0.25±0.16
7 0.88 0.58±0.15 0.69±0.06 0.07±0.02 0.34±0.21

64 3 0.92 0.56±0.15 0.70±0.08 0.06±0.02 0.17±0.12
5 0.88 0.58±0.15 0.64±0.08 0.09±0.04 0.37±0.59
7 0.88 0.59±0.15 0.69±0.07 0.07±0.02 0.23±0.18

Table 2: Hyperparameter ablation study for the generators: The hyperparameter
impact is minimal but the qualitative image generation improves.

5.1 Minimal Change Regularization

The proper restoration of faces was already shown by Büchner et al. [3] but
their model might hallucinate features, see Figure 3. Thus, we investigated on
the one side if the minimal change regularization improves the results and on
the other side if it reduces the hallucination of features. We trained the Cy-
cleGAN architecture with different weightings of minimal change regularization
for each individual test subject. Setting λMC to 0 is equivalent to the baseline
model without regularization. The results in Table 3 show that the emotion clas-
sification accuracy increases with stronger minimal change regularization. This
indicates that the additional loss term is no hindrance for the model to learn the
task of removing the surface electrodes. We observed that increasing the λMC

value increases overall performance. The restoration cannot correct an initial
wrong mimicking of a facial expression. Thus, lowering the mean accuracy and
impacting the measurable performance. This effect does not impact the visual
metrics and they improve with higher λ values. We observed that hallucinations,
such as in Figure 3, are not present anymore in the results, see Figure 4. How-
ever, an increased λMC value leads to a more blurry result but more accurate
head orientation. Thus, small details might be lost in the restoration process.
Thus, depending on the application, one can choose a suitable λ value to either
preserve the facial features or to preserve the facial orientation.

λMC Emo. Max Emo. Acc.(↑) SSIM (↑) LPIPS (↓) FID (↓)

0.0 0.79 0.46±0.16 0.64±0.09 0.09±0.04 0.41±0.66
0.1 0.83 0.48±0.16 0.64±0.09 0.09±0.04 0.37±0.67
0.2 0.88 0.47±0.15 0.64±0.08 0.09±0.03 0.45±0.64
0.3 0.83 0.47±0.15 0.64±0.09 0.09±0.04 0.45±0.71
0.4 0.83 0.48±0.15 0.64±0.08 0.09±0.03 0.35±0.57
0.5 0.92 0.54±0.16 0.66±0.09 0.08±0.04 0.35±0.48

Table 3: Emotion classification accuracy and FID score increase with stronger
regularization: SSIM and LPIPS did not change significantly.
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Fig. 4: Qualitative results of the generalization capabilities using the minimal
change regularization: The model removes surface electrodes for individuals out-
side the training set. Important facial features are unchanged but the head shape
is altered slightly. Uncovered expressions are shown in the lower right corner.

5.2 Generalization Capabilities

The CycleGAN architecture has the problem of not being able to generalize to
unseen individuals as shown by Büchner et al. [3]. Thus, we investigate the gen-
eralization capabilities of the CycleGAN architecture with the minimal change
regularization. We did a 6-fold cross validation on the 36 individuals, yielding
30 individuals for training and 6 individuals for testing. We set λMC to 0.5 for
all experiments to enforce the minimal change regularization. Table 4 shows the
results of the generalization experiments. The generalized model achieves a bet-
ter performance on individual test subjects inside and outside the training set.
Thus, we assume that the model learns to accurately remove the surface elec-
trodes. This, in turn, leads to a better emotion classification accuracy on unseen
individuals and we removed existing limitations of the work by Büchner et al. [3].
The qualitative results are shown in Figure 4 and we see that the model is able
to remove the surface electrodes for unseen individuals.

Additionally, we investigated the impact of fine-tuning the model on the
unseen individuals. We analyzed which combination of available training data
and training epochs yields the best results. Our results in Figure 5 indicates
that fine-tuning improved only the visual quality of the restored faces but not
the emotion classification accuracy. We assume that important facial features
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Trained On Emo. Max Emo. Acc. (↑) SSIM (↑) LPIPS (↓) FID (↓)

False 0.83 0.53±0.15 0.60±0.06 0.12±0.03 0.53±0.84
True 0.88 0.55±0.18 0.61±0.09 0.10±0.04 0.33±0.29

Table 4: Generalization capabilities of the CycleGAN architecture with minimal
change regularization: The model is able to generalize to unseen individuals.
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Fig. 5: Fine-tuning of the model on unseen individuals: The emotion classification
accuracy does not improve but the visual quality of the restored faces does
independent of the amount of training data and epochs.

are already learned by the model. Fine-tuning does not significantly enhance
emotion classification accuracy; however, it improved visual quality compared
to the baseline. Moreover, utilizing a smaller portion of training data and a
higher number of epochs produces results similar to using larger training data
fractions and fewer epochs.

6 Conclusion

Our study demonstrated that CycleGAN with minimal change regularization
effectively restores individuals’ faces with EMG surface electrodes, improving
emotion classification accuracy. This regularization does not impede the model’s
ability to remove electrodes, and eliminates CycleGAN limitations like hallu-
cinations, making the restored faces suitable for emotion classification tasks.
Our approach enables direct utilization of existing methods without fine-tuning
on our data. Additionally, we demonstrated its ability to generalize to unseen
individuals and improve the visual quality of the restored faces without hallu-
cinations. Here we showed that now sEMG-based measurements can be jointly
used with computer vision-based techniques to enhance the comprehension of
facial anatomy. The data-driven approach seamlessly integrates into existing
pipelines, enabling real-time restoration of individuals’ faces with surface elec-
trodes. Thus, it can be used in applications where electrodes are used for facial
muscle stimulation, such as physical therapy [2,14,19].
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