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Abstract. Machine learning has achieved considerable success in data-intensive
applications, yet encounters challenges when confronted with small datasets. Re-
cently, few-shot learning (FSL) has emerged as a promising solution to address
this limitation. By leveraging prior knowledge, FSL exhibits the ability to swiftly
generalize to new tasks, even when presented with only a handful of samples in
an accompanied support set. This paper extends the scope of few-shot learning by
incorporating novelty detection for samples of categories not present in the sup-
port set of FSL. This extension holds substantial promise for real-life applications
where the availability of samples for each class is either sparse or absent. Our ap-
proach involves adapting existing FSL methods with a cosine similarity function,
complemented by the learning of a probabilistic threshold to distinguish between
known and outlier classes. During episodic training with domain generalization,
we introduce a scatter loss function designed to disentangle the distribution of
similarities between known and outlier classes, thereby enhancing the separation
of novel and known classes. The efficacy of the proposed method is evaluated
on commonly used FSL datasets and the EU Moths dataset characterized by few
samples. Our experimental results showcase accuracy, ranging from 95.4% to
96.7%, as demonstrated on the Omniglot dataset through few-shot-novelty learn-
ing (FSNL). This high accuracy is observed across scenarios with 5 to 30 classes
and the introduction of novel classes in each query set, underscoring the robust-
ness and versatility of our proposed approach.
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1 Introduction

In the ever-evolving landscape of machine learning, the quest for more efficient and
adaptive models has led researchers to explore innovative paradigms that transcend tra-
ditional learning approaches. One such paradigm gaining substantial attention is few-
shot learning (FSL), a subfield that addresses the challenge of training models with lim-
ited labeled data [41, 37]. FSL stands as a bridge between traditional machine learning,
which often requires extensive labeled datasets, and the burgeoning need for systems
capable of rapid adaptation to novel tasks or domains.
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While FSL has proven to be a promising avenue for handling scenarios with scarce
annotated examples, the integration of novelty or outlier detection mechanisms intro-
duces a new layer of sophistication to these models [27]. Novelties, or outliers, represent
instances that deviate significantly from the known data distribution, posing a unique
set of challenges and opportunities [26]. This integration allows models not only to rec-
ognize patterns within familiar classes but also to discern and adapt to unforeseen and
instances of novel classes.

The convergence of FSL and novelty detection addresses the critical need for mod-
els that can generalize effectively beyond the confines of their training data. As an
example, the few-shot classification problem extended with novelty detection could be
used in biology to identify unseen or rare animal species [9, 2]. In many real-world
applications, the ability to detect and adapt to novel situations is paramount, such as
anomaly detection in healthcare diagnostics [21] for recognizing and classifying im-
ages in categories of known and unknown symptoms. This paper explores the theo-
retical foundations, methodologies, and applications of FSL with a specific focus on
incorporating novelty or outlier detection mechanisms.

Contribution. The paper endeavors to present a novel methodology designed specifi-
cally for identifying outlier samples in the realm of few-shot-novelty learning (FSNL).
This latter objective is geared towards the detection of samples from novel classes not
encompassed within the support set for FSL.

To further enhance the efficacy of FSL with novelty detection, we introduce a novel
scatter loss function. This function is strategically applied during episodic training to
proficiently disentangle and separate the distribution of known and novel classes within
the similarity space. By doing so, our proposed approach aims to augment the discrimi-
native capabilities of FSL, specifically in scenarios involving the identification of novel
instances that lie outside the boundaries of the support set.

2 Related Work

2.1 Few-Shot Learning

The landscape of FSL methods is multifaceted, comprising diverse approaches tailored
to address the challenges inherent in learning from limited labeled data. Among the
pioneering methods, Matching Networks, as introduced by Vinyals et al. [38], repre-
sent an early foray into this domain. Relational networks is another simple and flexible
FSL method by Sung et al. [35]. In accordance with the test setting, few-shot learning
can be categorized into two distinct branches: inductive FSL and transductive FSL. The
former involves the prediction of test samples individually, while the latter addresses
the prediction of test samples collectively. As substantiated in earlier studies [16, 42],
transductive inference consistently outperforms inductive inference, particularly when
confronted with scenarios of limited training data [23, 14, 18, 28, 10, 5]. For a compre-
hensive overview of the evolving FSL landscape, we refer to surveys such as those
presented in works by Wang et al. [41] and Song et al. [34].

A notable category of methods relevant to our proposed approach leverages co-
sine similarity as the fundamental measure. This includes Prototypical Networks [33],



Finetune [7], Transductive Information Maximization [5], and Prototypical Rectifica-
tion [22]. The utilization of cosine similarity in these methods aligns with the approach
adopted in our proposed methodology.

Meta-learning is a key paradigm in the FSL landscape, and a comprehensive survey
on the subject is presented by Hospedales et al. [13]. Additionally, the integration of
episodic training for domain generalization, as discussed by Li et al. [20], emerges as a
crucial aspect in enhancing the adaptability and robustness of FSL models.

In the realm of recent advancements, ProFeat [17] and SAPENet [15] stands out as
some of the newest and top-performing FSL methods. This continuous evolution and
diversification of FSL methods underscore the dynamic nature of this field, emphasizing
the ongoing quest for more effective approaches to tackle the challenges posed by FSL
scenarios.

2.2 Novelty and Outlier Detection

Several research areas have contributed to addressing challenges related to rare events,
anomalies, novelties, and outliers. The following studies explore various aspects of
these issues, placing a particular focus on supervised and unsupervised classification [32,
12]. Out-of-distribution (OOD) detection, which separates in-distribution (ID) and OOD
data, has gained attention in machine learning [8]. Recognizing instances of uncertainty
or novelty holds significant importance in various deep learning applications, particu-
larly within the domains of limited data for certain classes. Anomaly detection, inter-
changeably referred to as outlier detection or novelty detection [27, 26], serves as a
crucial tool in achieving this objective by identifying patterns in data that deviate from
the anticipated norms based on prior observations.

Carreno et al. [6] aims to clarify the distinctions among rare events, anomalies,
novelties, and outliers, organizing these concepts within the framework of supervised
classification. Novelty detection is crucial for a robust classification system. Markou
and Singh [24] emphasizes the identification of new or unknown data during training, as
test data may contain information about objects not present during the model’s training.

Amarbayasgalan et al. [1] proposing deep autoencoders with density-based cluster-
ing (DAE-DBC). This approach involves calculating compressed data and error thresh-
olds from a deep autoencoder model. Points not associated with any clusters are consid-
ered novelties. The review by Ruff et al. [30] identifies common underlying principles
and assumptions implicit in various anomaly detection methods. It establishes connec-
tions between classic ’shallow’ approaches and novel deep learning methods.

In many deep semi-supervised approaches, the initial step involves modeling normal
behavior, followed by the subsequent identification of novelties [36]. The distribution of
normal observations is acquired by leveraging the output scores provided by the trained
model. Subsequently, a threshold rule is applied to designate samples as novelties with
scores falling below a predefined threshold situated outside the learned distribution.

In situations where acquiring sufficient data for training models to classify all sam-
ples is impractical, we propose the incorporation of novelty detection within the FSL
model to discern uncertain samples of novel classes. The approach employed in our
work, referred to as threshold-based outlier tagging, leverages the concept of identify-
ing outliers based on a predetermined learned threshold for cosine similarity scores.



3 Method

3.1 Few-Shot Learning

In few-shot classification, we are given a small support set of (N ·K) labeled examples
S = {(X(1)

1 , y1), ..., (X
(K)
N , yK)} where each X

(k)
n ∈ RD is the D-dimensional em-

bedded feature vector of an example and yk ∈ {1, ...,K} are the corresponding labels.
The set Sk = {(X(k)

1 , yk), ..., (X
(k)
N , yk)} denotes the subset of examples labeled with

class k and the number of class labels in the support set is denoted K-way where we
have N -shots of examples in each Sk. A query set Q contains samples qi that belong
to classes in the support set where the goal is to match the query samples to the correct
class label. When testing with a test dataset that comprises more classes than those in-
cluded in the support set, a random subset of K classes is selected for each few-shot
task, which encompasses both the support and query sets.

3.2 Few-Shot-Novelty Learning

In few-shot classification with novelty detection, the query set contains samples of K-
way and M -novel classes. The classes denoted as M -novel do not pertain to any of the
classes within the support set and, therefore, should be classified as outliers. A solution
to this problem would benefit many real-life applications where the number of samples
for each class is sparse or non-existent.

Given that novelty detection methods cannot differentiate between the M -novel
classes and treats them collectively as a substantial outlier class, the M -novel classes
in the support set will be classified as a single novel class. A task contains a labeled
support set with K classes and a query of samples from those K classes and M novel
classes selected randomly from the dataset. Each dataset is split into three sub-datasets
with different classes for episodic training, validation and final testing. The query set
only contains M novel classes during the final testing.

3.3 Prototypical Network with Outlier Detection

We propose to use the Prototypical Network [33] and modify it to use the cosine sim-
ilarity function instead of the Euclidean distance when comparing the support center
point with query embeddings. The cosine similarity is normalized between −1.0 and
1.0 in contrast to the Euclidean distance that lies between zero and infinite. We an-
ticipate the cosine similarity to be more efficient in learning a threshold to discerning
between similar and outlier samples.

The support center point X
(k)

is computed as the average of N -shot support em-
beddings for each class

X
(k)

=
1

N

N∑

n=1

X(k)
n (1)



The cosine similarity between the query sample qi and support center point X
(k)

is
defined as

sqik =
qTi ·X(k)

|qi||X
(k)|

(2)

Table 1. Illustrates cosine similarities between support centers and queries, with two samples per
class in the query. The predicted labels for the queries are correct, except for the second row,
where the predicted label erroneously reads 2 instead of 0. For the correct predictions the support
center similarities are grouped in true positive (known) p(s|ωk) = [0.9, 0.9, 0.8, 0.7, 0.8] and
true negative (outlier) p(s|ωo) = [0.7, 0.5, 0.7, 0.4, 0.6, 0.5, 0.5, 0.4, 0.5, 0.3].

Support center similarities Query Predicted
Class 0 Class 1 Class 2 labels labels

0.9 0.7 0.5 0 0
0.6 0.5 0.8 0 2
0.7 0.9 0.4 1 1
0.6 0.8 0.5 1 1
0.5 0.4 0.7 2 2
0.5 0.3 0.8 2 2

The predicted class ỹi is estimated as the maximum of cosine similarities for query
embedding qi and all support center points X

(k)
for all K-way classes

ỹi = argmax
k∈{1,..,K}

(sqik) (3)

A prediction is classified as a novelty or outlier if the cosine similarity is below a
learned threshold th:

ỹi =

{
novelty if sqik < th

ỹi otherwise
(4)

3.4 Learning Threshold for Novelty Detection

All datasets are divided into three sets used for training, validation and testing each
containing different classes. In this context, we have decided to utilize the validation
dataset to learn a threshold for novelty detection, as it is also used during episodic
training to determine the optimal model. Throughout the learning process, the support
and query sets undergo changes, with random classes selected for each task from the
validation dataset. Each task with a support and query set without any novel classes
is used during the learning process. This setup is utilized to estimate a threshold that
distinguishes between similarities of samples in the query and support set.

To automate the learning of a threshold (th) value to detect outliers as defined in
Eq. (4) we use the validation dataset to learn the probability function for correct true
positive (TP) and correct true negative (TN) as shown in Fig. 1. For every sample in the
query that is correctly classified according to Eq. (3), the cosine similarities are com-
puted with every support center point using Eq. (2). A query sample, not belonging to



Fig. 1. Distribution of cosine similarities for true positive and true negative predictions learned
from the validation dataset. True positive shows the probability function p(s|ωk) of correct clas-
sified samples. True negatives show the probability function p(s|ωo) of samples that are correctly
classified as outliers. The black line shows the learned Bayes threshold to separate outliers from
correctly classified samples. The dotted black line shows the second solution to the quadratic
equation in Eq. (10).

the sample class in the support set, will be marked as an outlier similarity. The cor-
rectly classified (TP) cosine similarities (s) are grouped in the distribution p(s|ωk) of
known similarities. The correctly classified outliers (TN) are grouped in the distribution
p(s|ωo) of outlier similarities. An example with 3-way and two query samples is shown
in Tab. 1. This entails that every sample in a query will undergo a cosine similarity
comparison with all samples in the support set.

By using the Bayes decision function dj(s) = P (ωj |s) for classes of known (ωn)
and outlier (ωo) similarities we have

dj(s) = p(s|ωj)P (ωj) (5)

where p(s|ωj) is the probability given by the density function for the known or the
outlier similarities and P (ωj) is the prior probability for ωn or ωo.

The probability density functions p(s|ωj) for the patterns in each class (TP, TN) are
assumed to be Gaussian N (µ, σ2). The probability of occurrence P (ωj) of each class,
must be known. In the setting of FSNL with a query set of K known classes and M
outlier/novel classes we have

P (ωk) =
K

K +M
(6)

P (ωo) =
M

K +M
(7)

here P (ωk) is the probability for occurrence of a known class and P (ωo) is the prob-
ability for occurrence of an outlier/novel class. Calculating these prior probabilities
accurately is only feasible in our controlled experiments of FSNL; however, estimating
them correctly in practice is likely to be challenging.



The Bayes decision boundary between two classes is defined by a single point sd,
such that

do(sd) = dk(sd) . (8)

Here, do is the decision function for the outlier/novel class and dk is the decision func-
tion for known classes. Here we have only one decision function for all known classes
and one for all outlier/novel classes. The point sd is the intersection of the two probabil-
ity functions if the two classes were equally likely to occur, however for FSNL we use
the probability of occurrence as defined in Eq. (6) and Eq. (7). Assuming a Gaussian
distribution N (µ, σ2) for p(s|ωk) and p(s|ωj) and combining Eq. (8) and Eq. (5), we
get

1√
2πσo

exp
− (sd−µo)2

2σ2
o P (ωo)

=
1√
2πσk

exp
− (sd−µk)2

2σ2
k P (ωk)

(9)

here the variances (σ2
o ,σ2

k) and means (µo,µk) are estimated on the validation dataset
for the correct classified classes (TP) and correct classified outliers (TN) as illustrated
in Fig. 1. The point sd of the decision boundary is found by solving Eq. (9), where we
have

(σ2
k − σ2

o)s
2
d − 2(µoσ

2
k − µkσ

2
o)sd

+σ2
kµ

2
o − σ2

oµ
2
k − 2σ2

oσ
2
kln(

M
√
σk

K
√
σo

) = 0
(10)

The solution to the quadratic equation 10, ensuring that sd falls within the valid
range sd ∈ R ∩ [0; 1] of the cosine similarity function, is ultimately selected as the
learned threshold (th = sd). The proof of Eq. (10) can be found in Appendix A.

3.5 Episodic Training with Scatter Loss

In FSL episodic training with domain generalization (DG) [20] the goal is to train a
model on a base domain containing data-label pairs that generalize well to a validation
domain with different statistics to the base domain. That means the categories of classes
in the training and validation datasets are different. Episodic training is also called meta-
learning [13] where we have a set of tasks for each epoch of training. A task contains
a number of episodes that each contain a labeled support set and a query set from the
training dataset. After each epoch the validation dataset is used to evaluate accuracy on
a different domain with other tasks of class categories than contained in the training
dataset.

A Prototypical Network is using the Euclidean distance as a similarity function
to predict query samples’ relation to class labels in the support set. Experiments have
shown that training with the Euclidean distance instead of the cosine similarity function
gives the best results [20]. During training in our approach the distribution of outlier and
known class similarities is controlled by a scatter loss. The scatter loss is designed to
minimize within-class variance while simultaneously maximizing the mean separation
between outlier and known classes. This method draws inspiration from the work of



Bodesheim et al. [3]. See Fig. 1 for an example of outlier and known class distribution.
The univariate scatter loss is defined as

Js(θ) =
σk + σo

|µk − µo|
(11)

here σk and σo are the standard deviation and µk and µo are the mean for the distribu-
tion of known and outlier similarities using Euclidean distances in the training episode.
Only sample queries that are correctly classified according to training label are included
in the distribution of known and outlier similarities. The cross-entropy loss function
in Eq. (12) ensures that query samples are classified correct according to the support set
during training:

Jc(θ) = −
K∑

j=1

ŷj log(
exp(dqjk)∑K
i=1 exp(dqik)

) (12)

Here, dqjk is the euclidean distance between the support center point and the query
sample j and ŷj is the one-hot encoded vector for the correct label of the query sample.
K is the number of classes (K-way) in the support set. Finally a combined loss function
is defined to prioritize between the cross-entropy and scatter loss:

J(θ) = αJs(θ) + (1− α)Jc(θ) . (13)

The goal is to increase the distance between the known and outlier distributions while
increasing the correct classified query samples related to the support classes. The loss
function J(θ) will prioritize between minimizing the scatter loss and the cross-entropy
loss by adjusting α ∈ [0, 1]

3.6 Fine-Tuning and Episodic Training

The convolutional neural network ResNet [11] is used as a backbone to extract feature
embeddings. The output features from the last convolutional layer are flattened and used
as embedding with a D-dimensional feature vector. ResNet12 and ResNet18 are com-
monly used in FSL for training [7, 5, 41] producing a 64 and 512-dimensional feature
vector, respectively. In our work, we have trained models with and without fine-tuning.
In fine-tuning classical pre-trained weights on the ImageNet dataset [31] are used. The
pre-trained ResNet models were fine-tuned with episodic training on a new domain
dataset. A 5-shot 5-way support set was used during all episodic training and validation
sessions. However, the number of shots varied in the experiments conducted during the
evaluation of the trained models.

The stochastic gradient descent optimizer (SGD) was used during training. The
SGD was configured with the momentum of 0.9 and a weight decay of 5.0 · 10−4 using
a multi-step scheduler to lower the learning rate at two specified milestones specified by
epochs. The first milestone was set to 120 epochs and the second to 190 or 250 epochs.
SGD was tested with the initial learning rate of 1.0 · 10−3 for pre-trained models and
1.0 · 10−2 for trained models without fine-tuning.

A number of additional arguments were specified for each model to be trained cov-
ering: ResNet model, dataset, epochs, milestone 1, milestone 2, α, pre-trained weights,
training tasks, validation tasks, query number and initial learning rate. The arguments
for model trained and validated in our experiments are detailed in Appendix B.



3.7 Performance Metrics for Testing

The accuracy for different learning methods on the test dataset is calculated to compare
few-shot and few-shot-novelty Learning with the commonly used 5-way (classes) with
either a 5-shot or 1-shot support set. FSNL is evaluated with 1-novelty class in most
experiments, however with a new novelty class in every query during testing. The ex-
periments also explore the impact of varying the number of M-novel classes and the
variation of K-way classes in both the support and query sets.

To evaluate model performance, the precision, recall, and F1-score metrics were
chosen for the novelty class. These metrics are based on true positive (TP ), false posi-
tive (FP ), and false negative (FN ) novelty detections. Recall and precision were used
in conjunction to obtain a complete picture of the model’s ability to find all novelties
and detect them correctly. To balance precision and recall, we used the F1-score.

The metrics outlined in the tables of Sec. 5 include Acc. (FSL) representing the
accuracy for few-shot learning, and Acc. (FSNL) denoting the accuracy for few-shot-
novelty learning, along with precision, recall, and F1-score for the novelty class. Met-
rics in all tables are computed across 5 random runs, with average and standard devia-
tions (SD).

4 Experimental Setup for Training, Validation and Testing

The proposed method undergoes training and evaluation using four distinct datasets,
with three of them being widely employed in the realm of FSL. Each dataset is parti-
tioned into three distinct class domains designated for training, validation, and ultimate
testing. The validation dataset plays a pivotal role in episodic training, contributing
to the selection of the optimal model and facilitating the determination of the novelty
threshold during the learning process. Evaluation of performance metrics is exclusively
conducted on the test datasets. Importantly, these test datasets encompass classes that
were not part of the training or validation phases. During the final testing 500 tasks of
support and query sets were randomly selected from the test datasets for final evaluation
in each run.

This deliberate inclusion ensures a rigorous assessment of the proposed method’s
capability to generalize effectively to new and unseen classes, a critical aspect in the
validation of its FSNL prowess.

4.1 Dataset

The Omniglot dataset [19] contains 1623 different handwritten characters from 50 dif-
ferent alphabets. Each of the 1623 characters was drawn online via Amazon’s Mechan-
ical Turk by 20 different people. The image size is 28x28 pixels. Images for evaluation
are split into 40 classes for validation and 40 classes of handwritten characters for test-
ing. ResNet12 models without pre-trained weights are trained on the Omniglot dataset.

MiniImageNet is a benchmark dataset and is a subset of the larger ILSVRC-12
dataset [31]. It has a total of 60,000 color images from 100 classes, where each class
has 600 images of size 224x224 [38]. In alignment with established practices [29, 40],



we adopt a partitioning scheme consisting of 60 base classes, complemented by 20
validation classes and 20 test classes. ResNet18 models without pre-trained weights are
trained on the miniImageNet dataset.

Caltech Birds-200-2011 (CUB) [39] is a fine-grained image classification dataset.
We adopt Chen et al. [7] for few-shot classification on CUB, which splits into 120
base, 40 validation and 40 test classes for the experiments. To maintain consistency
and comparability with miniImageNet, the images from CUB are uniformly resized
to 224x224 pixels. ResNet18 models with pre-trained weights are trained on the CUB
dataset.

The EU Moths dataset, as introduced by Böhlke et al. [4], encapsulates a collection
of 200 moth species prevalent in Central Europe. Notably, each species is delineated by
few samples, comprising a mere 11 images, resulting in a total of 2205 images within
the dataset. The images have high resolution, surpassing 1000x1000 pixels, however
resized to 224x224 pixels. The dataset is split into 100 base, 50 validation and 50 test
classes for experiments. ResNet18 models with pre-trained weights are trained on the
EU Moths dataset.

5 Experiment and Results

Several experiments were performed on the Omniglot dataset to evaluate FSL with nov-
elty detection and episodic training with the scatter loss function. The presented method
was also explored with and without fine-tuning. Here, results were obtained with fine-
tuning on the CUB and EU Moths datasets. The dataset miniImageNet was evaluated
with episodic training without pre-trained weights comparing the performance of few-
shot and few-shot-novelty learning methods. All the experimental source code is avail-
able at Github1.

5.1 Threshold Learning for Novelty Detection

The Omniglot dataset was used to evaluate the automated learning of a threshold to
detect outliers. A ResNet12 model was trained on the Omniglot dataset with episodic
training using the combined cross-entropy and scatter loss with α = 0.8. This value
was chosen since higher values of α give a slight increase in performance, which is
evaluated in Sec. 5.2. The threshold was learned for 5-shot images with 10-way classes
in the support set. The learned threshold was evaluated on the test dataset with a query
of 10-way known classes and 1-novel class. The threshold was systematically adjusted
to assess the proximity of the learned threshold at 100% compared to an optimal value,
determined by the highest F1-score. Here, the threshold was varied with a percentage
of 97% to 103% relative to the learned value as described in Sec. 3.4 assuming 100%
would give the highest F1-score.

Figure 2 shows that the learned threshold is very close to the crossing of the pre-
cision and recall curve at 99.8%. However, the highest F1-score for the detection of
the novelty class is at 101%. The learned threshold at 100% seems to be close to op-
timal even if it was learned on the validation dataset with other classes giving another

1https://github.com/kimbjerge/few-shot-novelty



Fig. 2. Results for learning the Bayes threshold on the Omniglot dataset with 10-way and 5-shot
images in the support set. The plot shows the few-shot-novelty accuracy on test episodes with
precision, recall and F1-score for the novelty class. Average of metrics are computed across 5
random runs. The percentage variation of the learned Bayes threshold (TH) is shown on the x-
axis. A percentage of 100 is the learned TH, which is very close to the crossing of precision and
recall curves.

known/outlier distribution than contained in the test dataset. Adjusting the threshold
above or below the learned threshold will prioritize either precision or recall to be the
most important metrics to optimize. A threshold above the learned value increases the
recall but lower the precision. To prioritize the precision the learned threshold must be
decreased. The F1-score will however decrease by up to 0.05 compared to the optimal
threshold at 100%. The same pattern for the learned threshold was observed for 5, 10, 20
and 30-way of classes in the support set. However, the overall F1-score decreases with
an increasing number of classes as shown in Fig. 5b. With more classes increased from
5-way to 35-way in the support set, it seems that the efficiency of the outlier detector
decreases with an F1-score from 0.9 to 0.7 with α = 0.8.

Figure 3 depicts the variation in FSNL accuracy and F1-score as the number of
novel classes (M-novel) in the query set increases. As the number of novel classes rises,
the overall F1-score demonstrates improvement for the novelty classes. However, the
overall accuracy exhibits a decline until the query set is predominantly dominated by
the number of novel classes. The same tendency was observed on the EU Moths dataset
as documented in Appendix C. These observations suggests that the learned threshold
effectively detects and distinguishes between novel and known samples in the support
set.

We also aimed to explore the sensitivity of the learned threshold concerning the
prior probabilities (P (ωo), P (ωk)) in Eq. (10), which are determined by the ratio M/K.
Initially, the threshold was learned assuming equal prior probabilities, specifically by
setting the ratio M/K = 1. Subsequently, we compared the precision, recall, and F1-
score for novel classes when learning the threshold with correct M/K ratio. Two tests
were conducted: one with a single novel class (M = 1) and an increasing number of K-
way classes, as illustrated in Fig. 4a, and another with 5-way and an increasing number
of M -novel classes, as depicted in Fig. 4b. There was a notable performance difference



Fig. 3. Results of FSNL (trained with α = 1.0) on the Omniglot dataset with varying numbers of
novel classes (M-novel), fixed with either 5-way, 10-way, or 20-way, and with 5-shot images in
the support set. The plot shows the few-shot-novelty accuracy on test episodes and F1-score for
the novelty classes.

observed when there was only one novel class and a substantial number of K-way
classes in the support set (M/K < 0.1). In the Appendix C, a parallel experiment was
conducted on the EU Moth dataset, demonstrating a performance difference for many
novel classes and 5-way (M/K > 2). This underscores the importance of utilizing an
estimate of prior probabilities, particularly when the disparity between novel (M ) and
known classes (K) is high in the query set. In practice, we suggest starting with the
ratio M/K = 1 and then evaluating and estimating the prior probabilities on a selected
dataset of samples.

(a) Threshold sensitivity for one (M = 1) novel class and
K-way. (b) Threshold sensitivity for 5-way and M-novel classes.

Fig. 4. Shows the precision, recall and F1-scores for different relative probabilities of M/K on
the Omniglot dataset. The dotted lines shows when threshold is learned assuming equal prior
probabilities (M = K).

5.2 Episodic Training with Scatter Loss

In total 11 models were episodically trained on the Omniglot dataset with a variation of
α with steps of 0.1 in the range of α ∈ [0, 1]. The learned threshold on the validation



dataset was used to test the few-shot-novelty performance on a support set with 5-way
and 5-shot images.

Figure 5a shows an improved performance for the overall accuracy of few-shot-
novelty classification and F1-score of the novelty class with increased α values. How-
ever, the performance improvement with α = 0.0 to α = 1.0 was minimal with an
F1-score of 0.878 increased to 0.917 and accuracy of 0.952 increased to 0.968. It is
interesting that the training manages to succeed with α = 1.0, since only the scatter
loss function Eq. (11) will be contributing to optimizing the weights during backprop-
agation. It also shows that incorporating cross-entropy loss leads to worse performance
on the Omniglot dataset. The scatter loss function tries to separate the distribution of
known and novel classes and only indirectly ensures that query predictions are correctly
classified to samples in the support set.

The threshold was learned for each trained model with different α values. It is note-
worthy that the threshold is contingent upon the specific trained model with the em-
ployed α values. A threshold was learned on the 11 different trained models for each
variation of K-way classes in the support set. The models trained with the three lowest
and three highest α values are shown in Fig. 5b. Each curve represents a model trained
with different α values and the F1-score was measured on few-shot-novelty classifica-
tion with varying the K-way classes. It shows that the increase of α value improves the
F1-score significantly when there are many classes (K-way) in the support set. How-
ever, for α values (0.3 − 0.7) not shown in Fig. 5b the variation is high for values
above 15-way. This indicates that there could be other factors that have an impact on
the episodic training resulting in the variation between training sessions.

(a) FSNL accuracy with precision, recall and F1-score for the
novelty class (5-way).

(b) F1-score for the novelty class with different numbers of
classes (K-way) and values of α.

Fig. 5. Result plots for training models with different α values on the Omniglot dataset with 5-
shot images in the support set.

Model performance is shown in Tab. 2 with cross-entropy loss (α = 0) and scatter
loss (α = 1.0) trained on the Omniglot dataset. Average and standard deviations (SD)
are computed across 5 runs with different random generated support and query set se-
lected from the test dataset. The result shows that the accuracy improves for FSL with
scatter loss, especially for 30-way 5-shot where the accuracy was increased from 0.950
to 0.962. The original prototypical network published in [33] has a bit higher 5-way
accuracy with 0.988 for 1-shot and 0.997 for 5-shot FSL on the Omniglot dataset. This



higher accuracy is because they used more classes in the support set during episodic
training. We get a similar accuracy of 0.981 for 1-shot and 0.994 for 5-shot when in-
creasing the number of classes from 5-way to 20-way during training.

Few-shot-novelty has a 0.025 lower average accuracy compared to few-shot classi-
fication. This is due to a relatively lower precision and recall for the novelty class. The
F1-score for the novelty class is significantly higher with scatter loss. For a support set
comprising 30 classes (30-way, 5-shot), the F1-score decreases from 0.828 to 0.637,
representing a reduction of 0.191. It is observed that the standard deviation (SD) varies
and is higher for recall than precision and the SD recall is lowest with α = 1.0.

Table 2. Shows the performance metrics for few-shot and few-shot-novelty classification with
different α trained on the Omniglot dataset with 5-shot and 1-shot.

Shot 5-way 10-way 20-way 30-way
Metric (α) Avg (SD) Avg (SD) Avg (SD) Avg (SD)

Acc. (FSL) 0.988 (0.001) 0.979 (0.000) 0.963 (0.001) 0.950 (0.000)
Acc. (FSNL) 5 0.953 (0.001) 0.948 (0.001) 0.937 (0.001) 0.930 (0.000)
Precision (0.0) 0.865 (0.004) 0.778 (0.007) 0.654 (0.004) 0.593 (0.004)
Recall 0.895 (0.010) 0.827 (0.011) 0.699 (0.009) 0.689 (0.008)
F1-score 0.880 (0.005) 0.802 (0.003) 0.676 (0.006) 0.637 (0.005)

Acc. (FSL) 0.992 (0.001) 0.985 (0.000) 0.972 (0.001) 0.962 (0.000)
Acc. (FSNL) 5 0.967 (0.002) 0.963 (0.001) 0.959 (0.001) 0.954 (0.000)
Precision (1.0) 0.903 (0.005) 0.841 (0.008) 0.787 (0.004) 0.761 (0.004)
Recall 0.930 (0.008) 0.882 (0.006) 0.876 (0.003) 0.908 (0.005)
F1-score 0.916 (0.005) 0.861 (0.004) 0.830 (0.003) 0.828 (0.003)

Acc. (FSL) 0.971 (0.003) 0.947 (0.001) 0.911 (0.002) 0.883 (0.001)
Acc. (FSNL) 1 0.844 (0.004) 0.834 (0.002) 0.821 (0.002) 0.806 (0.002)
Precision (1.0) 0.533 (0.008) 0.383 (0.003) 0.263 (0.004) 0.207 (0.002)
Recall 0.973 (0.006) 0.949 (0.009) 0.951 (0.007) 0.952 (0.006)
F1-score 0.689 (0.007) 0.546 (0.004) 0.412 (0.005) 0.340 (0.003)

5.3 Episodic Training on miniImageNet

Results of ResNet18 models, trained with varying values of α on the miniImageNet
dataset, are shown in Appendix D. Notably, an empirical observation suggests that
higher values of α adversely impact performance. This degradation is attributed to the
inherent complexity of the miniImageNet dataset in comparison to Omniglot. The op-
timal model, trained with α = 0.1, is illustrated in Appendix D and quantitatively
presented in Tab. 3. Since there are only 20 classes in the miniImageNet test dataset
the maximum of ways are 19 with one novel class. The FSL accuracy, specifically at
5-way 1-shot (0.614) and 5-shot (0.751), outperforms state-of-the-art ResNet18 models
trained with Prototypical Networks [43, 33]. The standard evaluation in FSL research
is 5-way classification with 5-shot and 1-shot scenarios, therefore 10-way to 19-way is
not available in the state-of-the-art publications. While FSNL performance experiences
a decline with an increase of K-way, it is noteworthy that the accuracy difference be-
tween FSL and FSNL at 19-way is merely 0.025. This observation suggests that FSL



also encounters challenges when coping with a higher number of classes in the sup-
port set. Since the miniImageNet test dataset contains 20 classes the maximum test is
19-way with one novel class.

Table 3. Shows the performance metrics for few-shot and few-shot-novelty classification with
α = 0.1 trained on the miniImageNet dataset with ResNet18. The reference accuracy achived by
Ziko et al. [43] for the Prototypical Networks trained on ResNet18 is shown.

5-way 5-way 10-way 15-way 19-way
1-shot 5-shot 5-shot 5-shot 5-shot

Metric Avg (SD) Avg (SD) Avg (SD) Avg (SD) Avg (SD)

Acc. [43] 0.542 0.737 - - -
Acc. (FSL) 0.614 (0.006) 0.751 (0.004) 0.626 (0.002) 0.557 (0.001) 0.517 (0.001)
Acc. (FSNL) 0.532 (0.002) 0.676 (0.004) 0.580 (0.002) 0.526 (0.002) 0.492 (0.001)
Precision 0.400 (0.004) 0.749 (0.008) 0.569 (0.014) 0.325 (0.007) 0.175 (0.006)
Recall 0.680 (0.008) 0.516 (0.013) 0.302 (0.012) 0.141 (0.003) 0.072 (0.003)
F1-score 0.504 (0.003) 0.611 (0.011) 0.394 (0.011) 0.196 (0.004) 0.102 (0.004)

5.4 Pre-Trained Models with Episodic Fine-Tuning

In this section, we present the results obtained from fine-tuning different ResNet models
on the CUB and EU Moths datasets, utilizing pre-trained weights from ImageNet.

(a) Pre-trained on ImageNet. (b) Fine-tuned on EU Moths dataset.

Fig. 6. Shows the distribution for known (TP) and outlier classes (TN) with pre-trained weights
on ImageNet and fine-tuned model on EU Moths dataset with fine-tuning. The black vertical line
shows the learned Bayes threshold.

Figure 6 illustrates the distribution of known and outlier classes for ResNet models.
These models are fine-tuning with α = 0.5 on the EU Moths dataset. Notably, the
distributions exhibit a more distinct separation after the fine-tuning process, as depicted
in Fig. 6b. Experiments did show that fine-tuning alone with α = 0 do also contribute to
a better separation. While the outlier class appears more akin to a beta distribution post
fine-tuning, the enhanced separation is evident. The fine-tuned model achieves a notable
improvement in few-shot accuracy, reaching 0.978 compared to the baseline accuracy of
0.938 with pre-trained ImageNet weights. Furthermore, the few-shot-novelty accuracy



experiences a substantial boost from 0.764 to 0.928. This improvement is attributed to
an increase in novel class precision, rising from 0.394 to 0.844 and recall, ascending
from 0.249 to 0.805.

Figure 7 reveals a decline in F1-score as the K-ways increase, suggesting chal-
lenges in classifying queries with an elevated number of classes in the support set. In-
terestingly, the F1-score peaks for different values of α, especially when the number of
classes in the support set rises, with the highest performance observed at α = 1.0. Per-
formance metrics for fine-tuned ResNet18 models on the EU Moths and CUB datasets,
specifically with the best-performing models at α = 1.0, are detailed in Tab. 4 and
Tab. 5, respectively. These tables (5-shot) illuminate a diminishing trend in F1-score
as the number of support set classes increases, primarily driven by a notable decline in
recall. Of particular interest is the observation that, for models fine-tuned on the CUB
dataset (as detailed in Tab. 5), the FSNL accuracy at 0.751 is close to the FSL accuracy
at 0.771 for the 29-way classification scenario. This indicates that FSL do also have
difficulties with many classes. Performance results for 1-shot is detailed in Appendix E
and has as expected a lower performance than 5-shot especially the precision are low
with many classes in the support set.

These outcomes underscore the efficacy of our proposed combined scatter and cross-
entropy loss function in the fine-tuning process, demonstrating its capability to enhance
model performance in FSL scenarios with novelty detection.

(a) F1-score for novel class on EU Moths. (b) F1-score for novel class on CUB dataset.

Fig. 7. The plots show F1-score for the novelty class with different numbers of classes (K-way)
in the support set with ResNet18 models fine-tuned on the EU Moths and CUB dataset.

Table 4. Shows the performance metrics for few-shot and few-shot-novelty classification with
α = 1.0 and 5-shot trained on the EU Moths dataset with ResNet18.

5-way 10-way 20-way 30-way 40-way
Metric Avg (SD) Avg (SD) Avg (SD) Avg (SD) Avg (SD)

Acc. (FSL) 0.977 (0.002) 0.956 (0.002) 0.926 (0.001) 0.903 (0.001) 0.886 (0.001)
Acc. (FSNL) 0.929 (0.003) 0.915 (0.001) 0.896 (0.001) 0.882 (0.001) 0.867 (0.001)
Precision 0.888 (0.008) 0.805 (0.005) 0.653 (0.013) 0.573 (0.008) 0.486 (0.007)
Recall 0.766 (0.011) 0.617 (0.012) 0.441 (0.010) 0.384 (0.014) 0.315 (0.005)
F1-score 0.822 (0.007) 0.699 (0.008) 0.526 (0.011) 0.459 (0.012) 0.382 (0.006)



6 Conclusion

In this study, we introduce a novel method for classifying samples within the domain
of few-shot learning with novelty detection. Our approach involves the identification
of new classes not encompassed in the FSL support set through the use of a thresh-
old, learned by the Bayes probabilistic decision function. The threshold is learned by
the distribution of known and outlier samples evaluated using the cosine similarity
measure on a validation dataset. Additionally, we propose the integration of a novel
scatter loss function during episodic training to effectively segregate similarities be-
tween known and outlier samples. Evaluating our method on the Omniglot dataset, we
achieve a noteworthy accuracy range of 0.954 to 0.967 across scenarios involving 5 to
30 classes in the support set, each with 5-shot learning. Through episodic fine-tuning of
ResNet models with pre-trained weights from ImageNet, our method showcases few-
shot-novelty learning accuracy rates of 0.929 on the EU Moths dataset and 0.877 on the
CUB datasets under a 5-way 5-shot configuration, each with an additional 1-novelty
class.

Our solution presents a significant stride in addressing the challenge of detecting
novel samples, particularly in real-life applications where sparse or non-existent sam-
ples for each class prevail. The demonstrated accuracy and efficacy of our proposed
method underscore its potential as a valuable tool in scenarios characterized by limited
labeled data, offering promise for a broad spectrum of practical applications.

Table 5. Shows the performance metrics for few-shot and few-shot-novelty classification with
α = 1.0 and 5-shot trained on the CUB dataset with ResNet18.

5-way 10-way 20-way 29-way
Metric Avg (SD) Avg (SD) Avg (SD) Avg (SD)

Acc. (FSL) 0.936 (0.004) 0.885 (0.001) 0.816 (0.001) 0.771 (0.001)
Acc. (FSNL) 0.877 (0.002) 0.843 (0.002) 0.791 (0.001) 0.751 (0.001)
Precision 0.858 (0.003) 0.781 (0.011) 0.654 (0.010) 0.606 (0.009)
Recall 0.668 (0.014) 0.487 (0.010) 0.343 (0.010) 0.327 (0.005)
F1-score 0.751 (0.009) 0.600 (0.011) 0.450 (0.010) 0.425 (0.006)

Acknowledgement. During the preparation of this work, the first author utilized Chat-
GPT [25] to enhance the clarity and formulation for parts of the written text. After
using this tool, the authors reviewed and edited the content as needed and takes full
responsibility for the content of the publication.

References
1. Amarbayasgalan, T., Jargalsaikhan, B., Ryu, K.H.: Unsupervised novelty detection us-

ing deep autoencoders with density based clustering. Applied Sciences (Switzerland) 8(9)
(2018). https://doi.org/10.3390/app8091468

2. Bjerge, K., Geissmann, Q., Alison, J., Mann, H.M., Høye, T.T., Dyrmann,
M., Karstoft, H.: Hierarchical classification of insects with multitask learn-
ing and anomaly detection. Ecological Informatics 77, 102278 (2023).
https://doi.org/https://doi.org/10.1016/j.ecoinf.2023.102278



3. Bodesheim, P., Freytag, A., Rodner, E., Kemmler, M., Denzler, J.: Kernel null space meth-
ods for novelty detection. In: Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (2013). https://doi.org/10.1109/CVPR.2013.433
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Appendix A Proof of Decision Threshold Function

We have to solve the Bayes decision function in Eq. (9) to prove Eq. (10)
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Appendix B Parameters for Training

Table 5 shows the arguments used for training and validation of models with the four
different datasets. The task of support sets with 5-way and 5-shot is used during episodic
training and validation after each epoch. The number of queries for training on the EU
moths dataset is limited to 6 since only 11 sample images are present for each class.
The learning rate is smaller for fine-tuning the pre-trained models on ImageNet.

Table 5. Shows the arguments used for model training and validations with support sets of 5-way
and 5-shot. α values are varied in steps of 0.1 for each version of trained model.

Dataset Model Pre-tained Epochs Milestone 1 Milestone 2 Tasks train Tasks val. Queries Learn rate α

Omniglot ResNet12 No 350 120 250 200 100 10 0.05 0.0 - 1.0
miniImageNet ResNet18 No 250 120 190 500 100 10 0.01 0.0 - 1.0
EU Moths ResNet18 ImageNet 250 120 190 500 100 6 0.001 0.0 - 1.0
CUB ResNet18 ImageNet 250 120 190 500 100 10 0.001 0.0 - 1.0

Appendix C Threshold Experiments on EU Moths

Figure 8 shows the performance on the EU Moths dataset with varying number of novel
classes in the query of the test dataset. Figure 9 shows the threshold sensitivity experi-
ment on the EU Moths dataset.

Fig. 8. Results of FSNL (trained with α = 1.0) on the EU Moths dataset with varying numbers
of novel classes (M-novel), fixed with either 5-way, 10-way, or 20-way, and with 5-shot images
in the support set. The plot shows the few-shot-novelty accuracy on test episodes and F1-score
for the novelty class.

Appendix D Training with miniImageNet

Results of ResNet18 models, trained with varying values of α on the miniImageNet
dataset, are shown in Fig. 10.



(a) Threshold sensitivity for one (M = 1) novel class and
K-way. (b) Threshold sensitivity for 5-way and M-novel classes.

Fig. 9. Shows the precision, recall and F1-scores for different relative probabilities of M/K on
the EU Moths dataset. The dotted lines shows when threshold is learned assuming equal prior
probabilities (M = K).

(a) F1-score for different numbers of support classes and dif-
ferent α values.

(b) Different performance metrics depending on the number
of support classes

Fig. 10. The top plot shows F1-score for the novelty class with different numbers of classes (K-
way) on the miniImageNet dataset. The bottom plot shows the FSL and FSNL accuracy on test
episodes with precision, recall and F1-score for the novelty class with α = 0.1.

Table 6. Shows the performance metrics for few-shot and few-shot-novelty classification with
α = 0.1 and 1-shot trained on the miniImageNet dataset with ResNet18.

5-way 10-way 15-way 19-way
Metric Avg (SD) Avg (SD) Avg (SD) Avg (SD)

Acc. (FSL) 0.614 (0.006) 0.466 (0.003) 0.395 (0.002) 0.357 (0.002)
Acc. (FSNL) 0.532 (0.002) 0.431 (0.002) 0.369 (0.001) 0.335 (0.002)
Precision 0.400 (0.004) 0.267 (0.006) 0.171 (0.004) 0.129 (0.003)
Recall 0.680 (0.008) 0.501 (0.010) 0.344 (0.010) 0.270 (0.007)
F1-score 0.504 (0.003) 0.349 (0.007) 0.228 (0.006) 0.174 (0.004)

Appendix E Test with 1-shot Support Set

Table 6 shows the performance with α = 0.1 and 1-shot learned on the miniImageNet
test dataset with 20 classes. Table 7 shows the performance with α = 1.0 and 1-shot



learned on the EU Moths test dataset with 50 classes. Table 8 shows the performance
with α = 1.0 and 1-shot learned on the CUB test dataset with 30 classes. Acc. (FSL)
is the accuracy for few-shot learning and Acc. (FSNL) is the accuracy for few-shot-
novelty learning with precision, recall and F1-score for the novelty class.

Table 7. Shows the performance metrics for few-shot and few-shot-novelty classification with
α = 1.0 and 1-shot trained on the EU Moths dataset with ResNet18.

5-way 10-way 20-way 30-way 40-way
Metric Avg (SD) Avg (SD) Avg (SD) Avg (SD) Avg (SD)

Acc. (FSL) 0.921 (0.004) 0.864 (0.004) 0.793 (0.003) 0.749 (0.002) 0.718 (0.001)
Acc. (FSNL) 0.769 (0.006) 0.739 (0.004) 0.702 (0.004) 0.673 (0.002) 0.651 (0.001)
Precision 0.443 (0.009) 0.294 (0.004) 0.177 (0.003) 0.130 (0.002) 0.102 (0.001)
Recall 0.947 (0.007) 0.878 (0.007) 0.822 (0.011) 0.796 (0.008) 0.759 (0.012)
F1-score 0.604 (0.009) 0.440 (0.005) 0.292 (0.005) 0.224 (0.003) 0.180 (0.001)

Table 8. Shows the performance metrics for few-shot and few-shot-novelty classification with
α = 1.0 and 1-shot trained on the CUB dataset with ResNet18.

5-way 10-way 20-way 29-way
Metric Avg (SD) Avg (SD) Avg (SD) Avg (SD)

Acc. (FSL) 0.845 (0.004) 0.744 (0.003) 0.629 (0.002) 0.562 (0.002)
Acc. (FSNL) 0.622 (0.005) 0.571 (0.003) 0.506 (0.001) 0.463 (0.001)
Precision 0.325 (0.003) 0.195 (0.002) 0.110 (0.001) 0.090 (0.001)
Recall 0.879 (0.007) 0.779 (0.006) 0.695 (0.004) 0.722 (0.003)
F1-score 0.474 (0.004) 0.312 (0.003) 0.190 (0.001) 0.159 (0.001)


