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Abstract Animal re-identification based on image data, either recorded man-
ually by photographers or automatically with camera traps, is an important
task for ecological studies about biodiversity and conservation that can be
highly automatized with algorithms from computer vision and machine learn-
ing. However, fixed identification models only trained with standard datasets
before their application will quickly reach their limits, especially for long-term
monitoring with changing environmental conditions, varying visual appear-
ances of individuals over time that differ a lot from those in the training data,
and new occurring individuals that have not been observed before. Hence,
we believe that active learning with human-in-the-loop and continuous life-
long learning is important in order to tackle these challenges and to obtain
high performance recognition systems when dealing with huge amounts of
additional data that becomes available during the application. Our general
approach with image features from deep neural networks and decoupled de-
cision models can be applied to many different mammalian species and is
perfectly suited for continuous improvements of the recognition systems via
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lifelong learning. In our identification experiments, we consider four different
taxa, namely two elephant species: African forest elephants and Asian ele-
phants, as well as two species of great apes: gorillas and chimpanzees. Going
beyond classical re-identification, our decoupled approach can also be used
for predicting attributes of individuals like gender or age using classification
or regression methods. Although applicable for small datasets of individuals
as well, we argue that even better recognition performance will be achieved
by improving decision models gradually via lifelong learning to exploit huge
datasets and continuous recordings from long-term applications. We highlight
that algorithms for deploying lifelong learning in real observational studies
exist and are ready for use. Hence, lifelong learning might become a valuable
concept that supports practitioners when analyzing large-scale image data
during long-term monitoring of mammals.

Keywords Lifelong learning · Continuous learning · Active learning · Human-
in-the-loop · Deep learning · Neural networks · Animal re-identification ·
Attribute prediction

Mathematics Subject Classification (2020) 68T07 · 68T45

1 Introduction

Many ecological studies for monitoring biodiversity or analyzing animal be-
havior require the identification of individuals. Typically, a lot of images or
even videos are collected either automatically by camera traps or manually
by photographers. The huge amount of collected image data then needs to be
evaluated to first perform a visual identification and afterwards a downstream
task like recognizing activities of individuals, or counting individuals to es-
timate population sizes and to track changes in population sizes over time.
Instead of manually investigating the large image collections, algorithms from
computer vision and machine learning enable an automatic identification to
support practitioners.

Our work focuses on a general approach of utilizing image features ex-
tracted by deep neural networks as abstract but high-level visual represen-
tations of individuals and we exploit different convolutional neural network
architectures for this task. We demonstrate that based on these representa-
tions, individuals can be distinguished automatically using classifiers trained
with extracted features from annotated reference images. Hence, in our ap-
proach we decouple the feature extraction with deep neural networks from the
decision model used to perform the classification, in contrast to an end-to-end
learning of features and decision rules. To show the general applicability of
our approach, we consider several taxa in our experiments: elephants (African
and Asian) and great apes (gorillas and chimpanzees) shown in Fig. 1.

Moreover, besides the identification of individuals, we also show the use-
fulness of the extracted image features for predicting several attributes of the
animals. These are, for example, discrete attributes like the gender (binary
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Fig. 1 Overview of the different taxa and example images for the species that are considered
for automatic visual identification in this paper: the African forest elephant (Loxodonta
cyclotis) in the top left image (from the ELPephants dataset presented by Körschens and
Denzler (2019)), the Asian elephant (Elephas maximus) in the top right image (from a
video provided by the CCC lab: https://ccconservation.org/), the Western lowland gorilla
(Gorilla gorilla gorilla) in the bottom left image (from the dataset of Brust et al. (2017)),
and the chimpanzee (Pan troglodytes) in the bottom right image (from the C-Tai dataset of
Freytag et al. (2016)).

classification: male vs. female) or the age group (multi-class classification:
infant, juvenile, subadult, adult and elderly). However, also continuous at-
tributes like the age of the individual can be estimated from the extracted
image features using regression approaches.

One advantage of our decoupled approach that separates the feature ex-
tractor from the decision model is that we can easily exchange the final part
of the processing pipeline and use either classification models or regression
models for the prediction, depending on the task that should be solved. We
do not need to change or re-train the neural network that is used for feature
extraction when switching to another task and can therefore exploit the rich-
ness and compactness of the feature representations for multiple prediction
problems. Hence, pre-trained neural networks can be leveraged to avoid costly
network training from scratch, which is often difficult with limited amount of
labeled training data for an individual identification task, especially at the be-
ginning of a monitoring study. In contrast, extracting features once and then
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training a conventional classifier, e.g., a linear support vector machine (SVM)
or a Gaussian process (GP) model, can be done quickly and in the field.

A second advantage of our decoupled approach is the easy integration of
lifelong learning (Käding et al., 2016d). Instead of learning identification sys-
tems only once before the application using a fixed training set of annotated
images, we also want to take changes into account, which naturally arise dur-
ing the application when monitoring animals for a longer time period. For
example, new individuals might enter the scenes that have not been recorded
before and therefore need special treatment. Even known individuals might oc-
cur in unusual poses, their visual appearances change due to aging or injuries,
or they are partially occluded in the images by other animals or vegetation.
In order to avoid false predictions of an automatic system in such challenging
scenarios, feedback from experts should be incorporated to resolve these hard
cases where the algorithms have problems or are most uncertain. Furthermore,
not all incoming images need to be checked manually and instead, the recog-
nition system could automatically select only a subset of most relevant images
whose labels are then verified by the experts to reduce the annotation efforts.
This selection process is the main task of active learning (Settles, 2009), a key
ingredient of lifelong learning to incorporate expert knowledge and feedback
via a concept called human-in-the-loop (Käding et al., 2016d).

We therefore propose the combination of our decoupled approach with
lifelong learning in order to incorporate additional knowledge over time by re-
questing further annotations for selected images during the application (Käding
et al., 2016d). This allows for continuous improvements of the automatic iden-
tification system by exploiting newly recorded data and corresponding labels
provided by experts. These labeled images are used to update the decision
model of our approach (a classifier or a regression model) with incremental
learning techniques in order to avoid costly re-training from scratch. This leads
to a feedback loop of continuously requesting further annotations of domain
experts to improve the recognition system over time, and this feedback loop
can be repeated many times. Hence, learning to distinguish individuals can
be improved over and over again by incorporating more and more annotated
images during the application.

With lifelong learning, it is meant that the system learns during its whole
life span that is basically defined by the duration of its application. This is
in contrast to the common approach of taking any pre-trained neural network
with parameters learned on standard datasets, probably slightly adapting it
for the target task by fine-tuning on a small target dataset, and trying to
solve the identification task with this fixed recognition model. While such an
approach is nowadays easily achievable due to many well-documented deep
learning frameworks that provide different neural network architectures with
pre-trained parameters, its rating might be questionable. Depending on the
study design and the benchmark used for evaluation, fixed pre-trained mod-
els can achieve good performance on rather small-scale datasets when there
are only little variations of the underlying data distribution. However, long-
term monitoring in practice has to cope with several additional challenges as
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mentioned above, such that the recognition system needs to adapt to new
situations and circumstances, ideally by also incorporating expert feedback to
verify certain cases that are difficult to decide. Those mechanisms are provided
by lifelong learning, and we argue that considering long-term monitoring of
mammals as an application for lifelong learning leads to continuous model
improvements and increased recognition performance.

Our experimental results in Sect. 4 are a collection of different studies (Frey-
tag et al., 2016; Käding et al., 2016a; Brust et al., 2017; Körschens et al., 2018;
Körschens and Denzler, 2019) that we conducted during the last years in the
context of animal re-identification and attribute prediction, now put under
one umbrella because the developed recognition systems for different animal
species share the same general approach in terms of algorithmic design. While
the original work published at computer vision and machine learning venues
aimed at describing the developments of the different algorithms from a tech-
nical perspective, we consider them here from the application point of view.
We put them in relation to each other in context of the same general approach,
and with their basic ability to incorporate lifelong learning techniques that can
directly be applied to the incorporated decision models for improving them.
We also present new results for identifying Asian elephants in camera trap
videos (Sect. 4.2) and highlight the advanced possibilities for monitoring an-
imals beyond identifying individuals. These possibilities are on the one hand
attribute predictions of individuals and on the other hand lifelong learning
with human-in-the-loop because the latter becomes more and more important
for real applications and long-term monitoring (Stewart et al., 2021). Lifelong
learning and the involved active sample selection via active learning strategies
helps to reduce the workload of trained field experts for annotating data, since
it becomes impossible to manually inspect all images due to the huge amount
of recordings that are collected over time.

2 Related work

In this section, we briefly review related work on algorithms for the tasks
we want to solve. After mentioning relevant work on image classification and
object detection in general (Sect. 2.1), we also list approaches for fine-grained
recognition of different animal species (Sect. 2.2), because it is a highly related
task similar to identifying individuals (Sect. 2.3) from a machine learning
perspective. Furthermore, we discuss previous work on lifelong learning with a
particular focus on active learning and human-in-the-loop aspects (Sect. 2.4).

2.1 Image classification and object detection

Image classification methods can be used to assign discrete labels such as the
ID of an individual animal to an entire image. In case of multiple animals in
a single image, it makes sense to localize each individual in an image, e.g., by
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a rectangular bounding box, and assign an ID to each animal separately. This
joint estimation of bounding boxes and class labels (IDs) is in general called
object detection. In the following, we review related work on image classifica-
tion and object detection based on recent deep neural network developments.

2.1.1 Deep neural networks for image classification

Deep neural networks and in particular convolutional neural networks (CNNs)
have already been developed decades ago (LeCun et al., 1989; Matan et al.,
1990; LeCun et al., 1990; LeCun and Bengio, 1995; LeCun et al., 1998), and
they consist of multiple data processing units arranged in separate but inter-
connected layers to transform input data like images directly into the desired
outputs like classification scores used for individual identification. However,
their major breakthrough in the computer vision community and especially
for the task of image classification has been achieved by Krizhevsky et al.
(2012). With the support of powerful graphical processing units (GPUs), they
have been able to train a large CNN architecture often referred to as AlexNet
on the well-known ImageNet dataset (Deng et al., 2009; Russakovsky et al.,
2015) and improved classification accuracy by a large margin compared to
competing approaches. Since then, various neural network layers and differ-
ent architectures have been proposed that further improved the performance
for automatic image classification, for example, ResNet (He et al., 2016) and
Inception (Szegedy et al., 2016) architectures besides others (Simonyan and
Zisserman, 2015; Chollet, 2017; Xie et al., 2017). In particular, the size of
the networks has grown over time, with an increasing number of layers and
network parameters to enable more expressive power of the learned feature
representations. Although developed for object recognition in general, these
deep neural networks are able to learn rather generic feature representations
from example data. Hence, neural networks pre-trained on object category
datasets like ImageNet (Russakovsky et al., 2015) can also be applied as fea-
ture extractors to obtain reasonable numerical representations for images of
objects in a specific domain, e.g., for monitoring certain animals. Sometimes,
the networks are slightly adapted to the new domain by a transfer learning
technique called fine-tuning (Yosinski et al., 2014; Sharif Razavian et al., 2014;
Long et al., 2019). Transfer learning means that the knowledge extracted from
one dataset during the training of a neural network for a certain classification
task can be transferred to and exploited for another classification task, e.g.,
by using a neural network for identifying individuals that has originally been
trained to recognize general object categories. Furthermore, CNNs often serve
as backbone network architectures for object detection methods like the ones
listed in the following.

2.1.2 Object detection with deep neural networks

There exist many approaches for localizing objects in images, however, in the
following, we focus on those based on deep learning methods. One of the first
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deep object detectors has been proposed by Girshick et al. (2014) and is called
region-based CNN (R-CNN). Object proposals determined with an unsuper-
vised method are selected as candidates, for which features are extracted by a
backbone CNN and classified by a support vector machine (SVM), one for each
class, to determine the corresponding class label. This strategy improved pre-
vious sliding window-based approaches for object detection (Dalal and Triggs,
2005; Felzenszwalb et al., 2010) and our approach for identifying individuals
described in Sect. 3 follows a similar concept. Note that the R-CNN approach
has been extended and improved in several ways (Girshick, 2015; Ren et al.,
2015; He et al., 2017).

Another general object detection approach based on deep learning is YOLO
proposed by Redmon et al. (2016). This detector is trained end-to-end and
is able to obtain all detections for an image with a single forward pass of
the network and minimal post-processing operations. Another state-of-the-art
approach for object detection is single-shot detection (SSD) proposed by Liu
et al. (2016). Similar to YOLO, they also use only a single forward pass per
image but use a more complex output encoding together with assumptions
about the aspect ratios of bounding boxes as well as predictions on different
scales. Further improvements of the YOLO approach have been published as
YOLOv2 (Redmon and Farhadi, 2017), like more fine-grained feature maps
and the awareness of multiple object scales by resizing the network during
training. In the context of wildlife monitoring, dedicated object detectors based
on R-CNN or YOLO have been trained (Parham et al., 2018; Beery et al., 2019;
Tabak et al., 2019).

2.2 Fine-grained recognition and species classification

Fine-grained recognition denotes an image classification task for which the
classes often differ only slightly in small details because objects or instances
belong to the same domain. This domain is typically given by a joint super-
class, e.g., identifying different car models where all objects are cars (Krause
et al., 2013). However, fine-grained recognition is more frequently applied
in the context of animal species classification, e.g., distinguishing different
bird species (Wah et al., 2011; Cui et al., 2018; Korsch et al., 2019, 2021b)
or moth species (Rodner et al., 2015; Böhlke et al., 2021b,a; Korsch et al.,
2021a). Besides early studies on fine-grained recognition with deep neural net-
works (Branson et al., 2014; Rodner et al., 2016), many approaches have been
developed that can coarsely be partitioned in two subsets.

The first subset contains global approaches that solely process the entire
image with a neural network as in standard image classification, either relying
on smart pre-training and transfer learning (Krause et al., 2016; Cui et al.,
2018) or applying advanced feature pooling strategies for aggregating localized
visual information (Lin et al., 2015; Gao et al., 2016; Simon et al., 2020). On
the other hand, the second subset denotes part-based and attention-based
approaches (Ge et al., 2019; He et al., 2019; Korsch et al., 2019; Zhang et al.,
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2019), which rely on detecting relevant image regions often associated with
semantic parts like the beak, the belly, and the wings of a bird. These regions
are then encoded using feature representations from deep neural networks that
should help focus on the small details for distinguishing visually similar classes.
While automatic species classification is already quite challenging due to the
high visual similarity of different species from the same class, order, or family,
the distinction of individuals from the same species is more complicated since
relevant features might be even harder to determine.

Note that species recognition is not always a fine-grained recognition prob-
lem, e.g., when considering camera traps in forests or national parks where
the system needs to distinguish different wild animals like deer, fox, and wild
boar. However, these species recognition tasks are also commonly tackled with
deep neural networks (Villa et al., 2017; Norouzzadeh et al., 2018; Willi et al.,
2019; Tabak et al., 2019; Schneider et al., 2020a).

2.3 Identifying individuals

Traditional methods for identifying individuals of a certain animal species
follow a non-invasive genetic mark-recapture approach that allows for pre-
cise estimates but requires high levels of expertise leading to limited scal-
ability (Kühl, 2008; Guschanski et al., 2009; Arandjelovic et al., 2010; Roy
et al., 2014). Camera traps offer a cheap and widely accessible alternative for
long-term usage (Schneider et al., 2019), e.g., in combination with distance
sampling (Howe et al., 2017) or capture-recapture models (Kühl, 2008; Peb-
sworth and LaFleur, 2014). Thus, recording large amounts of visual data for
monitoring purposes also requires computer vision algorithms for automatic
evaluations (Schneider et al., 2019), since manual investigations would be too
time-consuming (Schneider et al., 2020a).

The field of animal biometrics (Kühl and Burghardt, 2013) is dedicated to
detecting visual patterns that enable the distinction of individuals (Crall et al.,
2013; Cheema and Anand, 2017) and different systems have been developed for
animal detection and re-identification (Crall et al., 2013; Berger-Wolf et al.,
2017; Parham et al., 2018; Yang et al., 2019; Bakliwal and Ravela, 2020).
However, recent advances in recognizing human faces (Taigman et al., 2014;
Schroff et al., 2015; Parkhi et al., 2015) have inspired the identification of
great apes (Loos et al., 2011; Loos, 2012; Loos and Ernst, 2013; Brust et al.,
2017; Freytag et al., 2016; Crunchant et al., 2017; Schneider et al., 2020b)
and elephants (Ardovini et al., 2008; Körschens et al., 2018; Körschens and
Denzler, 2019; Kulits et al., 2021) based on the detected faces of the animals.
Further animals that have been considered for automatic re-identification are
tigers (Shukla et al., 2019; Yu et al., 2019; Liu et al., 2019; Weideman et al.,
2020) and turtles (Carter et al., 2014; Dunbar et al., 2021), as well as ringed
seals (Nepovinnykh et al., 2020) and manta rays (Moskvyak et al., 2020).
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2.4 Lifelong learning and active learning

A typical machine learning workflow in an academic setting, including a part
of the experiments in this work, is best described in terms of a waterfall
model (Data Science Process Alliance, 2021). The discrete steps of collecting
data, deriving and optimizing a model, and finally deploying it, are performed
in order and once each. In contrast, lifelong learning (Käding et al., 2016d)
assumes a continuous stream of unlabeled data. Repeatedly, a small fraction is
selected for labeling by active learning methods (Settles, 2009; Freytag et al.,
2014; Käding et al., 2016a, 2018; Wang et al., 2017; Brust et al., 2019) and
then used to update the model incrementally (Käding et al., 2016c; Rebuffi
et al., 2017; Castro et al., 2018). The continuity of lifelong learning aligns well
with long-term monitoring projects, and active learning specifically is identi-
fied as a promising research avenue in this context (Norouzzadeh et al., 2018).
Drawbacks of the waterfall learning approach for monitoring are illustrated
by Beery et al. (2018) with solutions involving repeated training proposed by
Beery et al. (2019).

Active learning improves annotation time efficiency in animal presence de-
tection (Käding et al., 2016a), species classification (Evans et al., 2014; Brust
et al., 2020) as well as re-identification tasks (Norouzzadeh et al., 2020). Con-
tinuous data and model updates are posed as a fundamental problem for ani-
mal identification by Stewart et al. (2021). An annotation interface for ecologi-
cal monitoring studies is provided by Kellenberger et al. (2020) and a graphical
user interface implementing a lifelong learning approach for animal monitoring
is described by Brust et al. (2021).

3 Methods

In this section, we first describe our general approach of using image features
from deep neural networks and decoupled decision models to perform the pre-
diction task (Sect. 3.1). We then characterize the two involved building blocks
individually: the feature extraction using a backbone CNN network that is
restricted to the image region of the localized animal and its head (Sect. 3.2),
and the application of standard machine learning models for classification or
regression in order to perform an identification task or to predict attributes of
the animals (Sect. 3.3). Decoupling the feature extraction from the final deci-
sion model for predicting the desired outputs easily allows for incorporating
lifelong learning, where we want to integrate further knowledge via expert an-
notations for new images following the human-in-the-loop concept (Sect. 3.4).
However, integrating human feedback typically requires active learning strate-
gies for selecting the most relevant images that need to be annotated in order
to gain most from the additional annotation efforts, and incremental learning
techniques to update the models (Sect. 3.5).
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Fig. 2 Overview of our general approach: the head of an individual is first detected with
a deep learning object detector, then features from the corresponding image patch are ex-
tracted using a pre-trained deep neural network architecture. Finally, the extracted features
can be used by a decision model to predict the desired outputs, e.g., either a classifier to
obtain the corresponding ID or a regression method to obtain continuous attribute values.
The chimpanzee image is taken from the C-Zoo dataset of Freytag et al. (2016).

3.1 General approach using deep image features and decoupled decision
models

Our general approach is visualized in Fig. 2 and the main idea is to decouple
the feature extraction with powerful CNN architectures from the final decision
model that performs the prediction based on the extracted feature represen-
tations. To obtain meaningful features for an identification task, the feature
extraction is restricted to the image region covered by the individual or even
more localized to the corresponding head region, which is obtained by an ob-
ject detection approach. Afterwards, the extracted features can be used to
perform either individual identification or attribute prediction with dedicated
decision models, which are machine learning models either for classification
to obtain discrete outputs or for regression to obtain continuous outputs. In
the next section, we specifically focus on the feature extraction for individuals
which first need to be localized in the image. Note that localizing an individual
or its head can be skipped if one is interested in an identification of individu-
als in manually taken photographs, where each image already contains only a
single individual or its head in a close-up view. However, for a wider range of
applications including the identification in images from camera traps, we also
include the localization step.

3.2 Individual localization and deep image feature extraction

Given an image containing one or multiple animals of the same species, we
first run an object detector to localize each individual and determine a cor-
responding bounding box. For this task, a deep learning detector like R-CNN
or YOLO can be used as mentioned in Sect. 2.1. Since one usually has not
enough training data for a single species to train such a detector from scratch,
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pre-trained detection networks for standard object categories are used and
fine-tuned with a small set of annotated images with animals from the target
species.

As confirmed by domain experts, the head of an animal usually contains
many discriminative features for distinguishing individuals, and it therefore
makes sense to focus on the head regions for extracting meaningful feature
representations. Hence, one can directly fine-tune the detector only for the
heads and not for the whole bodies, which requires corresponding bounding
box annotations. In case of great apes, it is then advantageous to fine-tune a
face detector trained to localize human faces in images instead of a detector
for common objects, mainly because of the higher similarity of ape faces to
human faces and because of the large amount of available datasets for human
face recognition that can be used to pre-train the detector (Schroff et al., 2015;
Parkhi et al., 2015; Taigman et al., 2014).

Given the corresponding bounding boxes, we extract feature representa-
tions from these image regions by applying deep neural networks to the as-
sociated image patches. Due to the limited amount of annotated data that is
usually available for an identification task, it is not possible to learn parame-
ters of large, powerful neural network architectures only from the images of the
species under investigation. The reason for this is that there are way more pa-
rameters to estimate for large network architectures compared to the number
of training images, which leads to heavy overfitting of the learned model to the
training dataset because the model would be able to memorize each individual
example. In the supplemental material of Käding et al. (2016c), we show that
the negative impact of fine-tuning only the last layer, as opposed to more layers
or the whole network, is negligible even when there is sufficient training data.
To leverage their advantages in our restricted training data scenarios, we apply
pre-trained neural networks as black-box feature extractors, where the network
parameters have been determined using large-scale datasets of common object
categories, e.g., ImageNet (Russakovsky et al., 2015). Common architectures
like AlexNet (Krizhevsky et al., 2012) or residual networks like ResNet50 (He
et al., 2016) are implemented in various deep learning frameworks and can
easily be applied off-the-shelf. Given the extracted feature representations, a
classifier can be learned from annotated training data using these features as
inputs and delivering a class label that is associated with the ID of an indi-
vidual. However, classifiers can also be used for predicting discrete attributes
from the extracted feature representations, and methods for regression allow
the estimation of continuous attributes like the age of an individual.

3.3 Classification and regression for individual identification and attribute
prediction

Since we decoupled the feature extraction with deep neural networks from
the final prediction for the corresponding task, we are free to choose another
machine learning model that operates on the extracted features for estimating



12 Bodesheim et al.

animal IDs or attributes. This final model for prediction can be substituted
according to the task that needs to be solved, and it could either be a multi-
class classifier for animal re-identification or age group prediction, a binary
classifier for gender prediction, or a regression model for estimating continuous
values like the age of an animal.

For classification tasks, we rely on support vector machines (SVMs) that
have been widely used for both binary and multi-class classification (Cortes
and Vapnik, 1995; Schölkopf and Smola, 2001). The idea of SVMs is to find
decision boundaries in the feature space that separate different classes (e.g.,
individual animals) with a maximum margin, i.e., maximizing the distance
between the examples of each class and the decision boundary while ensuring
that examples of the same class are on the same side of the decision boundary.
With SVMs it is possible to determine linear decision boundaries, i.e., hyper-
planes in the feature space via linear SVMs, or nonlinear decision boundaries
by using kernel functions and kernel SVM (Schölkopf and Smola, 2001).

Although there exist support vector approaches for regression (Schölkopf
and Smola, 2001), we use Gaussian processes (GPs) for regression tasks (Ras-
mussen and Williams, 2006). They have the advantage that uncertainties can
be estimated together with the predicted output, because the model is formu-
lated in a probabilistic manner, and that closed-form solutions exist for learn-
ing the model parameters under the assumption of a Gaussian noise model.
Note that GPs can also be used for classification via label regression (Ras-
mussen and Williams, 2006; Kapoor et al., 2010; Rodner et al., 2017). Further-
more, SVMs and GPs have the advantage that there exist update rules and al-
gorithms for incremental learning and incorporating additional data (Cauwen-
berghs and Poggio, 2001; Diehl and Cauwenberghs, 2003; Lütz et al., 2013;
Freytag et al., 2014), which is an important aspect for lifelong learning.

Alternatives such as random forests, nearest-neighbor rules, and other clas-
sifiers are not considered in our evaluation. Since the features generated by a
pre-trained neural network are trained to be linearly separable by definition,
there is little need for highly non-linear or overparameterized classifiers. In-
stead, we leverage the high computational efficiency of SVM and GP models.

3.4 Lifelong learning with human-in-the-loop

Lifelong learning denotes a concept, where learning a recognition system is not
fully automatic, but where human knowledge and intervention is integrated
in the training algorithms in order to improve learning and to make the final
decisions of the recognition system more robust. It can be seen as a semi-
automatic learning approach and to emphasize the human interaction part,
it is called learning with human-in-the-loop. The loop is usually referred to a
continuous training process of a recognition system in the context of long-term
applications where additional data becomes available over time. We visualize
this loop in a lifelong learning cycle in Fig. 3. Given an initial model learned
with labeled training data, the following steps are repeated over and over
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Fig. 3 Overview of our proposed lifelong learning cycle realizing the human-in-the-loop
concept. After learning an initial model with annotated training data, a continuous feedback
loop is established that leverages additional data recorded during the application. Active
learning strategies select valuable examples from the incoming data stream that are then
annotated by experts (human interaction) and finally used to update and improve the model
via incremental learning. Chimpanzee images are taken from the C-Zoo dataset of Freytag
et al. (2016).

again during an application, where new unlabeled data becomes available due
to continuous recordings. First, active learning strategies are applied to select
valuable samples that are supposed to be the most interesting and important
ones with potentially the largest impact on improving the current model. Of
course the main question here is how to select these samples and details are
given in the next section (Sect. 3.5). The selected samples are then passed to
the domain experts for annotation. This is the human interaction part and one
common goal is to reduce the labeling efforts of the experts or to keep it on a
reasonable and maintainable level because manual inspection is usually a time-
consuming task. Finally, we have additional labeled data provided by expert
feedback, which can be used to improve the model via incremental learning
and corresponding model parameter updates. In the next step, the loop starts
again with automatically selecting samples from the incoming data. Due to
incorporating expert feedback during learning, the continuous training loop is
also called feedback loop.

Note that one can further think of a combined recognition approach, where
the automatic system makes several proposals for an individual and an expert
has to decide for the final ID label based on the provided set of candidates.
In this way, the system supports the experts in the application by reducing
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the set of possible choices, and we reflect such an option in our experimental
results by providing also top-5 accuracies, meaning that the system is success-
ful when the correct individual is among the five highest ranked IDs, besides
top-1 accuracies, which are used for evaluating a fully automatic identification.
However, in a scenario where the system makes several suggestions per indi-
vidual, an expert is involved in every decision for every recording, which might
be helpful for studies at smaller scales but becomes infeasible for large-scale
monitoring activities.

We therefore consider human-in-the-loop for improving the training of the
recognition system over time in a lifelong learning setup, where we get access
to additional image data during the application. In order to learn from the ad-
ditional data, appropriate annotations for the new data are required. While it
would also be possible to request bounding box annotations, which could even
be provided by laymen who do not need to be able to distinguish individuals,
we rely on the general detectors mentioned in Sect. 3.2 to localize animals in
the images automatically and focus on requesting ID labels or attribute an-
notations from experts. Note that few additional bounding box annotations
might be helpful for camera trap videos, in which multiple individuals need
to be tracked and identified (see Sect. 4.2 for a corresponding application).
In this case, annotating the first few frames with locations and IDs could be
helpful to improve the final performance of the system.

However, when we want to integrate additional image data in the learning
process, the main challenge is to select which images need to be annotated by
experts in order to gain the largest improvements of the recognition system
because it is usually too expensive to label all incoming data. On the one
hand, it is too expensive in terms of human resources and time that is spent by
trained experts for the labeling. They might not even be able to go through all
the recorded images in reasonable time, since the datasets of large-scale long-
term monitoring studies are simply overwhelming and continuously increasing.
On the other hand, it is too expensive from a computational resources point of
view. There is only limited data storage available such that not all incoming
data can be stored permanently. Furthermore, training or updating a model
with an ever increasing size of the training dataset takes large computational
time, also with sophisticated incremental learning techniques, and might even
become infeasible at some point if there is no appropriate sample selection
involved.

Therefore, useful data selection strategies have been developed as the key
ingredient for active learning methods (Settles, 2009; Freytag et al., 2014;
Käding et al., 2016a, 2018; Wang et al., 2017; Brust et al., 2019) to tackle
the sample selection problem. One obvious requirement for an application in
unconstrained environments is the annotation of data that belongs to a new
and previously unknown individual, i.e., which has not been observed in the
training dataset. Updating the classifier with data of new individuals allows
for increasing the number of individuals the system can recognize over time.
While there exist methods that specifically focus on automatically detecting
instances of unknown classes known as novelty detection (Bodesheim et al.,
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2013, 2015), active learning strategies also incorporate mechanisms for choos-
ing images of unknown individuals that should be presented to an expert
for annotation (Käding et al., 2015). Furthermore, related work on open set
recognition (Scheirer et al., 2013, 2014) and open world recognition (Bendale
and Boult, 2015) deal with classification problems, for which the number of
different classes is not fixed but might grow during the application.

For performing active learning with human-in-the-loop in a lifelong learning
application such as animal monitoring and identification, a continuous feed-
back loop needs to be implemented that consists of several steps: selecting a
subset of the incoming data for annotation, requesting the labels from experts,
incorporating the additional data in the learning process of the system, and
updating the model to enable improved predictive performance. We use the
WALI framework (Käding et al., 2016d) for this purpose, where WALI stands
for watch-ask-learn-improve and resembles the four steps mentioned before.
Note that these steps can be repeated many times during an application that
continuously delivers new data, which leads to a so-called lifelong learning cy-
cle (Käding et al., 2016d). After improving the model with learned parameter
updates from additionally annotated data, the incoming data stream is fur-
ther monitored and analyzed (watch), selecting the presumably most relevant
images for requesting expert annotations (ask), and learning from these ad-
ditional data samples (learn) to update the model parameters and obtain an
improved recognition system (improve). This feedback loop ensures that the
most current knowledge influences the selection performed by active learning.
For more details about WALI, we refer to the original work of Käding et al.
(2016d).

To summarize, the two most important aspects in a lifelong learning cycle
are a clever selection of data for annotating and efficient algorithms for in-
cremental learning to update the model parameters continuously. Hence, we
discuss active learning strategies and incremental learning techniques in the
following.

3.5 Active learning strategies and incremental learning

In order to update a recognition model with additional training samples, inter-
esting and relevant samples have to be selected from the incoming data during
the application such that experts can annotate them. The goal of active learn-
ing is to choose those samples that improve the recognition system the most
when they have been labeled and used to update the model parameters. There
exist several strategies for selecting meaningful samples, and the most promi-
nent and most intuitive one is uncertainty sampling (Lewis and Gale, 1994;
Settles, 2009; Wang et al., 2017). This means that those images are selected
for annotation, for which the current model is most uncertain about its predic-
tion. Hence, a human expert should resolve such situations, e.g., if a classifier
is less confident and favors multiple classes (IDs) for a single individual.
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Typically, a classifier provides a soft output score, i.e., a continuous scalar
value, for each class. This value reflects the confidence of the classifier that the
corresponding class is present in the image under investigation. Sometimes,
the output scores are probabilities for observing a certain class but stochastic
properties (outputs are between zero and one, and sum up to one over all
classes) are in general not required, since simply the class with the largest
output score can be assigned. Hence, the soft output score can in principle
directly be used as a measure of confidence for the classifier. Another easy
implementation of uncertainty sampling for a classification model is the best-
vs-second-best approach also known as margin sampling (Settles, 2009; Wang
et al., 2017). If the difference between the highest score and the second-highest
score of a classifier is small, the model is highly uncertain about assigning one
of these two classes to an image. Formally, the feature representation lies close
to the decision boundary of the classifier in the feature space, which increases
the risk of a misclassification. In this case, an expert should provide the correct
label.

However, extending models with samples selected by an uncertainty cri-
terion does not always lead to the best model improvements in terms of
achievable recognition performance, which we also show in our experiments
in Sect. 4.6. There exist more advanced active learning strategies, e.g., select-
ing unlabeled samples based on the expected model output change (EMOC)
criterion (Freytag et al., 2014; Käding et al., 2016a,b, 2018). With EMOC,
those samples are selected for annotation, which are expected to change the
future model outputs the most after they have been used to update the model
parameters. This makes sense because highly informative examples are likely
to cause large changes of model outputs for future predictions after the model
updates, and therefore those examples are most valuable for the model evolu-
tion. Hence, samples selected by the EMOC criterion have a large impact on
the behavior of the model, and it has been shown that EMOC is able to select
the most influential examples including those of unseen categories or objects in
new poses for classification tasks (Freytag et al., 2014; Käding et al., 2016a,b).

Another advantage of EMOC is that it can not only be used for classifi-
cation, but also for regression models (Käding et al., 2018). Although with
Gaussian processes for regression, one can directly compute the uncertainty
of an estimate in terms of the predictive variance (Rasmussen and Williams,
2006), it has been shown empirically that EMOC selects samples that are
more beneficial for faster learning of accurate models (Freytag et al., 2014;
Käding et al., 2016a,b). Hence, we propose using the EMOC criterion to se-
lect samples for any task, no matter if it is a classification task (individual
identification or discrete attribute prediction) or a regression task (continuous
attribute prediction).

Once the additional samples have been annotated by domain experts, the
recognition model needs to be updated via incremental learning techniques.
Although there exist approaches for updating deep neural networks in continu-
ous learning via fine-tuning (Käding et al., 2016c), there are several challenges
that arise in a lifelong learning scenario (Lomonaco and Maltoni, 2017; Maltoni
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and Lomonaco, 2019), such as catastrophic forgetting (McCloskey and Cohen,
1989; Robins, 1993; French, 1999; Shmelkov et al., 2017; Hayes et al., 2020).
Since in our general approach (Sect. 3.1), pre-trained neural networks are
used for feature extraction only because feature extraction is decoupled from
solving the final downstream task with a classification or regression model,
we do not update neural network parameters and keep the feature extraction
network constant. Note that this is even in line with attempts for end-to-end
incremental learning of neural networks (Castro et al., 2018), where the feature
extraction part is kept unchanged as well. Hence, we also only update the final
classification or regression models, which enables a tight feedback loop between
annotators and active learning methods due to very quick model updates. For
SVM classifiers, there are efficient update algorithms for incremental learning
available (Cauwenberghs and Poggio, 2001; Diehl and Cauwenberghs, 2003),
and in case of Gaussian process regression models, there exist closed-form
solutions for incremental learning (Lütz et al., 2013; Freytag et al., 2014).

4 Experiments

With our experiments, we demonstrate that our general approach works well
in numerous applications, including different animal species that are consid-
ered as well as different tasks that need to be solved (identification and at-
tribute predictions). We first show results for identifying individual elephants
(Sect. 4.1 and 4.2), followed by the identification of gorillas (Sect. 4.3) and
chimpanzees (Sect. 4.4). Then, our results for predicting attributes of animals
are presented (Sect. 4.5). Finally, we demonstrate the application of lifelong
learning, for which we picked the task of age prediction (Sect. 4.6). Note that
all datasets involved in our experiments including the one for lifelong learning
are of rather small scale in terms of number of example images. Nevertheless,
the benefits of lifelong learning are already visible and we expect even fur-
ther improvements of the recognition systems in actual long-term monitoring
applications.

4.1 Identification of African forest elephants

The first experiment we present is about the identification of African forest ele-
phants (Loxodonta cyclotis) (Körschens and Denzler, 2019), using images that
are recorded manually by photographers. We start with a short description of
the underlying dataset.

4.1.1 ELPephants dataset

For identifying African forest elephants, we use the ELPephants dataset pre-
sented by Körschens and Denzler (2019), which contains images from a long-
term monitoring study of elephants in the Dzanga bai clearing of the Dzanga-
Ndoki National Park in the Central African Republic. The dataset covers 276
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elephant individuals and consists of 2,078 manually taken images taken over
about 15 years, with each image having a single annotation for the depicted
individual. Although there is little to no occlusion of the animals in the im-
ages due to manually taken photographs in the clearing, there are several other
challenges besides varying viewpoints, like occlusion of useful features for iden-
tification through mud, aging of individuals during this long time span, as well
as changing appearance of individuals due to new scars and broken tusks due
to fights that might occur over time. For more details about this dataset, we
refer to the descriptions of Körschens and Denzler (2019). In our experiments,
the dataset is split randomly into 1,573 images for training and 505 images for
testing using a 75%/25% stratified split. Since our approach to this specific
problem assumes a closed set of individuals, the number of individuals in each
split is the same and there are no held-out individuals in the test set.

4.1.2 The elephant identification system (EIS)

For the identification of individual elephants, there are several characteris-
tic features like size and shape of the tusks, which also vary between male
and female elephants (Körschens and Denzler, 2019). Furthermore, signs from
fights or other injuries are important, like broken tusks as well as scars, rips
or holes in the ears. We therefore focus on the head including ears, tusks,
and trunk of the elephants for the identification. Our elephant identification
system (EIS) (Körschens and Denzler, 2019) uses an elephant head detector,
which is a YOLO network (Redmon et al., 2016) trained on 1,285 elephant
images from Flickr1. These images are not part of the dataset for identification
and have been manually annotated with bounding boxes covering head, ears,
tusks, and trunk of each individual (Körschens and Denzler, 2019). When ap-
plying the head detector on the identification dataset for which we only have
a single ID label per image, we might obtain multiple bounding boxes due to
noise or multiple elephants present in the image, and we need to keep only
one bounding box for the identification. Hence, we select the most prominent
bounding box as the one that covers the largest image area, weighted by the
confidence score of the detector (Körschens and Denzler, 2019).

For the selected head region, features are extracted using a ResNet50 net-
work (He et al., 2016) pre-trained on ImageNet (Russakovsky et al., 2015),
and we compare different network layers with respect to their representation
power. Feature extraction and model training was performed on the original
images and their horizontally flipped versions to account for an appropriate
data augmentation strategy. We then use a linear SVM classifier to perform the
identification task. To enable the possibility for considering multiple images of
the same individual for the identification task in an extended application, e.g.,
when there are short videos available or when the photographer takes multiple
images of the same individual on the same day (perhaps from different view-
points), a simple aggregation step can be added. In case of multiple images for

1 https://www.flickr.com/
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Table 1 Individual identification results for African forest elephants on the ELPephants
dataset (Körschens and Denzler, 2019).

Results for one image Results for two images

per individual per individual

Activation Max pooling Top-1 Top-5 Top-1 Top-5
layer filter size accuracy accuracy accuracy accuracy

activation40 4×4 50.8% 70.6% 69.8% 81.8%
activation40 5×5 54.4% 72.6% 71.4% 83.2%
activation40 6×6 56.0% 71.6% 74.2% 85.2%

activation43 4×4 52.2% 71.6% 70.0% 83.0%
activation43 5×5 54.6% 70.8% 72.2% 83.2%
activation43 6×6 52.4% 70.0% 70.8% 82.8%
activation43 no pooling 51.8% 65.9% 68.6% 80.4%

a single decision, we follow the concept of late fusion and combine the clas-
sifier outputs of the individual images by averaging class confidence vectors
obtained from the SVM classifier to obtain the final classification scores. This
allows for easily integrating images of different viewpoints to allow for a more
robust identification.

4.1.3 Elephant identification results

Our EIS described before consists of an elephant head detector, followed by
feature extraction from the head region using a deep neural network, and
classification of the head for identification. The head detector achieves an
average precision of 90.78%, evaluated on 227 manually annotated test im-
ages (Körschens and Denzler, 2019).

For identifying individuals, we have tested different activation layers from
the ResNet50, whose outputs are used as a feature representation to describe
an elephant head and to perform the classification. It turned out that the
activation layers from the 13th and 14th convolutional block, in the following
denoted by activation40 and activation43, performed best. Hence, we only
report results for these layers, for which we also added different maximum
pooling layers to account for translation invariance.

The results (top-1 and top-5 accuracies) are shown in Table 1, and we ob-
serve that the best results are achieved with features from the activation40

layer. When taking only a single image for the identification of an elephant into
account, the best result of our EIS is a top-1 accuracy of 56.0% for fully auto-
matic identification with a region size for maximum pooling of 6×6. Regarding
the top-5 accuracy, pooling with a smaller region size (5×5) performed slightly
better, leading to 72.6%. We also performed experiments where we used two
images for a single decision and were able to improve recognition accuracies
significantly. With two images, a top-1 accuracy of 74.2% is achieved with fea-
tures from the activation40 layer and maximum pooling with a region size
of 6×6. Furthermore, the correct individual is among the top-5 suggestions of
the system in 85.2% of the cases, which would already narrow down the final
decision from 276 possible individuals to support the ecologists. Hence, our



20 Bodesheim et al.

experimental results show that if it is possible within the application, incorpo-
rating more than one image for the identification is beneficial and more robust
because more visual information due to different viewpoints can be exploited.

Note that the identification of individual elephants based on whole bodies
compared to considering only head regions has led to worse performance, and
the same holds for taking the last activation layer of the ResNet50 to extract
meaningful features (Körschens and Denzler, 2019), which is typically done
when using a deep neural network as a feature extractor. Hence, in our ex-
periments we have shown that earlier layers within the ResNet50 carry more
semantically meaningful information for identifying individual elephants.

The intended application for this specific approach assumes a closed set of
individuals. Furthermore, the predictions are only used as suggestions to assist
human annotators, who still manually assess each image, but can do so faster
with the help of our system. Because of the small number of images and the
high variance in quality, a fully automated approach is not feasible and human
interaction is required. Hence, false predictions or out-of-dataset individuals
are not particularly harmful in this application and only impact efficiency.

4.2 Identifying Asian elephants

In this section, we demonstrate the application of our EIS from Sect. 4.1.2 for
identifying Asian elephants (Elephas maximus) in short video clips. First, the
dataset for our experiment is described.

4.2.1 Asian elephant video dataset

The dataset has been provided by a research group from the comparative cogni-
tion for conservation laboratory (CCC lab2) at Hunter College, City University
of New York. It contains annotated camera trap footage of Asian elephants
recorded automatically in forest areas in Thailand. There are 108 individuals
spread over 683 short videos, each having a length of roughly 20 seconds. Note
that there is often more than one individual present in a video and ideally
all of them should be identified in each frame. Interestingly, 274 videos are
recorded during nighttime, posing an additional challenge for the identifica-
tion of individuals. A further challenge is imposed by younger elephants, since
26 of the 108 individuals are offsprings, which often have less distinctive fea-
tures compared to adult elephants. For evaluation, the dataset is split into 508
videos for training and 175 videos for testing.

4.2.2 Pipeline for processing video data

To exploit the opportunity of having video data for identification, we want to
use as many frames within a video as possible that contain a single individual

2 https://ccconservation.org/
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Table 2 Our experimental results for identifying Asian elephants in video clips.

Full elephant With detected

bounding boxes elephant heads

Top-1 Top-5 Top-1 Top-5
accuracy accuracy accuracy accuracy

All videos (175)

CurvRank 4.5% 17.2% 4.9% 12.4%
EIS 44.8% 69.8% 44.3% 69.6%

Only nighttime videos (73)

CurvRank 5.3% 18.4% 8.3% 8.3%
EIS 45.2% 74.0% 46.2% 73.1%

Only daytime videos (102)

CurvRank 4.2% 16.7% 4.4% 13.0%
EIS 44.4% 66.7% 43.8% 68.5%

in order to integrate more visual information and to make the decisions more
robust. Hence, we extend our EIS with an elephant tracking approach such
that detections of the same individual within consecutive images in a video are
linked together to a so-called tracklet and all images of the individual within
a tracklet can be used to perform the identification.

This time, we use the MegaDetector (Beery et al., 2019) for animal de-
tection in the images, which has been pre-trained on millions of camera trap
images containing different animal species and which is built to detect animals
in general without inferring the corresponding species. This general detector
worked surprisingly well for both daytime and nighttime footage in our ele-
phant dataset such that we did not need to carry out any additional training
step with annotated elephant images.

To connect detections to tracklets, we follow the tracking-by-detection ap-
proach and apply either the IOU/V-IOU tracker (Bochinski et al., 2017, 2018)
or the graph-based multi-object tracking (GBMOT) approach (Mothes and
Denzler, 2017). For the identification, we then use every n-th image (for this
experiment, we set n = 15) of each tracklet in order to reduce redundancy such
that different images are distinct, and apply feature extraction and classifica-
tion following our EIS from Sect. 4.1.2. The choice of n is a trade-off between
the amount of information or training data (lower n), and the distinctiveness
of the individual examples (higher n). We also include the elephant head de-
tector of our EIS, applied to the bounding boxes of each tracklet, and compare
our EIS with the CurvRank approach of (Weideman et al., 2020) that uses
features from the ear contours of the elephants for identification.

4.2.3 Results for identifying Asian elephants in videos

In preliminary experiments, we compared the different tracking approaches on
ten annotated daytime videos and ten annotated nighttime videos of our ele-
phant dataset. While the IOU/V-IOU tracker achieved higher precision (90.3%
for daytime videos and 89.5% for nighttime videos) compared to GBMOT
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(85.8% for daytime videos and 88.8% for nighttime videos), the latter ob-
tained a higher recall (79.5% for daytime and 83.2% for nighttime vs. 72.7%
for daytime and 74.6% for nighttime). Hence, in order to not miss any individ-
ual, we decided to select the GBMOT approach for tracking due to its higher
recall.

The results for identifying individual elephants are shown in Table 2. Across
all videos, our EIS achieves a top-1 accuracy of 44.8% and a top-5 accuracy
of 69.8% when considering the full bounding boxes of the elephants for iden-
tification. An additional elephant head detection did not change the results
much, neither only for nighttime videos nor only for daytime videos. This can
be attributed to the fact that the head detector has been trained on the other
elephant dataset, which is of much higher quality compared to the images of
the videos from the camera traps.

The low image quality is also the reason why CurvRank performed poorly
in our experiments, because often no ear contour of the elephant could be
found, or another contour not belonging to the ear was found that was then
classified incorrectly. Note that the CurvRank algorithm was proposed for high
quality photographs and in our experiments we have observed the limitations
of this identification approach. However, as it is to the best of our knowledge
the state-of-the art elephant-specific identification method, and our videos are
of reasonably high resolution, CurvRank is nevertheless a sensible baseline.

This also highlights the difficulty of the dataset and emphasizes the good
results of the EIS even more. Interestingly, the identification was consistently
more successful on nighttime videos compared to daytime videos for both
approaches.

In Sect. 4.1.3, we discuss the intended human-in-the-loop application of the
EIS, which also applies to this video task. Consequently, the same limitation
of a closed set applies here as well.

4.3 Identifying gorillas

In this section, we showcase an application (Brust et al., 2017) where our
decoupled approach is a particularly good fit. The goal is to identify 147 in-
dividuals of the Western lowland gorilla species (Gorilla gorilla gorilla) using
facial features.

4.3.1 Gorilla dataset

Instead of automated camera traps, the images are generated during manual
field photography in the Nouabal-Ndoki National Park, Republic of Congo.
The photographers attempt to film individuals separately and each of the
12,765 images is labeled with the one individual in focus. However, there are
no bounding box annotations for the respective faces. While the photographs
are of high quality, there are numerous challenges as exemplified in Fig. 4.
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4.3.2 Face detection

We randomly select 2,500 images and manually annotate bounding boxes for
each of the faces. The resulting small dataset is used to train a YOLO detec-
tor (Redmon et al., 2016) with a setup identical to the chimpanzee detector
proposed by Freytag et al. (2016). We split the dataset into up to 2,000 im-
ages for training and 500 for validation. Using all 2,000 images for training,
the detector achieves an average precision of 90.8%. With only 500 training
images, we still reach a usable average precision of 86.6%.

As a sanity check, we run the detector on the whole dataset of 12,765
images and count the number of detections, assuming that each photograph
contains exactly one individual. The detector trained on 2,000 images detects
exactly one face in 95.4% of images, no face in 0.4% and more than one face in
4.1%. Qualitative samples indicate that a large fraction of the false positives
are in fact faces of infants that are sitting on an adult individual’s shoulders.

4.3.3 Individual gorilla identification

We crop each face in the whole dataset using the detector and associate it
with the respective labeled individual. This assumes that the face is detected
correctly. When we detect more than one face, we select the face with the
largest area because annotators tend to label the adult gorilla if an infant is
present. We then extract features from the resulting dataset using the pool5

layer of the BVLC AlexNet (Krizhevsky et al., 2012) implementation3.

The features are classified using an SVM similar to Freytag et al. (2016).
Using the best detector trained on 2,000 images, we achieve a top-1 identifica-
tion accuracy of 62.4% and a top-5 accuracy of 80.3% over all 147 individuals.

The training process on the largest dataset completes in less than a second
on modern x86 hardware. Hence, we do not have to rely on incremental learning
in this task, but can afford to completely re-train the classifier whenever new
training data becomes available. Including new individuals is trivial in this
setup. For a proper evaluation of incremental learning techniques especially
over a longer time period, large annotated image datasets from long-term
monitoring studies are required, which are so far not available for many species
including gorillas.

4.4 Identifying chimpanzees

In our final set of experiments, we focus on chimpanzees (Pan troglodytes) and
start with the identification task in this section following Freytag et al. (2016).
Afterwards, we consider attribute predictions in Sect. 4.5 and 4.6. The dataset
used in our experiments is described in the following.

3 http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel
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Fig. 4 Examples from the dataset of Brust et al. (2017) illustrating challenges such as
occlusion, motion blur, lighting difficulties, and high scale variance.

4.4.1 C-Tai chimpanzee dataset

We use the C-Tai dataset described by Freytag et al. (2016), who also published
the images as well as training and test splits for their experiments. The C-Tai
dataset is derived from previously published datasets of Loos and Ernst (2013),
who specifically focused on attribute predictions for chimpanzee faces. Hence,
we also use it to evaluate our algorithms for the task of estimating attribute
values of individuals.

The images of the C-Tai dataset have been recorded in the Tai National
Park in Cte d’Ivoire, with strongly varying image qualities due to heavy illu-
mination changes and individuals that are captured in large distances. There
are 5,078 chimpanzee faces from 78 individuals in this dataset in total, but
only 4,377 of them have complete annotations with respect to identity and
further attributes (age, age group, gender), resulting in 62 different individu-
als from five age groups. For more details and statistics about this dataset, we
refer to the work of Freytag et al. (2016) and the corresponding supplementary
material.

4.4.2 Setup for identifying chimpanzees

To evaluate our identification approach, we use five random splits of the
dataset following stratified sampling with 80% of the images for training and
hold-out 20% for testing. The performance is measured using averaged class-
wise recognition rates (ARR). Feature extraction is either done using the VG-
GFaces network of Parkhi et al. (2015) trained on the Labeled Faces in the
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Table 3 Our experimental results for identifying chimpanzees in the C-Tai dataset (Freytag
et al., 2016).

Approach (features from) ARR
VGGFaces, pool5 68.0%
VGGFaces, fc7 53.0%
BVLC AlexNet, pool5 76.6%
BVLC AlexNet, fc7 67.0%
Baseline of Loos and Ernst (2013) 64.4%

Wild dataset (Huang et al., 2007) for human face recognition, or using the
BVLC AlexNet (Krizhevsky et al., 2012) pre-trained on object categories of
ImageNet (Russakovsky et al., 2015). For both networks, activation outputs of
the pool5 layer (last layer before fully-connected layers) and of the fc7 layer
(last layer before class scores) are tested. An SVM is used for classification
(Sect. 3.3). Furthermore, we compare our approach with the baseline of Loos
and Ernst (2013) for chimpanzee identification.

4.4.3 Results for identifying chimpanzees

Our experimental results for identifying chimpanzees in the C-Tai dataset
are shown in Table 3. It can be observed that the quality of the identification
heavily depends on the selected method for feature extraction. Hence, choosing
an appropriate network architecture and a suitable activation layer is crucial
for obtaining the best performance, which has been achieved by the pool5

layer of the BVLC AlexNet with an average recognition rate of 76.6%. Note
that three out of the four configurations shown in Table 3 outperform the
baseline approach of Loos and Ernst (2013), which achieved 64.4% on the
same experimental setup (Freytag et al., 2016).

4.5 Attribute predictions

Since the C-Tai dataset of chimpanzee faces described in Sect. 4.4.1 contains
attribute annotations, we have used this dataset for estimating attribute values
of individuals using our general approach. In the following experiments, we
consider the gender, the age group, and the age of the chimpanzees according
to Freytag et al. (2016). We use the same experimental setup and feature
representations that have been described in Sect. 4.4.2 for the identification
task. Furthermore, we compare the results of our attribute prediction approach
with a baseline method that performs the identification task as in the previous
section and simply takes the attribute values of the predicted individual from
the training set. Since the age sometimes changes for the same individual
because images are recorded over multiple years, the baseline method takes
the average age of the predicted individual calculated for the corresponding
training set. This is done to obtain numerical results for the regression error
when no meta data like the time stamps of the photos are used for the age
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Table 4 Experimental results for predicting attributes of individual chimpanzees in the
C-Tai dataset (Freytag et al., 2016). The gender prediction is evaluated with the area under
the ROC curve (AUC, higher is better), age group prediction is evaluated with average
recognition rates (ARR, higher is better), and age prediction is evaluated with L2-error
(lower is better). For reference, we provide identification results as well.

Approach Gender Age group Age Identification
(features from) prediction prediction prediction

(AUC) (ARR) (L2-error) (ARR)
VGGFaces, pool5 79.8% 84.0% 8.41 68.0%
VGGFaces, fc7 88.0% 76.4% 8.35 53.0%
BVLC AlexNet, pool5 90.5% 85.3% 6.79 76.6%
BVLC AlexNet, fc7 87.0% 83.8% 6.61 67.0%
Baseline (by identification) 89.6% 77.9% 8.30 76.6%

prediction, thus only exploiting the pixel information of the images. Note that
when using the time the photos were taken, one gets the age for free in case
of correct identifications but when assigning the wrong ID, the age prediction
error might even be larger compared to the averaging baseline. The results
from our attribute prediction experiments are summarized in Table 4, and it
can be observed that direct attribute prediction always leads to better results
compared to the baseline of retrieving attributes via the identification. In the
following, we go into the details for each considered attribute separately.

4.5.1 Gender prediction via binary classification

Gender prediction is a binary classification problem with two classes only,
hence we train a linear binary SVM model for the different CNN features that
we have extracted for the chimpanzee faces. We evaluate the performance of
the binary classifiers using the area under the receiver operating characteristic
(ROC) curve, in short area under the ROC curve (AUC), as a quantitative
metric (Hanley and McNeil, 1982; Fawcett, 2006).

From the results in Table 4, we see that the baseline approach of retrieving
the gender from the predicted individual already achieves a very good perfor-
mance of 89.6% AUC. Hence, even if the wrong individual has been predicted
for the identification task as indicated by the results in Sect. 4.4, it has at least
the same gender as the true individual. This suggests that if the individual
classifier makes a mistake, it more likely confuses male chimpanzees with male
chimpanzees and female chimpanzees with female chimpanzees. Nevertheless,
slightly better performance for the gender prediction can be achieved by di-
rectly estimating the attribute value based on features from the pool5 layer
of the BVLC AlexNet, achieving the highest accuracy of 90.5% AUC.

4.5.2 Age group prediction via multi-class classification

As a second discrete attribute, we consider the age group of the chimpanzees
as a rough estimate of age. For the C-Tai dataset, there are annotations for five
age groups (classes) available: Infant, Juvenile, SubAdult, Adult, and Elderly.
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We refer to the original work of Freytag et al. (2016) for details about the
distribution of individuals among these age groups. In our experiments, we split
the examples of each age group into 90% training data and 10% hold-out test
data, which is repeated five times to obtain reliable results. For classification
into the five age groups, we train a linear multi-class SVM. The performance
is measured by the average recognition rate (ARR) across the five age groups.

We compare the same feature extraction approaches as for gender predic-
tion in the previous section and the results in Table 4 show that direct age
group prediction leads to substantially better results with three out of the four
used feature representations compared to the baseline approach of retrieving
the attribute via identification. While the latter achieved an ARR of 77.9%,
the best result has again been achieved by the BVLC AlexNet with features
from the pool5 layer (85.3%). For the age group prediction, features from the
pool5 layers were better suited compared to features from the fc7 layers with
both network architectures, indicating the importance of features from earlier
layers within the network. When comparing architectures, the BVLC AlexNet
trained for general object categories outperformed the VGGFaces trained for
human face identification with respect to both feature representations from
the chosen activation layers.

4.5.3 Age prediction via regression

The last attribute we consider for our general prediction approach is the age
of the individuals. This is treated as a continuous variable for which we re-
quire a regression method to estimate suitable attribute values. We use GP
regression (Sect. 3.3) for estimating the age, equipped with an RBF kernel as
a covariance function and optimized hyperparameters as outlined by Freytag
et al. (2016). For training an age predictor, 100 images of individuals have
been randomly selected, and the remaining images are used for hold-out test-
ing. Random selection and model learning are repeated five times as in the
previous experiments to obtain meaningful results. The performance of the
age regression is measured by the L2-error, which is the L2-norm of the vec-
tor of residuals that contains the differences between the true values and the
predicted values.

In the last column of Table 4, the averaged L2-errors are shown for the dif-
ferent feature representations used in our general prediction approach. While
features from the VGGFaces network perform similar to the baseline approach
of retrieving attributes via identification (L2 errors between 8.41 and 8.30),
the features from the BVLC AlexNet are better suited for direct age prediction
and using the fc7 layer outputs results in the lowest L2-error (6.61) achieved
in our experiments. This highlights again the usefulness of features obtained
from a deep neural network architecture that has been trained on images of
common object categories (BVLC AlexNet pre-trained on ImageNet). Inter-
estingly, in contrast to the two classification approaches used for the other two
attributes in the previous sections, features of the fc7 perform slightly better
compared to the pool5 layer outputs for the regression task.
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4.6 Lifelong learning of age predictors

In our final experiment, we consider attribute prediction in a lifelong learning
scenario and pick the regression task to look at continuous learning of age
predictors (Käding et al., 2018). We use the EMOC criterion for active learning
(Sect. 3.5) to improve the model and its estimations over time by incorporating
additional images automatically selected for annotation and model parameter
update. Note that we simulate the data annotation process by using the labels
provided with the dataset in lieu of actual human annotations. The lifelong
learning experiment is designed as follows.

4.6.1 Experimental setup for lifelong learning experiment

From 4,414 images with age annotations of the C-Tai dataset (Sect. 4.4.1),
only four are used for learning an initial GP regression model with RBF ker-
nel as in Sect. 4.5.3. The remaining 4,410 images are split into 2,205 instances
for hold-out testing and 2,205 instances that serve as the unlabeled pool for
querying additional training data. We repeat the dataset splits three times
and query 1,000 samples sequentially in each experiment. After each query,
the performance of the updated model is validated on the held-out test set
and measured with the root-mean-square error (RMSE). As feature represen-
tations, we use L2-normalized activation outputs from the fc7 layer of the
BVLC AlexNet, since these features performed best in our experiments for
predicting the age of chimpanzees in Sect. 4.5.3.

4.6.2 Active learning methods used for comparison

Besides our proposed EMOC strategy described in Sect. 3.5 for selecting query
images in active learning, several competing methods are tested as well. A
purely random selection of samples also known as passive learning (Yu and
Kim, 2010) is used as a baseline (Random). Furthermore, we consider selecting
samples that either have the largest predictive variance (Kapoor et al., 2010)
inferred from the GP regression model (Variance) or maximize the data en-
tropy (Entropy). Exploration guided active learning (EGAL) of Hu et al. (2010)
has been employed as well as several combinations of their introduced mea-
surements for diversity (Di) and density (Di), denoted by Diλ/De(1− λ) with
λ ∈ {0.0, 0.5, 1.0}. Related to these measures is the baseline of querying sam-
ples with the largest Mahalanobis distance in feature space to already labeled
samples (Mahalanobis). Finally, we compare EMOC with the expected model
change (EMC) proposed by Cai et al. (2013).

4.6.3 Lifelong learning results

The results of the lifelong learning experiments for improving the age pre-
dictors on the C-Tai dataset are summarized in Fig. 5. We observe that the
EMOC strategy reduces the prediction error (RMSE) the most, leading to the
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Fig. 5 Experimental results for lifelong learning with different active learning strategies.
Error curves are shown, which indicate the RMSE evaluated after adding each of the 1,000
samples to the training set and updating the prediction model. Numbers in the legend
denote the area under the corresponding error curve (lower is better) relative to the worst
performing method.

smallest area under the error curve. In fact, the GP regression model updated
with samples selected by EMOC achieves the lowest errors after each number
of added samples. Note that all competing methods are also outperformed
by the Random baseline for passive learning, which indicates that appropriate
sample selection for age prediction on the C-Tai dataset is a hard task. Nev-
ertheless, EMOC leads to the highest model accuracies throughout the whole
time span of the simulated lifelong learning scenario.

The average runtime of a single iteration including selection, model update,
and predictions, is 497 ms for random selection (Käding, 2020) on modern x86
hardware, averaged over the whole experiment as the runtime increases with
the number of samples added to the underlying GP model. Using EMOC, it is
2040 ms. Still, the consistently strong reduction in annotation time when using
EMOC should be considered as well, and strongly outweighs the small compu-
tational overhead. While other selection criteria, e.g. variance or entropy, have
a negligible overhead, they do not perform as well as EMOC. Furthermore,
EMOC can be approximated, e.g., following the strategy outlined in Käding
et al. (2016a), or combined with random pre-selection (Brust et al., 2019) to
reduce overhead.

We can conclude that our general approach for attribute prediction in com-
bination with a suitable active learning strategy like EMOC is a good choice
for lifelong learning, and clear model improvements can be achieved over time
when adding additional data that becomes available during an application.

5 Conclusions

In this paper, we have shown that a general approach of using image fea-
tures from pre-trained deep neural networks and decoupled decision models
works well for identifying individuals in images and videos. This has been ver-
ified in experiments for identifying individuals of four different mammalian
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species, two elephant species (African and Asian) and two great apes (gorillas
and chimpanzees). Although the achieved results are already remarkable when
considering the varying challenges of the used datasets and the rather small
amount of training data, there is still a lot of room for improvements in order
to make the recognition systems even more valuable for practitioners.

We believe that the described concept of lifelong learning together with
active learning and human-in-the-loop is able to achieve these improvements
when it is applied during long-term monitoring studies with a continuous
stream of new image data recorded over time. The targeted selection of the
most relevant examples by active learning and the exploitation of expert knowl-
edge through annotations via human-in-the-loop allows for continuous en-
hancements of the recognition models within the lifelong learning cycle, while
at the same time reducing the human efforts for labeling additional data.

We have presented a way for integrating our general approach in a life-
long learning setup, highlighting the importance to exploit new incoming data
during an application in order to improve the predictions of the models over
time. In long-term monitoring applications, where additional data becomes
available continuously, a conscious effort must be made to distribute human
and computing resources evenly over time and maximize efficiency. Lifelong
learning provides this distribution in two ways. First, active learning selects
only important new data for annotation by human experts, whose time is of-
ten constrained. Second, incremental learning performs efficient and frequent
model updates to cope with a potentially infinitely growing set of training
data and provide a tight feedback loop together with active learning. Without
lifelong learning, i.e., in a waterfall setting, a continuous data stream without
intelligent selection by active learning will eventually overwhelm both the an-
notators and the available computing power. Hence, we believe that there is no
alternative to a lifelong learning setup in long-term monitoring applications.

Besides its applicability for lifelong learning, the decoupling of image fea-
ture extraction from the final prediction task has further advantages. On the
one hand, pre-trained deep neural networks can still be used to compute ap-
propriate features for identification, and it is not necessary to learn network
parameters solely based on data from the identification task. This is beneficial
because initial labeled datasets for animal re-identification are often rather
small at the beginning of a monitoring study, which makes optimizing large
neural networks difficult. However, large networks are required for good perfor-
mance because they allow for extracting semantically meaningful features, and
exploiting pre-trained networks leverages the existing large-scale datasets of
common object categories. Due to the decoupling of image feature extraction
from the prediction task in our approach, these rich feature representations
can be utilized and only the final decision model needs to be updated via
efficient incremental learning algorithms within lifelong learning.

On the other hand, our approach allows for exchanging the final part of
the processing pipeline, which is the decision model used to make the predic-
tion. This can either be a classifier for assigning animal IDs, or a regression
method for estimating continuous outputs such as the age of an individual.
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Thus, we are flexible in using the rich feature representations from the deep
neural networks for various prediction tasks and can select an appropriate de-
cision model. By going beyond the standard task of identifying individuals, we
have demonstrated the benefits of our approach to directly predict attributes
of individuals. For the tasks of gender prediction, age group prediction, and
age prediction we have achieved superior results compared to the baseline
approach of retrieving the corresponding attribute value from the identified
individual after performing the identification. The binary classification prob-
lem of gender prediction as well as assigning one of five age groups has been
tackled with support vector machine classifiers, whereas the age prediction
has been performed with Gaussian process regression. Both classifiers and re-
gression models can be continuously updated by efficient incremental learning
techniques to further enhance the recognition system during its application
via lifelong learning.

To summarize, we have provided a lifelong learning concept that is ap-
plicable for various monitoring tasks including individual identification and
attribute prediction, and which exploits additional image data that becomes
available over time. While pre-trained neural networks can also be leveraged
for feature extraction in lifelong learning through our decoupled approach, the
steady improvements of the decision models by incorporating expert feedback
via active learning with human-in-the-loop lead to clear advantages compared
to fixed recognition models that are trained only once on standard datasets
before the application and are later kept unchanged. Hence, long-term mon-
itoring of mammals based on image data can be further enhanced by imple-
menting a lifelong learning cycle with a tight feedback loop that continuously
incorporates expert knowledge during the whole application.
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Käding C, Rodner E, Freytag A, Denzler J (2016b) Active and continuous ex-
ploration with deep neural networks and expected model output changes. In:
Conference on Advances in Neural Information Processing Systems Work-
shops, NIPS Workshop on Continual Learning and Deep Networks, URL
https://arxiv.org/abs/1612.06129



36 Bodesheim et al.
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