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Abstract
Tree-ring chronologies encode inter-annual variability in forest growth rates over long time periods from decades
to centuries or even millennia. However, each chronology is a highly localized measurement describing conditions
at specific sites where wood samples have been collected. The question whether these local growth variabilites are
representative for large geographical regions remains an open issue. To overcome the limitations of interpreting
a sparse network of sites, we propose an upscaling approach for annual tree-ring indices that approximate forest
growth variability and compute gridded data products that generalize the available information for multiple tree
genera. Using regression approaches from machine learning, we predict tree-ring indices in space and time based
on climate variables, but considering also species range maps as constraints for the upscaling. We compare various
prediction strategies in cross-validation experiments to identify the best performing setup. Our estimated maps of
tree-ring indices are the first data products that provide a dense view on forest growth variability at the continental
level with 0.5◦ and 0.0083◦ spatial resolution covering the years 1902 to 2013. Furthermore, we find that different
genera show very variable spatial patterns of anomalies. We have selected Europe as study region and focused on
the six most prominent tree genera, but our approach is very generic and can easily be applied elsewhere. Overall,
the study shows perspectives but also limitations for reconstructing spatiotemporal dynamics of complex biological
processes. The data products are available at https://www.doi.org/10.17871/BACI.248.
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Impact Statement
Tree-ring chronologies encode essential information on how climate dynamics of the past have affected veg-
etation dynamics. Here we show that machine learning methods can use sparse networks of tree-rings to
reconstruct spatial patterns of climate induced vegetation anomalies. We provide the first gridded data prod-
ucts of annual tree-ring indices across Europe that have been computed in a data-driven manner using an
upscaling approach based on machine learning algorithms for regression. The resulting data products repre-
sent spatially resolved patterns of radial tree growth variability over more than 100 years, which can be used
to identify or study trends and extremes in vegetation growth and related biospheric signals. Our data products
can also be linked to other data sources and might offer a more comprehensive understanding of atmosphere-
biosphere interactions in the last century. Furthermore, our propsed upscaling approach is very generic and
can be applied to further regions, tree genera, and periods in time.

1. Introduction
Tree-ring data have been instrumental in the reconstruction of decadal to millennial climate history
(Fritts, 1976; Jones et al., 2009; St. George, 2014; Esper et al., 2016; Wilson et al., 2016; Hartl-Meier,
Büntgen, et al., 2017; Ljungqvist et al., 2020). However, considering the broad spatiotemporal dynamics
they represent, we argue that tree-ring data are an underexploited resource in Earth system science.
One reason is that tree-ring data often have no sufficient overlap with modern Earth observations, and
another issue is that chronologies cannot be trivially updated (Babst et al., 2017). Closing this gap of
representation is of broad research interest because tree-rings can provide annually resolved information
on forest growth variability over decades to millennia (Li et al., 2010; Babst et al., 2017, 2018), a
temporal domain unmatched by most other global observational resources of ecological dynamics and
thereby of high relevance for, e.g., evaluating terrestrial biosphere model dynamics (Rammig et al.,
2015; Barichivich et al., 2020; Jeong et al., 2020).

As systematic and repeated tree-ring sampling is impractical in many regions, we need to seek ways
of estimating tree-ring growth where measurements are lacking. Progress has been made to simulate
inter-annual tree-ring variability at the site level using different process-based modeling approaches or
phenomenological models (Misson, 2004; Breitenmoser et al., 2014; Li et al., 2014; Mina et al., 2016).
Yet, the current generation of mechanistic models suffers key structural deficits that often result in a
poor representation of internal carbon storage dynamics and resource investment in woody biomass
formation, such as radial tree growth (Fatichi et al., 2014; Fatichi et al., 2019; Zhang et al., 2018). In
view of these limitations, an alternative to mechanistic modelling is the statistical upscaling of existing
measurements based on observed relationships with key environmental variables (Babst et al., 2018).
Machine learning techniques have been successfully applied for solving such problems (Jung et al.,
2017; Bodesheim et al., 2018; Jung et al., 2019, 2020) and here we are exploring their capacity to
upscale tree-ring data across Europe.

Our approach is essentially the opposite of using tree-ring data to reconstruct the climate of the past:
we use meteorological measurements as explanatory variables for reconstructing tree-ring growth vari-
ability at ungauged sites. When we talk about tree-ring growth variability, we essentially mean tree-ring
indices in the way they are usually computed from site-level measurements of radial tree-ring widths,
which is explained in detail in Sect. 2.1. By exploiting the power of data-driven nonlinear regression
approaches as they are common now for machine learning, we are able to estimate tree-ring indices
based on the inferred relationships to the climatic conditions obtained from site-level chronologies. A
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Figure 1. The outline of our approach for estimating tree-ring indices in order to produce gridded
tree-ring data by exploiting machine learning methods for regression, in particular the Gaussian

process (GP) framework and the random decision forest (RDF) approach.

summary of our approach is shown in Fig. 1. As a result, we provide gridded products of annual tree-
ring variability that can easily be compared to remotely sensed Earth observations and mechanistic
model estimates of forest dynamics. We explore different prediction strategies by varying the amount
of climate information that is covered by the driver variables and compare the results of corresponding
cross-validation experiments.

Throughout our study, we aim at predicting at the genus level, since trees from different genera are
expected to respond very differently to climate conditions. Due to the limited tree-ring data availability
in our study region, we focus on the six most prominent genera in Europe: Abies (AB), Fagus (FA),
Larix (LA), Picea (PC), Pinus (PI), and Quercus (QU). The datasets we are using in this study are
described in the following section.

2. Data
Three different types of datasets are used in our study. Our target data is a compilation of available
tree-ring data at site-level that give us very local information about relative growth rates of trees from
different species. Note that tree-ring data is often not representative for the whole forest as people have
often sampled the largest and oldest trees of a site (Nehrbass-Ahles et al., 2014; Babst et al., 2018).
However, even if the tree-ring chronologies do not represent the whole forest, they are still the best
estimates of tree-growth variability we can get so far with the available data and we therefore use them
for our upscaling approach. One should nonetheless keep in mind that long-term growth trends are
especially affected and sample biases can also influence the high-frequency signals in the tree-ring data.

As predictors we use climate data for explaining the variability in tree-ring growth with respect to
both the spatial and the temporal domain. Hence, the climate data should be at a reasonable spatial scale
as well as with a large temporal extent to maximize the overlap with available tree-ring data. We make
use of two different climate datasets in order to cover both aspects. We describe both datasets in detail
after introducing the tree-ring data in the following section.
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Figure 2. Overview of the tree-ring data used within this paper. Samples of tree-ring chronologies are
shown in (a) and the distribution of available time series among the different genera is depicted in (b).

The spatial distribution of sites is plotted in (c-h).

2.1. Tree-ring data
For automatically learning the relationships between climate conditions and tree-ring growth, we use
publicly available tree-ring index data from the International Tree-Ring Data Bank (ITRDB)1. During
pre-processing, the raw ring width data have been standardized using a cubic smoothing spline detrend-
ing with a 50% frequency cutoff response at 30 years. To achieve this, a spline was fit through the raw
time series obtained from each individual sample at a given site. Growth variability was then calculated
by dividing the measured ring width for a given year by the corresponding value from the smoothing
spline. This resulted in a dimensionless index that retains inter-annual to multi-decadal variability in
tree growth, but removes longer-term trends. All detrended series from a given site were averaged into
a site-level chronology using Tukey’s bi-weight robust mean. From a numerical point of view, each
chronology is a time series at annual scale with values roughly between 0 and 3 and a mean value of 1
(see Fig. 2(a)).

For our study, we additionally use tree-ring data provided by Claudia Hartl and Christian Zang
consisting of 245 chronologies (Abies: 72, Fagus: 52, Larix: 7, Picea: 87, Pinus: 8, Quercus: 19) from
143 sites in Central Europe (Hartl-Meier, Zang, et al., 2014; Hartl-Meier, Dittmar, et al., 2014; Hartl-
Meier et al., 2014; Zang et al., 2014; Hartl-Meier, Esper, et al., 2017). The raw data underwent the same
pre-processing as the ITRDB data, hence we were able to simply merge both datasets in order to get a
broader view on tree-ring growth in Europe. The number of available time series for each genus in our
dataset is shown in Fig 2(b). Furthermore, Fig. 2(c)–(h) show the spatial distribution of the sites that
yielded the chronologies of each genus.

2.2. Monthly climate data
As predictor variables, we use monthly statistics of climate observations (variable names are given in
Table 1) from the Climate Research Unit Time Series (CRU TS) dataset (version 3.22) provided by
Harris et al. (2014). All predictor variables are available for the years 1901 to 2013 covering a large

1https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
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fraction of the tree-ring measurements that can be used to learn a machine learning model for estimating
tree-ring indices from climate variables. Note that the data quality may be lower in the earliest portion
of the CRU TS dataset, because the density of met stations grows thinner back in time. However, we do
not expect major quality losses, because in Europe this problem is much less acute than in other regions
of the world.

Table 1. Variables of the CRU TS dataset (version 3.22) that have been used as predictor variables for estimating tree-ring indices.

Acronym Full name Unit

cld cloud cover %
dtr diurnal temperature range ◦C
frs number of ground frost days d
pet potential evapotranspiration mm d−1

pre precipitation mm
tmn near-surface temperature

minimum

◦C

tmp near-surface temperature ◦C
tmx near-surface temperature maxi-

mum

◦C

vap vapour pressure hPa
wet number of wet days d

To obtain the predictor variables for the individual sites where we have in-situ measurements of tree-
rings, the corresponding values have been extracted from the gridded products and the corresponding
grid cells of each site. Because it is known that tree-ring growth for a single year does not only depend
on the climate of this specific year but also of the previous year, we considered for each annual tree-ring
measurement the monthly predictor values of the corresponding as well as its preceding year.

2.3. Static climate data
CRU TS data encode the temporal climate anomalies but information is only available at a rather coarse
spatial resolution (half degree). In order to understand whether the prediction of tree-ring indices ben-
efits from a more detailed description of the individual site conditions, we additionally use monthly
mean seasonal cycles of both climate data and bioclimatic variables at a spatial resolution of 1 km
to incorporate general growth conditions at each site. These mean seasonal cycles are taken from the
WorldClim dataset (version 2) provided by Fick & Hijmans (2017), where the monthly average values
have been computed from the years 1970 to 2000. We use all seven climate variables listed in Table 2
and all 19 bioclimatic variables listed in Table 3.

Table 2. Climate variables of the WorldClim dataset (version 2) that have been used as predictor variables for estimating tree-ring
indices.

Acronym Full name Unit

tmin minimum temperature ◦C
tmax maximum temperature ◦C
tavg average temperature ◦C
prec precipitation mm
srad solar radiation kJ m−2 d−1

wind wind speed m s−1

vapr water vapour pressure kPa
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Table 3. Bioclimatic variables of the WorldClim dataset (version 2) that have been used as predictor variables for estimating
tree-ring indices.

Acronym Full name Unit

BIO1 annual mean temperature ◦C
BIO2 mean diurnal range (mean of monthly (max temp - min temp)) ◦C
BIO3 isothermality (BIO2/BIO7) (×100) 1
BIO4 temperature seasonality (standard deviation ×100) 1
BIO5 max temperature of warmest month ◦C
BIO6 min temperature of coldest month ◦C
BIO7 temperature annual range (BIO5-BIO6) ◦C
BIO8 mean temperature of wettest quarter ◦C
BIO9 mean temperature of driest quarter ◦C
BIO10 mean temperature of warmest quarter ◦C
BIO11 mean temperature of coldest quarter ◦C
BIO12 annual precipitation mm
BIO13 precipitation of wettest month mm
BIO14 precipitation of driest month mm
BIO15 precipitation seasonality (coefficient of variation) mm
BIO16 precipitation of wettest quarter mm
BIO17 precipitation of driest quarter mm
BIO18 precipitation of warmest quarter mm
BIO19 precipitation of coldest quarter mm

3. Machine learning approaches for regression
We tested two different and well-established machine learning approaches for regression. On the one
hand, we selected the random decision forest (RDF) framework (Breiman, 2001), because this tech-
nique has been proven to be useful in other upscaling tasks such as the upscaling of land-atmosphere
fluxes (Tramontana et al., 2016; Bodesheim et al., 2018). On the other hand, we performed experiments
with the Gaussian process (GP) framework (Rasmussen & Williams, 2006), because it is an elegant
mathematical concept and offers more flexibility in learning the relationships between climate and tree
growth while the computational costs do not reach the limits of current hardware in terms of memory
and reasonable computation time due to the moderate size of the tree-ring dataset that we are using. In
the following two subsections, we describe the basic ideas as well as the important properties of the
two approaches.

For both of them, we assume a given training set X = {®x(i) ∈ IRD : i = 1, 2, . . . , N
}

of N samples
with each sample ®x being a vector consisting of D predictor variables x1, x2, . . . , xD (e.g., climate
variables) and a corresponding real-valued target variable y ∈ IR with observations y1, y2, . . . , yN ∈ IR,
in our case the standardized tree-ring indices. The goal of training a machine learning model is to
establish a relationship between ®x and y such that we are able to estimate an output (tree-ring index) y∗

for an unseen composition of predictor variables ®x∗.
It is important to note that both approaches are able to model the interactions of predictor vari-

ables implicitly without explicit specifications. This might especially be crucial for the interactions of
temperature and precipitation to cope with the influence of droughts on tree growth.

3.1. Random decision forest (RDF)
Random forest, also called random decision forest (RDF), is an ensemble method described by Breiman
(2001) that can be used for regression tasks. It consists of several individual regression models called
random decision trees and each decision tree provides an estimate for the output. The number of deci-
sion trees is a parameter that needs to be specified prior to the learning step and the outputs of all the
decision trees are averaged to obtain the predicted value for a test sample.

Learning a decision tree model consists of recursively splitting the training dataset into two subsets
by a simple threshold function applied to a single predictor variable in ®x. The threshold ti and the
selected predictor variable xdi are optimized in each step i, e.g., by minimizing the root-mean-square
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Figure 3. A binary decision tree visualizing the concept used within random decision forests for
regression. Estimates for the target variable y are stored in the leaf nodes and the prediction for

sample ®x is obtained from the leaf node that is reached by evaluating threshold functions applied to
individual predictor variables. Similar to (Bodesheim et al., 2018, Fig. 1).

error with respect to the current estimate that is given by the average observation ȳ of samples in the
corresponding subset. Recursively splitting the training dataset in smaller subsets leads to a special
graph structure in computer science: a binary tree. An example is shown in Fig. 3. Since the subsets of
data become smaller when the binary tree grows larger, the mean value of the observations becomes a
better estimate. In order to avoid overfitting, splitting is not done until only one sample is left in each
subset but until some stopping criterion is met, e.g., minimum number of samples in a subset is reached
or variance of observations within a subset is smaller than a predefined threshold.

The final binary tree structure then contains two types of nodes: (i) inner nodes that define a split
by storing the index di of one of the D predictor variables and a corresponding threshold ti and (ii)
leaf nodes that are not split up further but which provide an regression estimate ȳj via the average
observation of the samples that belong to the subset of training data reaching this leaf node (Fig. 3).
When learning multiple decision tree models in an ensemble, it is important to incorporate different
kinds of randomization such that different trees can learn different relationships between predictor
variables and observations and to avoid overfitting. The first randomization takes place before learning
the tree structures. For each tree to be learned, a random subset of the training data is sampled with
replacement to obtain different portions of the training data for every tree. Together with the fusion
scheme (averaging) of the outputs of all binary trees in the end, this is called bagging (Breiman, 2001).
Furthermore, for a split node not all D predictor variables and all plausible thresholds are tested to find
an optimal split. Instead, a random subset of the variables is analyzed together with randomly selected
thresholds in the corresponding range of the variable. The influence of randomization in the ensemble
of decision trees is very important to obtain reasonable estimation performance of the random forest
regression model.

3.2. The Gaussian process (GP) framework
Gaussian process regression denotes a flexible non-parametric framework that is based on probability
theory. The textbook of Rasmussen & Williams (2006) provides a comprehensive introduction and we
only describe the main aspects of the regression method briefly in the following. Note that Gaussian
process regression is often also referred to as kriging, however, mostly in conjunction with two- or
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Figure 4. Example of Gaussian process regression for one-dimensional inputs (single predictor
variable). Blue crosses indicate training data, the red curve is the estimated posterior mean function

that defines the output values µ∗ for the targets y∗, and the shaded regions in orange visualize the
uncertainties of the predictions by plotting the standard deviation derived from the posterior variance

σ2∗ at each position x∗ in the predictor space.

three-dimensional input spaces (Rasmussen & Williams, 2006). A Gaussian process (GP) is a stochastic
process, i.e., a distribution over latent functions f , that can be specified by a prior mean function µ(·)
and a covariance function κ(·, ·). Assuming that y depends on ®x and an unknown function f as well as
an additive noise ε :

y = f (®x) + ε , (1)

the idea is to average over all possible functions f that are able to describe the relationship of predictor
variables ®x and targets y in a full Bayesian manner and to use the average function value called posterior
mean for a specific ®x∗ to obtain the regression value y∗. Hence, it is sufficient to specify µ(·) and κ(·, ·)
of the GP prior as well as the noise process ε in order to use the GP regression framework.

Without any prior knowledge about the data, it is common to use the zero-mean assumption, i.e.,
µ(®x) = 0 ∀ ®x. Since the tree-ring chronologies have a mean value of 1 due to pre-processing and
their characteristic of being a relative tree growth measure (cf. Sect. 2.1), a prior mean µ(®x) = 1 ∀ ®x
incorporates this additional knowledge about the data. From a technical point of view, using µ(®x) =
1 ∀ ®x is equivalent to a transformation of all target values y by subtracting 1, then predicting the
transformed value with a GP regression model, and finally adding 1 to the prediction again to obtain
the regression estimate for the tree-ring index.

The covariance function κ(·, ·) measures the similarity of two input vectors ®x and ®x ′. In machine
learning, κ is often called a kernel function. There exists a large amount of different kernel functions for
different applications depending on the properties of the input data ®x. The most common kernel function
is the Gaussian radial basis function kernel (Gaussian RBF kernel) also called squared exponential
kernel (SE kernel) by Rasmussen & Williams (2006):

κSE (®x, ®x ′) = σ2
f exp

(
− | ®x − ®x ′ |22

2`2

)
. (2)

It depends on the squared Euclidean distance between ®x and ®x ′ as well as on the hyperparameters σ2
f

and `2. While the process variance σ2
f affects the scaling of function values, the length-scale parameter

`2 determines the relevant scale of the input vectors ®x and ®x ′. Both parameters can either be fixed
manually or optimized within the probabilistic framework by maximizing the likelihood of the training
data.



Environmental Data Science 9

The noise term ε in Eq. 1 is usually modelled as white Gaussian noise ε ∼ N(0, σ2
ε ) with σ2

ε being
a hyperparameter that is either fixed (e.g., σ2

ε = 0.01) or also optimized via likelihood maximization.
The advantage of the Gaussian noise assumption is that the estimated output value y∗ of an input vector
®x∗ then also follows a Gaussian distribution: y∗ ∼ N(µ∗, σ2∗ ) and inference within the probabilistic GP
regression framework is analytically tractable. In fact, there exist closed-form solutions for the moments
µ∗ and σ2∗ :

µ∗ = ®kT∗K ®y (3)

σ2
∗ = k∗∗ + σ2

ε − ®kT∗K ®k∗ . (4)

The N×N kernel matrix K contains the pairwise similarities of the N training samples, the vector ®k∗
consists of similarities between the test sample ®x∗ and the N training samples, and k∗∗ = κ(®x∗, ®x∗) is the
so-called self-similarity of ®x∗. Furthermore, the vector ®y is a collection of the output values y from the
N training samples. While the predictive mean µ∗ in Eq. 3 is the estimated regression output for a test
sample ®x∗, the GP framework allows for quantifying the uncertainty of this estimate via the predictive
variance σ2∗ (Eq. 4). A visualization of both predictive mean and predictive variance is given in Fig. 4.

4. Experimental setup and results
In this section, we present the results we have obtained from our experiments. First, we motivate
our strategy of explicitly distinguishing different genera of trees in Sect. 4.1. We then describe the
basic setup of our experiments for assessing the prediction performances of the two analyzed machine
learning methods for estimating tree-ring indices (Sect. 4.2). Afterwards in Sect. 4.3 to 4.6, we dis-
cuss the individual findings and present the corresponding results. Further results are summarized in
Appendix A.

4.1. Distinguishing different tree genera
We already mentioned in the introduction that we estimate tree-ring growth rates for different gen-
era, because each genus responds differently to the same climate conditions. This can already be
inferred from the tree-ring chronologies in the dataset that we are using. In particular, we identified
57 locations in our dataset where we have a tree-ring chronology for both beech trees (Fagus) and oak
trees (Quercus). At each of these locations, the beech trees and the oak trees have encountered the
same environmental conditions that are represented by the different climate variables. For each pair
of chronologies, we computed the correlation coefficient taking only the years of the common time
period into account. The distribution of the resulting correlation coefficients is shown as a histogram
in Figure 5. Out of the 57 pairs of chronologies, 45 pairs obtain a value smaller than 0.45, which indi-
cates no clear correlation and at most a rather weak connection. Hence, this small analysis supports our
strategy of training regression models individually for each genus.

4.2. Basic setup
We have learned individual regression models for each of the six most prominent genera in Europe,
namely Abies (fir), Fagus (beech), Larix (larch), Picea (spruce), Pinus (pine), and Quercus (oak), with
the distribution of chronologies among the genera depicted in Fig. 2. For matching the tree-ring data
with corresponding predictor variables that describe the environmental conditions, we only used the
tree-ring indices corresponding to a year between 1901 and 2013 from each tree-ring chronology. Quali-
tative results are obtained using the predictions of a cross-validation scheme, more precisely a modified
leave-one-site-out cross-validation for each genus. Leave-one-site-out means that for estimating the
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tree-ring growth rates at one site, regression models are learned using data from all the remaining sites
that provide tree-ring data for the same genus. We have slightly modified this scheme by also excluding
those sites from a training set, whose spatial coordinates fall into the same grid cell at half degree reso-
lution. This is due to the fact that our climate variables from the CRU TS dataset (Sect. 2.2) are at half
degree spatial resolution and we want to avoid different sites with probably different tree-ring chronolo-
gies having the exact same values for the predictor variables, which would lead to biased results. The
modified leave-one-site-out is repeated such that data from each site is used in the test set once.

A quality criterion can be computed for each genus by comparing corresponding observations with
predictions. In addition, an overall accuracy is provided by comparing observations and predictions
across all genera. The quality measures that we have used to determine the performance of the dif-
ferent prediction approaches are the Nash-Sutcliffe model efficiency (Nash & Sutcliffe, 1970), the
root-mean-square error (RMSE), and Pearson correlation coefficient. In addition, we have computed
the decompositions of the mean-square errors (MSE) following Gupta et al. (2009) to obtain bias
errors, variance errors, and phase errors. While bias errors denote an offset of individual predictions
on average and variance errors indicate a different range of values for the predictions, phase errors for
tree-ring chronologies at annual scale correspond to mismatches of the predicted inter-annual variabil-
ity. Thus, phase errors indicate that peaks in the chronologies of observed and predicted values are not
aligned or changes from reduced to increased tree-ring growth (change in tree-ring index from less than
1 to greater than 1) or vice versa happen in different years when comparing observations with predic-
tions. For more details on these metrics in general, we refer to the original work (Gupta et al., 2009).
When evaluating our different prediction approaches, we mainly focus on the model efficiency, which
is similar to the coefficient of determination (R2) and roughly summarizes the fraction of variance in
the observations that can be explained by the predictions. The complete list of results regarding all six
evaluation measures can be found in Appendix B.

Our experiments are done in Matlab (version 2016b) using the TreeBagger function for RDF regres-
sion with its default parameter settings and specifying 100 decision trees in the ensemble. This means
that the minimum node size, i.e., the minimum number of samples in a leaf node, is set to 5 and for
each split at an inner node, one third of all predictor variables are considered to find the best threshold.
For GP regression, we have used the toolbox provided by (Rasmussen & Nickisch, 2005–2015). We
have optimized the hyperparameters of the GP model (parameters of the kernel function as well as the
noise variance) via likelihood maximization. It is important to note that a normalization of the predic-
tor variables is required for the GP model in order to avoid numerical problems or instabilities (mainly
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Figure 6. Comparing the performance of random decision forest (RDF) and Gaussian process (GP)
models for predicting annual tree-ring indices for either considering only the monthly climate

conditions of the same year (that corresponds to the tree-ring measurement) or for also taking the
monthly climate of the previous year into account.

when evaluating the kernel function and performing algebraic operations) and to allow for both robust
learning and faster hyperparameter optimization. In all our experiments, we tried both: (i) normaliza-
tion of predictor values to the interval [0, 1] and (ii) applying z-transformations such that the values of
the individual predictor variables have zero mean and unit variance (following a standard normal distri-
bution). Interestingly, there are hardly any differences in the prediction performance of the GP model
with respect to the chosen normalization strategy. Throughout this paper, we report results from our
experiments when using the z-transformation (z = x−µ

σ ) for each individual predictor variable x with
µ and σ being the corresponding mean and standard deviation, respectively. Note that the performance
of the RDF models are not affected by the normalization strategies, because the order of the values
is preserved after the transformations and the RDF uses thresholds for splitting the data into subsets
without any arithmetic calculations. Hence, normalization only changes the ranges for the randomized
threshold selections during learning of the decision trees but there are no numerical issues that need to
be considered.

4.3. The impact of climate in the previous year
It is well-known in the field of dendrochronology that the width of tree-rings does not only depend on
the environmental conditions during the corresponding year, but that growth is partially also responding
to the climate conditions the tree had to cope with in the previous year (Fritts, 1976). Hence, our first
hypothesis states that we gain additional information for the prediction of tree-ring indices by machine
learning methods when we directly incorporate climate predictors from the year before each tree-ring
was formed. This should then lead to improved prediction performance compared to regression models
that only take the climate of the same year corresponding to the tree-ring into account.

The results of our experiments are shown in Fig. 6. It can be observed that for both regression
models, RDF and GP, the modeling efficiencies in general slightly increase when taking the monthly
climate predictors of the previous year into account. This holds for the overall results as well as for
the predictions of individual genera and supports our initial hypothesis. Except for the RDF predictions
of tree-ring indices for Fagus (model efficiency: 0.31) as well as GP predictions for Larix (model
efficiency: 0.18) and Quercus (model efficiency: 0.35), a small improvement is visible. Although one
might be tempted to say that these small improvements are not meaningful, it is important to mention
again that the reported model efficiencies are computed from a set of leave-one-site-out experiments
within each genus, hence for a large number of sites corresponding to each genus. The improvements
are therefore achieved by models who have not seen the sites they predict and averaged over a whole
genus.

Furthermore, we observe that applying GP regression yields larger model efficiencies than the RDF
models across all genera. In total, the best results are achieved by the GP regression approach with an
overall model efficiency of 0.33 as well as the largest model efficiency for a single genus (0.37 for
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Table 4. Comparing the performance of random decision forest (RDF) and Gaussian process (GP) models for predicting annual
tree-ring indices with respect to six evaluation measures when taking monthly climate data from one year or two years into account.

Predictor variables Random decision forest (RDF) Gaussian process (GP) regression

AB FA LA PC PI QU Overall AB FA LA PC PI QU Overall

Climate data of Model efficiencies
same year 0.315 0.309 0.144 0.293 0.226 0.315 0.276 0.344 0.351 0.177 0.362 0.274 0.346 0.320
same and previous year 0.328 0.312 0.156 0.308 0.239 0.326 0.287 0.352 0.358 0.181 0.371 0.280 0.349 0.326

Climate data of Root-mean-square errors (RMSE)
same year 0.148 0.180 0.206 0.129 0.131 0.137 0.146 0.145 0.174 0.201 0.122 0.127 0.134 0.141
same and previous year 0.147 0.179 0.204 0.127 0.130 0.136 0.145 0.144 0.173 0.201 0.121 0.127 0.134 0.141

Climate data of Pearson correlation coefficients
same year 0.570 0.563 0.382 0.561 0.490 0.569 0.535 0.587 0.592 0.423 0.602 0.524 0.588 0.565
same and previous year 0.581 0.561 0.399 0.572 0.503 0.578 0.543 0.594 0.598 0.432 0.610 0.530 0.591 0.571

Climate data of Bias errors (×10−6) of the mean-square error (MSE) decomposition
same year 0.234 3.384 3.214 0.005 0.155 0.453 0.008 1.233 3.400 34.294 0.724 2.502 2.246 2.540
same and previous year 0.442 20.605 2.007 0.101 0.238 0.273 0.161 0.062 0.613 108.260 0.604 0.523 1.891 1.699

Climate data of Variance errors of the mean-square error (MSE) decomposition
same year 0.009 0.013 0.022 0.008 0.009 0.008 0.010 0.006 0.007 0.014 0.004 0.005 0.004 0.005
same and previous year 0.009 0.011 0.021 0.008 0.008 0.007 0.009 0.006 0.007 0.013 0.004 0.004 0.004 0.005

Climate data of Phase errors of the mean-square error (MSE) decomposition
same year 0.013 0.019 0.020 0.009 0.009 0.011 0.012 0.015 0.023 0.026 0.011 0.011 0.014 0.014
same and previous year 0.013 0.021 0.020 0.009 0.009 0.011 0.012 0.015 0.023 0.028 0.011 0.012 0.014 0.015

Picea). When considering the properties of model efficiency (optimal value is 1 and a value of 0 can
already be obtained by simply predicting the overall mean value of the time series in each year), values
between 0.3 and 0.4 seem to be quite low in general, since this corresponds to only 30–40% of explained
variance. However, taking into account that methods for reconstructing climate in the past from tree-
ring chronologies are often able to explain less than 50% of the signal variance at a single site (Esper
et al., 2016) and our estimations of tree-ring indices from climate data (the other way around) tackle
a much harder task by generalizing from a subset of sites to a different location (leave-one-site-out
cross-validation), these initial results are quite promising. Note that the FLUXCOM studies (Jung et
al., 2019, 2020) also report similar quality levels for their upscaling when considering annual integrals
of the estimated carbon and energy fluxes because predicting inter-annual variability is a hard task in
general. These studies consider two carbon fluxes, namely gross primary production (GPP) and net
ecosystem exchange (NEE), and three energy fluxes (net radiation, sensible heat, and latent heat flux),
while we report results for upscaling tree-ring indices.

In our experiments, it is also interesting to observe that when comparing the results of the different
tree genera, model efficiencies for Larix are notably smaller. On the one hand, the tree-ring dataset pro-
vides the smallest number of samples for Larix (see Fig. 2) such that it is more difficult for a machine
learning model to identify the relationship between predictor variables (climate) and the target variable
(tree-ring index) due to the limited amount of example data. On the other hand, there is evidence that
Larix in Europe is more sensitive to biological impacts. For instance, the larch budmoth is a widespread
defoliator that feeds off fresh larch needles and periodically reaches outbreak levels (Esper et al., 2007;
Hartl-Meier, Esper, et al., 2017). These events are demarcated in the wood and partly obscure the
obtained relationships between radial tree growth and climate. Since the influence of the larch bud-
moth complex population dynamics is not encoded in the predictor variables, important information
is missing in the prediction models. The lower model efficiencies for larch trees can be observed in
all our other experimental results that follow in the next sections but we will not repeat the previous
explanations there.
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Figure 7. Comparing the performance of random decision forest (RDF) and Gaussian process (GP)
models for predicting annual tree-ring indices regarding a monthly and a seasonal time scale of the

predictor variables.

Besides the model efficiencies, we also look at further evaluation measures mentioned in the previous
section and the results are summarized in Table 4. The RMSE is largest for Larix with about 0.20
followd by Fagus with 0.17 to 0.18. The smallest RMSE is obtained for Picea with less than 0.13 and
overall, the RMSE across all genera is between 0.14 and 0.15. While the RMSE for Fagus deviates
more from the errors for other genera as well as from the overall values, the Pearson correlation for
Fagus is similar to the overall correlation and to the one obtained for Abies, Picea, and Quercus. This is
especially interesting when comparing the results for Fagus and Picea: Pearson correlation is almost the
same whereas RMSE is clearly different. Hence, it is important to look at different evaluation measures.

We also computed error terms obtained from the decomposition of the mean-square errors (Gupta et
al., 2009) and results are also summarized in Table 4. Note that for the bias errors, we report values that
need to be scaled by a factor of 10−6. Therefore, we observe that all bias errors are smaller than 10−3,
which shows that there is no bias in any of the predictions, and the errors are distributed among the
variance errors and the phase errors. For the predictions of the RDF models, we see that variance errors
and phase errors are almost the same for three of the six genera (Larix,Picea,Pinus) and overall, both
errors are roughly 0.01. Hence, for RDF models, the MSE is distributed rather equally among variance
error and phase error. This is in contrast to the predictions of the GP models, where the phase error is
two to three times larger than the variance error for each individual genus. Since variance errors for the
GP models are lower than for the RDF models, we conclude that the GP models capture the variability
in the tree-rings slightly better and have more problems in getting the phase, here the inter-annual
variability, correctly.

4.4. Climate predictors: monthly vs. seasonal scale
Given the fact that we use quite a large number of predictor variables due to the monthly time scale for
the same and the previous year (2 years times 12 months times 10 climate variables = 240 predictor
variables), we want to find out how prediction performance for tree-rings changes when we move from
a monthly to a seasonal time scale for the predictor variables. Hence, we averaged the monthly values
within seven seasons of the two years (MAM, JJA, SON, DJF, MAM, JJA, SON) to obtain 70 predictor
variables (7 seasons times 10 climate variables) and performed the experiments with the aggregated
data.

As it can be observed from Fig. 7, the prediction performances in terms of model efficiency drop
clearly for each genus. Comparing the two regression approaches, the reduction is larger for RDF
regression (overall: from 0.29 to 0.22) compared to GP regression (overall: from 0.33 to 0.29). Thus,
some important information for the prediction is lost when first computing seasonal means instead of
using the monthly values directly. We conclude that in order to achieve better prediction performance,
monthly climate data should be used rather than seasonal climate aggregations for estimating tree-ring
indices .
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Figure 8. Comparing the performance of random decision forest (RDF) and Gaussian process (GP)
models for predicting annual tree-ring indices by using either plain values of the climate variables or

climate anomalies.

4.5. Taking monthly climate anomalies into account
Since tree-ring indices are relative growth values due to their dependency on an estimated trend that
takes aging effects into consideration (see Sect. 2.1), they mainly represent deviations from an expected
growing process and hence encode anomalies. This observation has brought us to another hypothesis
that the climate conditions do not have a direct influence on the tree-ring growth rates but rather the
climate anomalies, i.e., the deviations from the average climate conditions at each site. We therefore per-
formed experiments with anomalies of the climate predictors by subtracting the mean seasonal cycles
that has been obtained by averaging over the years 1901 to 2000. The comparison of results from both
settings, using anomalies or using the plain values, is shown in Fig. 8.

It can be clearly observed that our approach for predicting tree-ring growth rates benefits from
the information that is encoded in the climate anomalies. Especially for RDF regression, substantial
improvements can be observed. In this case, the overall performance increases from a model efficiency
of 0.29 to a value of 0.34. While the GP regression models benefit less from the climate anomalies
(but slight improvements are still visible), the largest increases in model efficiency occur for larch
trees (Larix), the most difficult genus due to the small amount of available samples and the problems
described in Sect. 4.3.

It is interesting to see that when using climate anomalies as predictors, the RDF regression approach
is able to close the gap in performance that has been observed in the previous experiments, where
GP regression achieved superior model efficiencies. By using the climate anomalies, both regression
approaches are able to achieve an overall model efficiency of 0.34 for predicting tree-ring indices. At
the genus level, both RDF and GP regression achieve a model efficiencies of 0.37 for Abies and Fagus
as well as a model efficiency of 0.35 for Quercus. The model efficiencies for Picea are on the same
level but slightly vary between both methods (RDF: 0.36, GP: 0.37), whereas the performance is worse
for the remaining to genera (Larix and Pinus) considered in our studies.

In addition, we tested whether additional information is contained in the climate anomalies compared
to the plain values of the climate variables. We therefore performed experiments with a set of predictor
variables containing both the plain values and the anomalies of the climate variables and compared
the results to the best ones achieved so far, i.e., only using the climate anomalies. The corresponding
model efficiencies are reported in Fig. 9 and there are hardly any differences between the performance
measurements, neither overall (model efficiency of 0.34 for both sets of predictor variables and both
regression approaches) nor at a genus level (same values for Abies and Quercus, minor variations for the
remaining four genera). Hence, we can conclude that all important information for predicting tree-ring
indices from climate conditions is contained in the climate anomalies.

4.6. Incorporating static WorldClim data
So far, we have included climate conditions at a coarse spatial scale as predictor variables in our regres-
sion approaches. However, tree growth also depends on site-specific topographic characteristics that
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Figure 9. Comparison of the performances obtained with random decision forest (RDF) and Gaussian
process (GP) models for predicting annual tree-ring indices concerning the amount of information

within the plain values and the anomalies of the climate predictor variables.

change much faster for different locations on much smaller spatial scales. To address this issue, we fur-
ther use mean seasonal cycles of high-resolution climatic and bioclimatic variables from the WorldClim
dataset as mentioned in Sect. 2.3. Note that these predictor variables are static and do not change over
time. Hence, they can not be used alone for estimating tree-ring growth rates in different years without
any other predictors. However, they offer a way to incorporate site-specific topographic characteris-
tics at high spatial resolution because they represent average conditions at each location and can thus
be used in addition to time-varying climate predictor variables obtained from data products at coarser
spatial scales.

From an ecological perspective, it is important to consider both types of variables together (high-
resolution static climate data and low-resolution time-varying climate predictors), because a given
climate anomaly, e.g., a temperature increase of two degrees, has a different impact at different sites
depending on the specific environmental conditions. On the one hand, if the baseline temperature is
low and the growing season short, a two degree temperature increase will have a big impact on the
tree growth rate. On the other hand, if the baseline temperature is high and the growing season long,
the same climate anomaly will not have the same positive impact because the trees are already closer
to a temperature optimum. It can even have a negative impact because water demand rises. By adding
the static WorldClim data, we incorporate the baseline climate information such that the same climate
anomalies can have a different impact on the tree growth rates.

Furthermore, local adaptations of trees might influence responses to climate anomalies as well,
depending on what the trees are used to. However, we are missing corresponding data containing more
detailed site-specific information, e.g., for rooting depth, soil characteristics, as well as for properties
of the stand, like density, age structure, and composition. Although this kind of data would be impor-
tant to analyze forest adaptation and stand dynamics even better, it is not possible to incorporate factors
like this for the predictions of the tree-ring indices given the available data. Another idea for modeling
local adaptations would be to take the distance of a site to the edge of the species distribution range
into account, but this is not straightforward and therefore left for future work. In this paper, we only
consider the static WorldClim data.

In Fig. 10, we compare the previous best results using climate anomalies of the previous and same
year as predictor variables with the setup in which we additionally use the static predictor variables
from the WorldClim dataset, i.e., the mean seasonal cycles of all variables from this dataset. The results
clearly reveal the impact and the importance of high-resolution and site-specific topographic properties,
because obtained modeling efficiencies are improved for each genus as well as overall by quite some
margin when incorporating the WorldClim data. For the GP regression approach, the overall prediction
performance in terms of modeling efficiency increases from 0.34 to 0.38 and for the RDF regression
approach, an improvement from 0.34 to 0.36 can be observed. Looking at individual genera, largest
improvements have been made for Larix (from 0.23 to 0.29) and Picea (from 0.37 to 0.44), which is
very likely due to the fact that these are the genera with the strongest elevation gradient in the dataset.
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Figure 10. Comparison of the performances obtained with random decision forest (RDF) and
Gaussian process (GP) models for predicting annual tree-ring indices with respect to the impact of

high-resolution static data from the WorldClim dataset.
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Figure 11. Scatter plots for the predictions obtained with RDF models (a–f) and GP models (g–l)
when using high-resolution static data from the WorldClim dataset in addition to the monthly climate

anomalies of the CRU TS dataset.

For more detailed investigations, we also show scatter plots of the predictions from the different
regression models in Fig. 11. It can be observed that the variance in the predictions of the GP models is
slightly larger than in the predictions of the RDF models. This holds for all genera and is also reflected
by the corresponding small differences in the modeling efficiencies. The variance in the observations is
clearly larger for all genera compared to the variances in the predictions. Note that the scatter plots for
the predictions from the previous experiments using other sets of predictor variables look quite similar
and we therefore only include these plots here for giving more insights in the results with the best
predictions.

The positive impact of the high-resolution static predictor variables can also be observed when look-
ing at further evaluation measures summarized in Table 5. While the RMSE is only slightly reduced
for all genera, Pearson correlation increases clearly. For the overall predictions of both regression
approaches, the correlation coefficients exceed a value of 0.6 when using static WorldClim data as
additional predictors. The bias errors of the MSE decompositions are all smaller than 10−3, i.e., there
is no bias in the predictions. Note that this is the case for the results of all our experiments, as shown
in Table 9 in Appendix B. In contrast to the results from Sect. 4.3, where the ratio of variance errors
and phase errors was different for RDF predictions and GP predictions, we now see for both regres-
sion approaches that the largest amount of the MSE comes from the phase error, whereas the variance
errors are clearly smaller. Concerning the overall predictions, the variance errors are between 0.004 and
0.006, while the phase errors are between 0.012 and 0.015. Although both errors hardly vary between
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Table 5. Comparing the performance of random decision forest (RDF) and Gaussian process (GP) models for predicting annual
tree-ring indices with respect to six evaluation measures when either only considering monthly climate anomalies as predictor
variables or also taking static WorldClim data into account.

Predictor variables Random decision forest (RDF) Gaussian process (GP) regression

AB FA LA PC PI QU Overall AB FA LA PC PI QU Overall

Climate anomalies of Model efficiencies
same and previous year 0.370 0.374 0.231 0.357 0.297 0.354 0.338 0.370 0.374 0.225 0.373 0.309 0.352 0.343
+ static WorldClim data 0.387 0.394 0.271 0.400 0.306 0.366 0.360 0.388 0.403 0.288 0.435 0.327 0.366 0.375

Climate anomalies of Root-mean-square errors (RMSE)
same and previous year 0.142 0.171 0.195 0.123 0.125 0.133 0.139 0.142 0.171 0.196 0.121 0.124 0.134 0.139
+ static WorldClim data 0.140 0.168 0.190 0.119 0.124 0.132 0.137 0.140 0.167 0.187 0.115 0.123 0.132 0.136

Climate anomalies of Pearson correlation coefficients
same and previous year 0.609 0.613 0.483 0.602 0.549 0.596 0.583 0.608 0.612 0.476 0.611 0.556 0.593 0.586
+ static WorldClim data 0.624 0.630 0.529 0.641 0.559 0.608 0.604 0.623 0.635 0.537 0.660 0.572 0.606 0.612

Climate anomalies of Bias errors (×10−6) of the mean-square error (MSE) decomposition
same and previous year 0.093 0.091 2.354 0.090 0.077 0.135 0.019 0.520 1.508 5.539 0.471 0.207 1.939 0.824
+ static WorldClim data 0.306 0.024 1.462 0.244 0.038 0.083 0.052 0.783 0.292 11.261 0.366 0.076 1.918 0.678

Climate anomalies of Variance errors of the mean-square error (MSE) decomposition
same and previous year 0.006 0.008 0.015 0.005 0.006 0.005 0.006 0.005 0.006 0.012 0.004 0.004 0.004 0.005
+ static WorldClim data 0.006 0.008 0.016 0.005 0.006 0.006 0.006 0.005 0.006 0.009 0.003 0.004 0.004 0.004

Climate anomalies of Phase errors of the mean-square error (MSE) decomposition
same and previous year 0.014 0.021 0.022 0.010 0.010 0.012 0.013 0.015 0.023 0.026 0.011 0.011 0.014 0.015
+ static WorldClim data 0.014 0.020 0.020 0.009 0.009 0.012 0.012 0.015 0.022 0.026 0.010 0.011 0.014 0.014

the different sets of predictor variables (because also RMSE and hence MSE only differ slightly), model
efficiencies and correlation coefficients are larger when taking the WorldClim data into account.

Hence, we conclude that incorporating static predictor variables of high spatial resolution leads to
clear performance boosts when estimating tree-ring growth rates and chronologies at unseen sites. As a
next step, we perform an upscaling of site-level chronologies to gridded data products that are presented
in the next section.

5. Gridded tree-ring data products for Europe
Encouragingly, with our machine learning approaches we are able to obtain spatialized and yearly
resolved tree-ring indices. From the chronologies of in-situ measurements at individual sites, we have
learned regression models for each genus using all available chronologies of trees from the correspond-
ing genus. We have computed dense products at two different spatial resolutions. For the coarser data
products with 0.5◦ spatial resolution, we only used the time-varying predictor variables as done in our
cross-validation experiments, i.e., climate anomalies of the previous and the same year as in Sect. 4.5,
which are extracted for each spatial grid cell in Europe. We also provide high-resolution data products
at 0.0083◦ spatial resolution (roughly 1km2), where we follow the approach of the previous section and
use mean seasonal cycles of the variables from the WorldClim dataset as additional predictors beside
the time-varying predictors that are extracted from the corresponding grid cells of the CRU TS dataset.
The produced data products are available at https://www.doi.org/10.17871/BACI.248 (Bodesheim et
al., 2021) and cover the years 1902 to 2013.

Note that the data products at both spatial resolutions differ in the way they have been calculated and
one product is not simply the spatial aggregation of the other one. This is also discussed in Sect. 5.1 and
shown in Fig. 14. For the product at 0.5◦ spatial resolution, we restricted the set of predictor variables
to the time-varying ones such that the resolution of the predictor variables matches the resolution of the
obtained data product. For the product at 0.0083◦ spatial resolution, we additionally incorporated static
data in terms of mean seasonal cycles of variables from the WorldClim dataset as additional predictor
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variables. Although this higher spatial resolution then only comes from static predictor variables that do
not change over time, they are used in combination with the time-varying predictors when estimating
the tree-ring indices in each year. Hence, for each individual prediction at a single grid cell, a different
set of values for the predictor variables is used compared to the other grid cells. Thus, when considering
the high-resolution grid cells that belong to a single grid cell at 0.5◦ spatial resolution, the patterns that
are induced by values estimated for the high-resolution grid cells may vary across different years.

For both spatial resolutions, we also used both the RDF regression approach and the GP regression
approach to perform the upscaling task. Regarding the hyperparameters of the individual methods, we
used the same values as for the cross-validation experiments discussed in the previous sections. Based
on the regression models for each genus as well as the predictor variables for each grid cell and each
year, spatialized tree-ring indices can be estimated.

Of course, it only makes sense to predict tree-ring indices for grid cells where the trees of the corre-
sponding genus occur. Therefore, we made use of the tree species distribution maps from the European
Atlas of Forest Tree Species (de Rigo et al., 2016) containing relative probabilities of presence. The
high-resolution data with grid cell sizes of 1km2 has been used to decide whether we predict the tree-
ring index at each spatial location. For our data product at 0.0083◦ spatial resolution, we could directly
match the species distribution information and estimated tree-ring indices for those grid cells that have
a value larger than 5 % in the species distributing maps, i.e., an occurence probability higher than 5 %.
Since our estimated tree-ring indices are on the genus level, we consider each grid cell in which the
presence of at least one corresponding species is at least 5 %. For our data product at 0.5◦ spatial res-
olution, we need to aggregate the information from the species distribution maps. In particular, we
have treated the large grid cell as a valid one for a genus if at least in one smaller grid cell of corre-
sponding species distribution maps, the presence of the trees is at least 5 %. Thus, we could restrict our
estimations to a smaller set of grid cells compared to whole Europe.

At this point, we already want to add a cautious note regarding the interpretation and usage of our
data products. As indicated above, our regression models are learned with data from sites whose loca-
tions are shown in Fig. 2. For some genera, e.g., Fagus, the utilized network of sites does not span
the whole continent, but we, nevertheless, predict tree-ring indices across whole Europe. Hence, there
might be some extrapolation involved in the predictions, in particular for regions with climate condi-
tions that are potentially not observed during training of the model. We therefore encourage to always
consider the spatial locations of the sites used during model training shown in Fig. 2 as well when inter-
preting our data products or when drawing further conclusions that probably also arise in future studies.
Although this might look like a limitation for our approach and our provided data products, it is still the
best we can do so far with the limited availability of tree-ring data. We believe that our data products
are nevertheless a valuable source for future research and we want to highlight again that results need
to be interpreted with caution.

5.1. Example maps at two spatial resolutions
To illustrate our computed data products, some example maps are provided in Figure 12. We have
selected two genera (Fagus and Quercus) and show corresponding maps at 0.5◦ spatial resolution for
the (randomly selected) years 1980, 1990, and 2000, respectively. One can observe from these maps
that trees of different genera respond differently to the same climate conditions when comparing maps
of the same year, e.g., looking at the same regions in both the map for Fagus of the year 2000 and
the map for Quercus of the year 2000. Thus, it is important to make appropriate distinctions on the
genus or species level. We also verified this observation based on the chronologies from the in-situ
measurements (Sect. 4.1 and Fig. 5).

In Fig. 13, we display maps corresponding to the year 1990 at the two different spatial resolutions
(0.5◦ and 0.0083◦). We have selected the estimations for Fagus from the RDF regression approach as
well as the estimations for Quercus from the GP regression approach. In both cases, we observe that the
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Figure 12. Estimated tree-ring indices of Fagus (a–c) and Quercus (d–f) at 0.5◦ spatial resolution in
Europe from the RDF regression approach are visualized for the years 1980, 1990, and 2000,

respectively.

same patterns are obtained when comparing predictions at different spatial resolutions, e.g., the green
regions in the maps for Fagus and Quercus as well as the dark red area in the maps for Fagus.

To show the differences of the predictions that are achieved for the different resolutions, we compute
spatially aggregated maps by calculating average values from corresponding grid cells of the high-
resolution product (0.0083◦) to match the lower resolution (0.5◦). We are then able to determine the
difference maps between the data products at 0.5◦ spatial resolution and the spatial aggregations of
the data products at 0.0083◦ spatial resolution. These difference maps are shown in Fig. 14 for the
same examples as in Fig. 13. In total, differences are rather small, since the same patterns are found
in both versions of the tree-ring maps. Interestingly, the absolute differences in the maps for Fagus
are largest in Western Europe (larger negative differences) and South Eastern Europe (larger positive
differences), while absolute differences in the maps for Quercus are largest in Central Europe (larger
negative differences).

From the distributions of differences in Fig. 14, we observe that a different resolution for the predic-
tion does not lead to a bias in the estimated values. The variance of the differences is larger for Fagus
than for Quercus, which can be explained by the larger variability of tree-ring indices for Fagus. For
the maps of Quercus, there is hardly any difference between the predictions at 0.5◦ spatial resolution
and the aggregated predictions at 0.0083◦ spatial resolution.

5.2. Differences in estimations of different regression approaches
In this section, we compare the estimations of the two regression approaches using the gridded data
products at 0.5◦ spatial resolution. Difference maps of selected years are found in Fig. 15 for predicted
tree-ring indices of Fagus and in Fig. 16 for predicted tree-ring indices of Quercus.
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(a) (b)

(c) (d)

Figure 13. Comparing the data products of the different spatial resolutions 0.5◦ (a,c) and 0.0083◦
(b,d) by the corresponding maps of the year 1990 for the RDF regression approach and Fagus (a–b)

as well as for the GP regression approach and Quercus (c–d).

Considering the predictions for Fagus in Fig. 15, we observe that the GP approach produces larger
values for tree-ring growth in 1980 in Central Europe due to the red region in the difference map, where
both regression approaches estimate a large increase in tree growth indicated by the green color in the
orginal tree-ring maps. For the years 1990 and 2000, largest differences are observed in Western Europe
and Eastern Europe. However, both regression approaches produce the same patterns for all the years,
i.e., red regions for reduced tree-ring growth and green regions for increased tree-ring growth match
quite well. This can also be observed for the tree-ring predictions of Quercus in Fig. 16.

When looking at the distributions of differences in Fig. 16, we see that there is no bias when com-
paring the predictions of the RDF and the GP models for Quercus, since the distributions are symmetric
and centered around zero. Interestingly, this is not the case for the distributions of differences in the pre-
dictions when considering tree-rings of Fagus. In Fig. 15, the distributions are skewed and shifted by an
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Figure 14. Comparing the differences between the data product at 0.5◦ spatial resolution and spatial
aggregations of the high-resolution product (0d0083@0d50) using the corresponding maps of the year
1990 for the RDF regression approach and Fagus (a–d) as well as for the GP regression approach and

Quercus (e–h).

offset that can be either positive or negative. Hence, there is no consistent bias meaning that for some
years, RDF produces larger values than GP and for some years, it is vice versa. However, the abso-
lute differences in the predictions are overall rather small compared to the variability of the estimated
tree-ring indices (less than 0.2) and the produced spatial patterns are still the same for both regression
approaches. The different behavior when comparing Fagus and Quercus might come from the different
variability in the tree-ring indices for the different genera, which is also visualized in Fig. 11. Hence,
the two regression approaches handle the varying amount of variability in the target variable differently.

5.3. Tree-ring maps for selected years with extreme climate conditions
To further highlight the benefits of our upscaling approach and the derived data products, we explore
tree growth patterns for years with extreme climate conditions. The years 1976 and 2003 are known to
be very hot and dry ones (Rammig et al., 2015; Zhang et al., 2018). We further selected extreme years
by considering monthly temperature and precipitation values from the CRU TS dataset. In particular,
mean temperature and total precipitation aggregated over the twelve months have further been averaged
spatially across the whole continent to obtain an average temperature and an average precipitation for
each year. After sorting the years according to these two values, we have identified two hot and wet
years (1999 and 2002), two cold and wet years (1940 and 1965), and two cold and dry years (1908 and
1942). Corresponding maps for Fagus and Quercus obtained by the two different regression approaches
are shown in Fig. 17. Note that these extreme conditions have been determined by taking average values
across the whole continent into account. Hence, tree-ring indices might vary a lot when comparing local
regions with probably larger deviations from the average climate conditions.

Nevertheless, it is interesting to see how different tree genera respond differently to extreme climate
conditions. From Fig. 17, we observe that beech and oak trees suffered a lot from heat and dryness in
1976 because the maps show many red and orange pixels indicating tree-ring indices smaller than one.
Interestingly, similar conditions have been less detrimental for the trees in 2003, where mainly regions
in Eastern Europe show reduced growth rates. One reason might be that tree growth is also influenced
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Figure 15. Comparing the differences between the predictions from the RDF approach and the GP
approach for the estimated tree-ring indices of Fagus at 0.5◦ spatial resolution in the years 1980

(a–d), 1990 (e–h), and 2000 (i–l), respectively.

by the climate conditions of the previous year and 2002 has been one of the years with largest average
precipitation. While also during hot years, tree growth in 2002 as well as in 1999 is less affected by
the high temperatures due to higher water availability caused by more precipitation. In 1999, larger
green areas can be observed in the map for Fagus, which is an indicator for increased growth rates with
tree-ring indices larger than one. For the two cold and wet years 1940 and 1965, it can be observed
that reduced tree growth especially happened in the very cold year 1940 for both Fagus and Quercus.
During the two cold and dry years 1942 and 1908, we see that tree growth for oak trees was more
inhibited compared to the growth of beech trees, which suffered more from the conditions in the very
cold year 1942.

Last but not least, we want to look at tree-ring indices for the three consecutive years 2002, 2003,
and 2004, which are all hot years. The associated maps for Fagus and Quercus are shown in Fig. 18.
As mentioned before, 2002 was a very wet year and hence, also large tree-ring indices greather than
one appear in a region in Central Europe, whereas the tree growth is negatively affected in Southern
Europe. In the following extreme year 2003, there is still one larger green region visible in the maps for
Fagus, despite the very hot and dry conditions during this year. However, one year later in 2004, this
green region turned into a red one, which indicates that the impact of the extremely hot and dry year
2003 is stronger for the tree growth in the following year 2004. This nicely highlights the lag effect of
the climate conditions on tree growth. Furthermore, the effects of climate anomalies on tree growth also
depend much on the time when the anomalies happen during a year. For example, a hot and dry event
during (late) summer might have less severe consequences for the tree growth in the same year if large
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Figure 16. Comparing the differences between the predictions from the RDF approach and the GP
approach for the estimated tree-ring indices of Quercus at 0.5◦ spatial resolution in the years 1980

(a–d), 1990 (e–h), and 2000 (i–l), respectively.

amounts of the tree-ring have been built already during the months before with better conditions. The
negative outcome is then visible for the year after, as in the example for the years 2003 and 2004. In
contrast, an anomaly during the early months of a year has more impact on the tree-ring formed in the
same year. Hence, the timing of the anomalies plays a crucial role as well. All these examples show that
tree-ring growth patterns can be laid out and interpreted even for years with extreme climate conditions.

6. Conclusions and future work
In this study we investigated how to best compute gridded data products of annual tree growth variabil-
ity by applying machine learning methods for regression tasks that have been trained at the site-level
data. Our approach is based on the correlation between annual tree-ring indices and climatic conditions
that were predominated throughout the same and the previous year. We have tested several prediction
strategies in leave-one-site-out experiments and found that it is important, (i) to take the climate from
the previous year into account, (ii) to keep the monthly time scale of the climate variables rather than
using seasonal aggregations, and (iii) to use climate anomalies by subtracting mean seasonal cycles
instead of using the plain values.

With our proposed upscaling approach, we were able to estimate gridded data products of annual
tree-ring growth at half-degree spatial resolution across Europe, focusing on the six most dominant
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Figure 17. Predicted tree-ring maps of Fagus and Quercus at 0.5◦ spatial resolution from RDF
models and GP models for years with extreme climate conditions: 2003 and 1976 as two hot and dry
years (a–d), 2002 and 1999 as two hot and wet years (e–h), 1965 and 1940 as two cold and wet years

(i–l), as well as 1942 and 1908 as two cold and dry years (m–p).

genera (Abies,Fagus,Larix,Picea,Pinus,Quercus) and covering the years 1902 to 2013. However, our
approach can easily be applied to both other regions and further genera.

In addition, we showed that incorporating site-specific topographic characteristics in terms of mean
seasonal cycles for climate variables from the high-resolution WorldClim dataset as additional predictor
variables leads to further improvements of the estimations. For our experiments, we used mean seasonal
cycles of the variables from the WorldClim dataset. Although being static information, the high spatial
resolution of this data turned out to be beneficial for our upscaling task. Hence, we were also able to
compute high-resolution gridded tree-ring data products across Europe for the abovementioned genera
and years at 0.0083◦ spatial resolution. Furthermore, the prediction performance of the machine learn-
ing approaches might be improved in the future by incorporating actual climate data at higher spatial
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Figure 18. Predicted tree-ring maps of Fagus and Quercus at 0.5◦ spatial resolution from RDF
models and GP models for the three consecutive hot years 2002 (a–d), 2003 (e–h), and 2004 (i–l).

resolutions if available at continental scales, which would better represent varying growth conditions at
the individual site-level of the training data and therefore allows for better exploiting the influence of
local climate on site-level tree growth.

We believe that our provided data products of spatially resolved tree-ring indices in Europe will be
an interesting data source for other studies that deal with long-term trends of tree growth as well as
anomaly detection at annual time scales. In our evaluations, we showed the effects of several extreme
climate conditions on the estimated tree-ring indices.

Our analysis also revealed that auto-correlation within the tree-ring chronologies has not been
exploited for the prediction and proper incorporation in the prediction approach is left for future
research. Besides that, there are other factors besides climate that influence the formation of the tree-
rings and which are not covered by our approach. Hence, identifying further relevant predictor variables
will be of great importance.
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Figure 19. Experimental results for applying PCA prior to learning and testing RDF regression
models.
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A. Further experimental results
In this section, we want to shortly discuss results of further experiments that we have conducted but which did not lead to an
improved prediction performance. First, we tested whether soil properties obtained from the individual sites would be beneficial
for predicting tree-rings. For this purpose, we extracted static predictor variables from the Harmonized World Soil Database
(version 1.2)2 at the corresponding sites. We used the following variables: fractions of clay, sand, silt, gravel, and organic carbon,
as well as the available soil texture classes for both top soil and sub soil levels. These soil properties were used together with the
climate variables as predictors for the regression. However, the obtained results did not change significantly compared to only
using climate variables. We therefore conclude that the static soil properties do not add any valuable information to the prediction
of tree-ring indices.

In further experiments, we incorporated estimates of gross primary production (GPP) at a monthly time scale obtained from
different global vegetation models also known as TRENDY models (Sitch et al., 2015). The GPP estimates of five different models
have been tested: CABLE, ISAM, LPJ, VEGAS, and VISIT. However, for all of these models, we did not find any improvements
in the tree-ring predictions when the corresponding GPP estimates are used as additional predictor variables together with the
climate variables. There seems to be no additional information in GPP estimates for predicting tree-ring indices beyond the
information already present in the climate variables.

It has already been mentioned in Sect. 4.4 that we incorporated quite a large number of predictor variables by using ten
variables at a monthly time scale over two years to predict a single tree-ring index. This holds for both using the plain values of
the climate variables and using climate anomalies. In Sect. 4.4, we have shown that seasonal aggregation of the climate data leads
to decreased prediction performances. We further pursued a dimensionality reduction approach by applying principal component
analysis (PCA) prior to learning the regression models. The number of principal components, i.e., the resulting dimension has
been varied between 5 and 50 (the seasonal aggregation has led to 70 predictor variables) and prediction performances of RDF
regression models are compared to those without applying PCA. As it can be seen from Fig. 19, PCA only leads to an improved
prediction performance when using plain values of the climate predictors (blue curve), which is still lower than for the approaches
that take climate anomalies into account. With the climate anomalies, the model efficiencies saturate for an increasing number of
principal components at a performance level that is lower than for the regression approach without applying PCA. Thus, the best
results are achieved by using the full set of predictor variables at a monthly time scale.

Furthermore, we analyzed the auto-correlation within the chronologies as well as within our predictions and the residuals. As
one example, we have focused on beech trees (Fagus). The largest auto-correlation (about 30 % on average) in the corresponding
chronologies has been observed for a lag of one year, whereas larger lags show negligible auto-correlation on average as it can be
observed from Figure 20. This is in line with the observations that environmental conditions of the previous year have an impact
on forming a tree-ring (see Sect. 4.3). Although we have also incorporated monthly values of the previous year for each predictor

2http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
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Figure 20. Auto-correlation in observations, predictions, and residuals for tree-ring chronologies of
Fagus up to a lag of five years.

Table 6. Model efficiencies obtained from our leave-one-site-out experiments for predicting annual tree-ring indices.

Predictor variables Random decision forest (RDF) Gaussian process (GP) regression

AB FA LA PC PI QU Overall AB FA LA PC PI QU Overall

Monthly climate data
of same year 0.315 0.309 0.144 0.293 0.226 0.315 0.276 0.344 0.351 0.177 0.362 0.274 0.346 0.320
of same and previous year 0.328 0.312 0.156 0.308 0.239 0.326 0.287 0.352 0.358 0.181 0.371 0.280 0.349 0.326

Monthly climate anomalies
of same year 0.368 0.367 0.221 0.348 0.286 0.348 0.331 0.365 0.369 0.220 0.369 0.305 0.350 0.339
of same and previous year 0.370 0.374 0.231 0.357 0.297 0.354 0.338 0.370 0.374 0.225 0.373 0.309 0.352 0.343

Monthly climate data and
monthly climate anomalies
of same year 0.367 0.360 0.214 0.350 0.284 0.347 0.328 0.364 0.363 0.215 0.377 0.302 0.353 0.338
of same and previous year 0.371 0.369 0.223 0.361 0.294 0.353 0.336 0.371 0.367 0.222 0.382 0.305 0.354 0.342

Static WorldClim data and
monthly climate anomalies
of same year 0.384 0.391 0.259 0.396 0.297 0.361 0.355 0.384 0.400 0.282 0.431 0.314 0.362 0.369
of same and previous year 0.387 0.394 0.271 0.400 0.306 0.366 0.360 0.388 0.403 0.288 0.435 0.327 0.366 0.375

variable in our cross-validation experiments, it turned out that the auto-correlation with a lag of one year is still present in the
residuals of our predictions. In fact, it is not even reduced but remains on a comparable level. Thus, simply using environmental
conditions of the previous year as additional predictor variables does not exploit the auto-correlation that is present in the tree-
ring chronologies. Further studies on this issue are required as a topic for future research. One idea is to investigate modern deep
learning methods from the machine learning literature that are designed for time series predictions and directly model memory
and lag effects, e.g., LSTM models (Hochreiter & Schmidhuber, 1997; Greff et al., 2015).

B. Detailed lists of experimental results according to six evaluation measures
To allow for fast and easy comparison, our experimental results are summarized in six tables. The first three tables contain the
following performance measure that have been computed to judge on the quality of the predictions: model efficiency (Table 6),
RMSE (Table 7), and Pearson correlation (Table 8). The remaining tables show the performance measures that arise from
the decomposition of the mean-square error (MSE) as proposed by Gupta et al. (2009): the bias error (Table 9), the variance
error (Table 10), and the phase error (Table 11).
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