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Abstract: The great success that deep models have achieved in the past is mainly owed to large amounts of labeled
training data. However, the acquisition of labeled data for new tasks aside from existing benchmarks is both
challenging and costly. Active learning can make the process of labeling new data more efficient by selecting
unlabeled samples which, when labeled, are expected to improve the model the most. In this paper, we
combine a novel method of active learning for object detection with an incremental learning scheme (Käding
et al., 2016b) to enable continuous exploration of new unlabeled datasets. We propose a set of uncertainty-
based active learning metrics suitable for most object detectors. Furthermore, we present an approach to
leverage class imbalances during sample selection. All methods are evaluated systematically in a continuous
exploration context on the PASCAL VOC 2012 dataset (Everingham et al., 2010).

1 Introduction

Labeled training data is highly valuable and the
basic requirement of supervised learning. Active
learning aims to expedite the process of acquiring new
labeled data, ordering unlabeled samples by the ex-
pected value from annotating them. In this paper, we
propose novel active learning methods for object de-
tection. Our main contributions are (i) an incremen-
tal learning scheme for deep object detectors with-
out catastrophic forgetting based on (Käding et al.,
2016b), (ii) active learning metrics for detection de-
rived from uncertainty estimates and (iii) an approach
to leverage selection imbalances for active learning.

While active learning is widely studied in classi-
fication tasks (Kovashka et al., 2016; Settles, 2009),
it has received much less attention in the domain of
deep object detection. In this work, we propose meth-
ods that can be used with any object detector that pre-
dicts a class probability distribution per object pro-
posal. Scores from individual detections are aggre-
gated into a score for the whole image (see Fig. 1). All
methods rely on the intuition that model uncertainty
and valuable samples are likely to co-occur (Settles,
2009). Furthermore, we show how the balanced se-
lection of new samples can improve the resulting per-
formance of an incrementally learned system.

In continuous exploration application scenarios,
e.g., in camera streams, new data becomes available

over time or the distribution underlying the problem
changes itself. We simulate such an environment us-
ing splits of the PASCAL VOC 2012 (Everingham
et al., 2010) dataset. With our proposed framework,
a deep object detection system can be trained in an
incremental manner while the proposed aggregation
schemes enable selection of valuable data for annota-
tion. In consequence, a deep object detector can ex-
plore unknown data and adapt itself involving mini-
mal human supervision. This combination results in a
complete system enabling continuously changing sce-
narios.

1.1 Related Work

Object Detection using CNNs An important con-
tribution to object detection based on deep learning is
R-CNN (Girshick et al., 2014). It delivers a consid-
erable improvement over previously published slid-
ing window-based approaches. R-CNN employs se-
lective search (Uijlings et al., 2013), an unsupervised
method to generate region proposals. A pre-trained
CNN performs feature extraction. Linear SVMs (one
per class) are used to score the extracted features and
a threshold is applied to filter the large number of
proposed regions. Fast R-CNN (Girshick, 2015) and
Faster R-CNN (Ren et al., 2015) offer further im-
provements in speed and accuracy. Later on, R-CNN
is combined with feature pyramids to enable efficient
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Figure 1: Our proposed system for continuous exploration scenarios. Unlabeled images are evaluated by an deep object de-
tection method. The margins of predictions (i.e., absolute difference of highest and second-highest class score) are aggregated
to identify valuable instances by combining scores of individual detections.

multi-scale detections (Lin et al., 2017). YOLO (Red-
mon et al., 2016) is a more recent deep learning-based
object detector. Instead of using a CNN as a black box
feature extractor, it is trained in an end-to-end fashion.
All detections are inferred in a single pass (hence the
name “You Only Look Once”) while detection and
classification are capable of independent operation.
YOLOv2 (Redmon and Farhadi, 2017) and YOLOv3
(Redmon and Farhadi, 2018) improve upon the orig-
inal YOLO in several aspects. These include among
others different network architectures, different priors
for bounding boxes and considering multiple scales
during training and detection. SSD (Liu et al., 2016)
is a single-pass approach comparable to YOLO intro-
ducing improvements like assumptions about the as-
pect ratio distribution of bounding boxes as well as
predictions on different scales. As a result of a series
of improvements, it is both faster and more accurate
than the original YOLO. DSSD (Fu et al., 2017) fur-
ther improves upon SSD in focusing more on context
with the help of deconvolutional layers.

Active Learning for Object Detection The authors
of (Abramson and Freund, 2006) propose an active
learning system for pedestrian detection in videos
taken by a camera mounted on the front of a mov-
ing car. Their detection method is based on AdaBoost
while sampling of unlabeled instances is realized by
hand-tuned thresholding of detections. Object detec-
tion using generalized Hough transform in combina-
tion with randomized decision trees, called Hough
forests, is presented in (Yao et al., 2012). Here,
costs are estimated for annotations, and instances with
highest costs are selected for labeling. This follows
the intuition that those examples are most likely to
be difficult and therefore considered most valuable.
Another active learning approach for satellite images
using sliding windows in combination with an SVM
classifier and margin sampling is proposed in (Bietti,
2012). The combination of active learning for object
detection with crowd sourcing is presented in (Vijaya-

narasimhan and Grauman, 2014). A part-based de-
tector for SVM classifiers in combination with hash-
ing is proposed for use in large-scale settings. Active
learning is realized by selecting the most uncertain in-
stances for labeling. In (Roy et al., 2016), object de-
tection is interpreted as a structured prediction prob-
lem using a version space approach in the so called
“difference of features” space. The authors propose
different margin sampling approaches estimating the
future margin of an SVM classifier.

Like our proposed approach, most related meth-
ods presented above rely on uncertainty indicators
like least confidence or 1-vs-2. However, they are
designed for a specific type of object detection and
therefore can not be applied to deep object detection
methods in general whereas our method can. Addi-
tionally, our method does not propose single objects
to the human annotator. It presents whole images at
once and requests labels for every object.

Active Learning for Deep Architectures In (Wang
and Shang, 2014) and (Wang et al., 2016),
uncertainty-based active learning criteria for deep
models are proposed. The authors offer several met-
rics to estimate model uncertainty, including least
confidence, margin or entropy sampling. Wang et al.
additionally describe a self-taught learning scheme,
where the model’s prediction is used as a label for fur-
ther training if uncertainty is below a threshold. An-
other type of margin sampling is presented in (Stark
et al., 2015). The authors propose querying samples
according to the quotient of the highest and second-
highest class probability. The visual detection of de-
fects using a ResNet is presented in (Feng et al.,
2017). The authors propose two methods: uncertainty
sampling (i.e., defect probability of 0.5) and positive
sampling (i.e., selecting every positive sample since
they are very rare) for querying unlabeled instances
as model update after labeling. Another work which
presents uncertainty sampling is (Liu et al., 2017). In
addition, a query by committee strategy as well as ac-



tive learning involving weighted incremental dictio-
nary learning for active learning are proposed. In the
work of (Gal et al., 2017), several uncertainty-related
measures for active learning are presented. Since they
use Bayesian CNNs, they can make use of the proba-
bilistic output and employ methods like variance sam-
pling, entropy sampling or maximizing mutual infor-
mation. Finally, the authors of (Beluch et al., 2018)
show that ensamble-based uncertainty measures are
able to perform best in their evaluation. All of the
works introduced above are tailored to active learn-
ing in classification scenarios. Most of them rely on
model uncertainty, similar to our applied selection cri-
teria.

Besides estimating the uncertainty of the model,
further retraining-based approaches are maximizing
the expected model change (Huang et al., 2016) or
the expected model output change (Käding et al.,
2016a) that unlabeled samples would cause after la-
beling. Since each bounding box inside an image has
to be evaluated according its active learning score,
both measures would be impractical in terms of run-
time without further modifications. A more complete
overview of general active learning strategies can be
found in (Kovashka et al., 2016; Settles, 2009).

2 Prerequisite: Active Learning

In active learning, a value or metric v(x) is as-
signed to any unlabeled example x to determine its
possible contribution to model improvement. The
current model’s output can be used to estimate a
value, as can statistical properties of the example it-
self. A high v(x) means that the example should be
preferred during selection because of its estimated
value for the current model.

In the following section, we propose a method to
adapt an active learning metric for classification to
object detection using an aggregation process. This
method is applicable to any object detector whose out-
put contains class scores for each detected object.

Classification For classification, the model output
for a given example x is an estimated distribution of
class scores p̂(c|x) over classes K. This distribution
can be analyzed to determine whether the model made
an uncertain prediction, a good indicator of a valu-
able example. Different measures of uncertainty are
a common choice for selection, e.g., (Ertekin et al.,
2007; Fu and Yang, 2015; Hoi et al., 2006; Jain and
Kapoor, 2009; Kapoor et al., 2010; Käding et al.,
2016c; Tong and Koller, 2001; Beluch et al., 2018).

For example, if the difference between the two
highest class scores is very low, the example may be
located close to a decision boundary. In this case, it
can be used to refine the decision boundary and is
therefore valuable. The metric is defined using the
highest scoring classes c1 and c2:

v1vs2(x) =
(
1− (max

c1∈K
p̂(c1|x)− max

c2∈K\c1
p̂(c2|x))

)2
.

(1)
This procedure is known as 1-vs-2 or margin sam-

pling (Settles, 2009). We use 1-vs-2 as part of our
methods since its operation is intuitive and it can pro-
duce better estimates than e.g., least confidence ap-
proaches (Käding et al., 2016a). However, our pro-
posed aggregation method could be applied to any
other active learning measure.

3 Active Learning for Deep Object
Detection

Using a classification metric on a single detec-
tion is straightforward, if class scores are available.
Though, aggregating metrics of individual detections
for a complete image can be done in many different
ways. In the section below, we propose simple and
efficient aggregation strategies. Afterwards, we dis-
cuss the problem of class imbalance in datasets.

3.1 Aggregation of Detection Metrics

Possible aggregations include calculating the sum, the
average or the maximum over all detections. How-
ever, for some aggregations, it is not clear how an im-
age without any detections should be handled.

Sum A straightforward method of aggregation is
the sum. Intuitively, this method prefers images with
lots of uncertain detections in them. When aggregat-
ing detections using a sum, empty examples should
be valued zero. It is the neutral element of addition,
making it a reasonable value for an empty sum. A low
valuation effectively delays the selection of empty ex-
amples until there are either no better examples left or
the model has improved enough to actually produce
detections on them. The value of a single example x
can be calculated from the detections D in the follow-
ing way:

vSum(x) = ∑
i∈D

v1vs2(xi) . (2)

Average Another possibility is averaging each de-
tection’s scores. The average is not sensitive to the



number of detections, which may make scores more
comparable between images. If a sample does not
contain any detections, it will be assigned a zero
score. This is an arbitrary rule because there is no true
neutral element w.r.t. averages. However, we choose
zero to keep the behavior in line with the other met-
rics:

vAvg(x) =
1
|D| ∑i∈D

v1vs2(xi) . (3)

Maximum Finally, individual detection scores can
be aggregated by calculating the maximum. This can
result in a substantial information loss. However, it
may also prove beneficial because of increased ro-
bustness to noise from many detections. For the max-
imum aggregation, a zero score for empty examples
is valid. The maximum is not affected by zero valued
detections, because no single detection’s score can be
lower than zero:

vMax(x) = max
i∈D

v1vs2(xi) . (4)

3.2 Handling Selection Imbalances

Class imbalances can lead to worse results for classes
underrepresented in the training set. In a continu-
ous learning scenario, this imbalance can be coun-
tered during selection by preferring instances where
the predicted class is underrepresented in the training
set. An instance is weighted by the following rule:

wc =
#instances+#classes

#instancesc +1
, (5)

where c denotes the predicted class. We assume a
symmetric Dirichlet prior with α = 1, meaning that
we have no prior knowledge of the class distribution,
and estimate the posterior after observing the total
number of training instances as well as the number
of instances of class c in the training set. The weight
wc is then defined as the inverse of the posterior to
prefer underrepresented classes. It is multiplied with
v1vs2(x) before aggregation to obtain a final score.

4 Experiments

In the following, we present our evaluation. First
we show how the proposed aggregation metrics are
able to enhance recognition performance while se-
lecting new data for annotation. After this, we will
analyze the gained improvements when our proposed
weighting scheme is applied. This paper describes
work in progress. Code will be made available after
conference publication.

Data We use the PASCAL VOC 2012 dataset (Ev-
eringham et al., 2010) to assess the effects of our
methods on learning. To specifically measure incre-
mental and active learning performance, both train-
ing and validation set are split into parts A and B
in two different random ways to obtain more gen-
eral experimental results. Part B is considered “new”
and is comprised of images with the object classes
bird, cow and sheep (first way) or tvmonitor, cat
and boat (second way). Part A contains all other 17
classes and is used for initial training. The training set
for part B contains 605 and 638 images for the first
and second way, respectively. The decision towards
VOC in favor of recently published datasets was mo-
tivated by the conditions of the dataset itself. Since
it mainly contains images showing fewer objects, it is
possible to split the data into a known and unknown
part without having images containing classes from
both parts of the splits.

Active Exploration Protocol Before an experi-
mental run, the part B datasets are divided randomly
into unlabeled batches of ten samples each. This fixed
assignment decreases the probability of very similar
images being selected for the same batch compared
to always selecting the highest valued samples, which
would lead to less diverse batches. This is valuable
while dealing with data streams, e.g., from camera
traps, or data with low intra-class variance. The con-
struction of diverse unlabeled data batches is a well
known topic in batch-mode active learning (Settles,
2009). However, the construction of diverse batches
could lead to unintended side-effects and an evalua-
tion of those is beyond the scope of the current study.
The unlabeled batch size is a trade-off between a tight
feedback loop (smaller batches) and computational
efficiency (larger batches). As side-effect of the fixed
batch assignment, there are some samples left over
during selection (i.e., five for first way and eight for
second way of splitting).

The unlabeled batches are assigned a value using
the sum of the active learning metric over all images
in the corresponding batch as a meta-aggregation.
Other functions such as average or maximum could
be considered too, but are also beyond the scope of
this paper.

The highest valued batch is selected for an incre-
mental training step (Käding et al., 2016b). The net-
work is updated using the annotations from the dataset
in lieu of a human annotator. Please note, annotations
are not needed for update batch selection but for the
update itself. This process is repeated from the point
of batch valuation until there are no unlabeled batches
left. The assignment of samples to unlabeled batches



is not changed during an experimental run.

Evaluation We report mean average precision
(mAP) as described in (Everingham et al., 2010) and
validate each five new batches (i.e., 50 new samples).
The result is averaged over five runs for each active
learning metric and way of splitting for a total of ten
runs. As a baseline for comparison, we evaluate the
performance of random selection, since there is no
other work suitable for direct comparison without any
adjustments as of yet.

Setup – Object Detector We use YOLO as deep
object detection framework (Redmon et al., 2016).
More precisely, we use the YOLO-Small architecture
as an alternative to larger object detection networks,
because it allows for much faster training. Our ini-
tial model is obtained by fine-tuning the Extraction
model1 on part A of the VOC dataset for 24,000 it-
erations using the Adam optimizer (Kingma and Ba,
2014), for each way of splitting the dataset into parts
A and B, resulting in two initial models. The first half
of initial training is completed with a learning rate of
0.0001. The second half and all incremental experi-
ments use a lower learning rate of 0.00001 to prevent
divergence. Other hyperparameters match (Redmon
et al., 2016), including the augmentation of training
data using random crops, exposure or saturation ad-
justments.

Setup – Incremental Learning Extending an exist-
ing CNN without sacrificing performance on known
data is not a trivial task. Fine-tuning exclusively on
new data leads to a severe degradation of performance
on previously learned examples (Kirkpatrick et al.,
2016; Shmelkov et al., 2017). We use a straightfor-
ward, but effective fine-tuning method (Käding et al.,
2016b) to implement incremental learning. With each
gradient step, the mini-batch is constructed by ran-
domly selecting from old and new examples with a
certain probability of λ or 1− λ, respectively. After
completing the learning step, the new data is simply
considered old data for the next step. This method
can balance known and unknown data performance
successfully. We use a value of 0.5 for λ to make as
few assumptions as possible and perform 100 itera-
tions per update. Algorithm 1 describes the protocol
in more detail. The method can be applied to YOLO
object detection with some adjustments. Mainly, the
architecture needs to be changed when new classes

1http://pjreddie.com/media/files/
extraction.weights

are added. Because of the design of YOLO’s out-
put layer, we rearrange the weights to fit new classes,
adding 49 weights per class.

4.1 Results

We focus our analysis on the new, unknown data.
However, not losing performance on known data is
also important. We analyze the performance on the
known part of the data (i.e., part A of the VOC
dataset) to validate our method. In worst case, the
mAP decreases from 36.7% initially to 32.1% aver-
aged across all experimental runs and methods al-
though three new classes were introduced. We can see
that the incremental learning method from (Käding
et al., 2016b) causes only minimal losses on known
data. These losses in performance are also referred to
as “catastrophic forgetting” in literature (Kirkpatrick
et al., 2016). The method from (Käding et al., 2016b)
does not require additional model parameters or ad-
justed loss terms for added samples like comparable
approaches such as (Shmelkov et al., 2017) do, which
is important for learning indefinitely.

Performance of active learning methods is usu-
ally evaluated by observing points on a learning curve
(i.e., performance over number of added samples). In
Table 1, we show the mAP for the new classes from
part B of VOC at several intermediate learning steps
as well as exhausting the unlabeled pool. In addition
we show the area under learning curve (AULC) to fur-
ther improve comparability among the methods. In
our experiments, the number of samples added equals
the number of images.

Quantitative Results – Fast Exploration Gaining
accuracy as fast as possible while minimizing the hu-
man supervision is one of the main goals of active
learning. Moreover, in continuous exploration sce-
narios, like faced in camera feeds or other continuous
automatic measurements, it is assumed that new data
is always available. Hence, the pool of valuable ex-
amples will rarely be exhausted. To assess the perfor-
mance of our methods in this fast exploration context,
we evaluate the models after learning learning small
amounts of samples. At this point there is still a large
number of diverse samples for the methods to choose
from, which makes the following results much more
relevant for practical applications than results on the
full dataset.

In general, we can see that incremental learning
works in the context of the new classes in part B of the
data, meaning that we observe an improving perfor-
mance for all methods. After adding only 50 samples,
Max and Avg are performing better than passive selec-

http://pjreddie.com/media/files/extraction.weights
http://pjreddie.com/media/files/extraction.weights


Algorithm 1: Detailed description of the experimental protocol. Please note that in an actual continuous learning scenario,
new examples are always added to U. The loop is never left because U is never exhausted. The described splitting process
would have to be applied regularly.

Require: Known labeled samples L, unknown samples U, initial model f0, active learning metric v

U= U1,U2, . . .← split of U into random batches
f ← f0

while U is not empty do
calculate scores for all batches in U using f
Ubest ← highest scoring batch in U according to v

Ybest ← annotations for Ubest human-machine interaction
f ← incrementally train f using L and (Ubest ,Ybest)

U← U\Ubest
L← L∪ (Ubest ,Ybest)

end while

Table 1: Validation results on part B of the VOC data (i.e., new classes only). Bold face indicates block-wise best results, i.e.,
best results with and without additional weighting (·+w). Underlined face highlights overall best results.

50 samples 100 samples 150 samples 200 samples 250 samples All samples
mAP/AULC mAP/AULC mAP/AULC mAP/AULC mAP/AULC mAP/AULC

Baseline
Random 8.7 / 4.3 12.4 / 14.9 15.5 / 28.8 18.7 / 45.9 21.9 / 66.2 32.4 / 264.0

Our Methods
Max 9.2 / 4.6 12.9 / 15.7 15.7 / 30.0 19.8 / 47.8 22.6 / 69.0 32.0 / 269.3
Avg 9.0 / 4.5 12.4 / 15.2 15.8 / 29.2 19.3 / 46.8 22.7 / 67.8 33.3 / 266.4
Sum 8.5 / 4.2 14.3 / 15.6 17.3 / 31.4 19.8 / 49.9 22.7 / 71.2 32.4 / 268.2
Max + w 9.2 / 4.6 13.0 / 15.7 17.0 / 30.7 20.6 / 49.5 23.2 / 71.4 33.0 / 271.0
Avg + w 8.7 / 4.3 12.5 / 14.9 16.6 / 29.4 19.9 / 47.7 22.4 / 68.8 32.7 / 267.1
Sum + w 8.7 / 4.4 13.7 / 15.6 17.5 / 31.2 20.9 / 50.4 24.3 / 72.9 32.7 / 273.6

tion while the Sum metric is outperformed marginally.
When more and more samples are added (i.e., 100 to
250 samples), we observe a superior performance of
the Sum aggregation. But also the two other aggre-
gation techniques are able to reach better rates than
mere random selection. We attribute the fast increase
of performance for the Sum metric to its tendency to
select samples with many object inside which leads to
more annotated bounding boxes. However, the target
application is a scenario where the amount of unla-
beled data is huge or new data is approaching contin-
uously and hence a complete evaluation by humans is
infeasible. Here, we consider the amount of images to
be evaluated more critical as the time needed to draw
single bounding boxes. Another interesting fact is the
almost equal performance of Max and Avg which can
be explained as follows: the VOC dataset consists
mostly of images with only one object in them. There-
fore, both metrics lead to a similar score if objects are
identified correctly.

We can also see that the proposed balance han-
dling (i.e., ·+w) causes slight losses in performance
at very early stages up to 100 samples. At subsequent

stages, it helps to gain noticeable improvements. Es-
pecially for the Sum method benefits from the sam-
ple weighting scheme. A possible explanation for this
behavior would be the following: At early stages, the
classifier has not seen many samples of each class and
therefore suffers more from miss-classification errors.
Hence, the weighting scheme is not able to encourage
the selection of rare class samples since the classi-
fier decisions are still too unstable. At later stages,
this problem becomes less severe and the weighting
scheme is much more helpful than in the beginning.
This could also explain the performance of Sum in
general. Further details on learning pace are given
later in a qualitative study on model evolution. Addi-
tionally, the Sum aggregation tends to select batches
with many detections in it. Hence, it is natural that
the improvement is noticeable the most with this ag-
gregation technique since it helps to find batches with
many rare objects in it.

Quantitative Results – All Available Samples In
our case, active learning only affects the sequence of



unlabeled batches if we train until there is no new data
available. Therefore, there are only very small differ-
ences between each method’s results for mAP after
training has completed. The small differences indi-
cate that the chosen incremental learning technique
(Käding et al., 2016b) is suitable for the faced sce-
nario. In continuous exploration, it is usually assumed
that there will be more new unlabeled data available
than can be processed. Nevertheless, evaluating the
long term performance of our metrics is important to
detect possible deterioration over time compared to
random selection. In contrast to this, the differences
in AULC arise from the improvements of the different
methods during the experimental run and therefore
should be considered as distinctive feature implying
the performance over the whole experiment. Having
this in mind, we can still see that Sum performs best
while the weighting generally leads to improvements.

Quantitative Results — Class-wise Analysis To
validate the efficacy of our sample weighting strategy
as discussed in Section 3.2, it is important to measure
not only overall performance, but to look at metrics
for individual classes. Fig. 2 shows the performance
over time on the validation set for each individual
class. For reference, we also provide the class distri-
bution over the relevant part of the VOC dataset, indi-
cated by number of object instances in total as well as
number of images with at least one instance in it.

In the first row, we observe an advantage for the
weighted method when looking at the performance of
cow. Out of the three classes in this way of splitting
cow has the fewest instances in the dataset. The per-
formance of tvmonitor in the second row shows a
similar pattern, where it is also the class with the low-
est number of object instances in the dataset. Ana-
lyzing bird and cat, the top classes by number of
instances in each way of splitting, we observe only
small differences in performance. Thus, we can show
evidence that our balancing scheme is able to improve
performance on rare classes while it does not effect
performance on frequent classes.

Intuitively, these observations are in line with our
expectations regarding our handling of class imbal-
ances, where examples of rare classes should be pre-
ferred during selection. We start to observe the advan-
tages after around 100 training examples, because, for
the selection to happen correctly, the prediction of the
rare class needs to be correct in the first place.

Qualitative Results – Sample Valuation We cal-
culate whole image scores over bird, cow and sheep
samples using our corresponding initial model trained
on the remaining classes for the first way of splitting.

0 250 500
# samples

0

10

20

30

A
P

(%
)

bird

Sum
Sum + w

0 250 500
# samples

0

10

20

30

A
P

(%
)

cow

Sum
Sum + w

0 250 500
# samples

0

10

20

A
P

(%
)

sheep

Sum
Sum + w

0 250 500
# samples

0

10

20

A
P

(%
)

boat

Sum
Sum + w

0 250 500
# samples

0

20

40

60

A
P

(%
)

cat

Sum
Sum + w

0 250 500
# samples

0

10

20

A
P

(%
)

tvmonitor

Sum
Sum + w

bird cow sheep boat cat tvmonitor
0

500

1000

#
sa

m
pl

es

Number of samples in VOC dataset by class

Objects
Images

Figure 2: Class-wise validation results on part B of the VOC
dataset (i.e.,, unknown classes). The first row details the
first way of splitting (bird,cow,sheep) while the second
row shows the second way (boat,cat,tvmonitor). For ref-
erence, the distribution of samples (object instances as well
as images with at least one instance) over the VOC dataset
is provided in the third row.
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Figure 3: Value of examples of cow, sheep and bird as determined by the Sum, Avg and Max metrics using the initial model.
The top seven selection is not affected by using our weighting method to counter training set class imbalaces.

Figure 3 shows those images that the three aggrega-
tion metrics consider the most valuable. Additionally,
common zero scoring images are shown. The least
valuable images shown here are representative of all
proposed metrics because they do not lead to any de-
tections using the initial model. Note that there are
more than seven images with zero score in the train-
ing dataset. The images shown in the figure have been
selected randomly.

Intuitively, the Sum metric should prefer images
with many objects in them over single objects, even if
individual detection values are low. Although VOC
contains mostly of images with a single object, all
seven of the highest scoring images contain at least
three objects. The Average and Maximum metric
prefer almost identical images since the average and
maximum are used to be nearly equal for few detec-
tions. With few exceptions, the most valuable images
contain pristine examples of each object. They are
well lit and isolated. The objects in the zero scoring
images are more noisy and hard to identify even for
the human viewer, resulting in fewer reliable detec-
tions.

Qualitative Results – Model Evolution Observing
the change in model output as new data is learned can
help estimate the number of samples needed to learn
new classes and identify possible confusions. Fig. 4
shows the evolution from initial guesses to correct de-
tections after learning 150 samples, corresponding to
an fast exploration scenario. For selection, the Sum
metric is used.

The class confusions shown in the figure are typ-
ical for this scenario. cow and sheep are recognized

as visually similar dog, horse and cat. bird is often
classified as aeroplane. After selecting and learning
150 samples, the objects are detected and classified
correctly and reliably.

During the learning process, there are also un-
known objects. Please note, being able to mark ob-
jects as unknown is a direct consequence of using
YOLO. Those objects have a detection confidence
above the required threshold, but no classification is
certain enough. This property of YOLO is important
for the discovery of objects of new classes. Never-
theless, if similar information is available from other
detection methods, our techniques could easily be ap-
plied.

5 Conclusions

In this paper, we propose several uncertainty-
based active learning metrics for object detection.
They only require a distribution of classification
scores per detection. Depending on the specific task,
an object detector that will report objects of un-
known classes is also important. Additionally, we
propose a sample weighting scheme to balance selec-
tions among classes.

We evaluate the proposed metrics on the PASCAL
VOC 2012 dataset (Everingham et al., 2010) and of-
fer quantitative and qualitative results and analysis.
We show that the proposed metrics are able to guide
the annotation process efficiently which leads to su-
perior performance in comparison to a random selec-
tion baseline. In our experimental evaluation, the Sum
metric is able to achieve best results overall which can



New classes (part B) Known classes (part A)
bird cow sheep aeroplane car

Initial prediction

After 50 samples

After 150 samples

Figure 4: Evolution of detections on examples from validation set.

be attributed to the fact that it tends to select batches
with many single objects in it. However, the targeted
scenario is an application with huge amounts of unla-
beled data where we consider the amount of images
to be evaluated as more critical than the time needed
to draw single bounding boxes. Examples would be
camera streams or camera trap data. To expedite
annotation, our approach could be combined with a
weakly supervised learning approach as presented in
(Papadopoulos et al., 2016). We also showed that our
weighting scheme leads to even increased accuracies.

All presented metrics could be applied to other
deep object detectors, such as the variants of SSD
(Liu et al., 2016), the improved R-CNNs e.g., (Ren
et al., 2015) or the newer versions of YOLO (Red-
mon and Farhadi, 2017). Moreover, our proposed
metrics are not restricted to deep object detection and
could be applied to arbitrary object detection methods
if they fulfill the requirements. It only requires a com-
plete distribution of classifications scores per detec-
tion. Also the underlying uncertainty measure could
be replaced with arbitrary active learning metrics to
be aggregated afterwards. Depending on the specific
task, an object detector that will report objects of un-
known classes is also important.

The proposed aggregation strategies also general-
ize to selection of images based on segmentation re-
sults or any other type of image partition. The result-
ing scores could also be applied in a novelty detection
scenario.
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Käding, C., Freytag, A., Rodner, E., Perino, A., and
Denzler, J. (2016a). Large-scale active learn-
ing with approximated expected model output
changes. In German Conference on Pattern
Recognition (GCPR).
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