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Abstract The analysis of natural disasters in a timely manner often suffers from
limited sensor data. This limitation could be alleviated by leveraging information
contained in images of the event posted on social media platforms, so-called
“Volunteered Geographic Information (VGI)”. To save the analyst from manual
inspection of all images posted online, we propose to use content-based image
retrieval with the possibility of relevance feedback for retrieving only relevant
images of the event. To evaluate this approach, we introduce a new dataset of
3,710 flood images, annotated by domain experts regarding their relevance with
respect to three tasks (determining the flooded area, inundation depth, water
pollution). We compare several image features and relevance feedback methods
on that dataset, mixed with 97,085 distractor images, and are able to improve
the precision among the top 100 results from 55% to 87% after 5 rounds of
feedback.
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1 Introduction

The rapid analysis of recent or current natural disasters such as floods is crucial
to provide information about impacts as a basis for efficient disaster response
and recovery. With an increasing availability of data and information channels,
the identification and exchange of core information and best possible up-to-date
information is essential for disaster response (Turoff, 2002; Comfort et al, 2004).
For recovery and improved disaster risk reduction, comprehensive image-based
documentations of disaster dynamics help to gain insights and to improve our
understanding of system behavior during extreme events. This knowledge is
important to review and adapt flood prevention and protection concepts which
are the basis to mitigate adverse consequences from flooding. However, event
analyses often suffer from limited or insufficient data (Poser and Dransch, 2010;
Thieken et al, 2016). For the case of flood mapping, traditional measuring
devices as, for instance, water level gauges are expensive and hence only coarsely
distributed. Malfunction and uncertainties of recordings during extreme events
are known issues.

On the other hand, there is usually a large amount of complementary infor-
mation that could be derived from images posted by volunteers on social media
platforms (Assumpgdo et al, 2018). Since most modern consumer devices are
GPS-enabled and store the geographical location where an image has been taken
in its metadata, these images could be used to derive information about the
flood at locations where the sensor coverage is insufficient, to substitute failures
of measurements, or to complement other pieces of information (Schnebele
and Cervone, 2013; Fohringer et al, 2015). The users of social media plat-
forms posting images about natural disasters can thus be considered as human
sensors providing so-called volunteered geographic information (VGI) (Good-
child, 2007), from which different types of information can be extracted for
being combined with the data obtained from traditional sensors.

These data are potentially useful during all stages of disaster management
(Poser and Dransch, 2010): To prepare for the case of a natural disaster, sufficient
data about past events are necessary. During an event, the rapid availability
of social media images would leverage monitoring the extent and intensity
of the disaster and the current status of response activities. For post-disaster
recovery, on the other hand, up-to-date damage estimates are required for
financial compensation, insurance payouts, and reconstruction planning.
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However, the sheer amount of almost 6,000 tweets posted every second on
Twitter alone (Krikorian, 2013) renders inspecting all of them intractable,
even when the set of images is restricted to those within a certain region and
time-frame. Therefore, an automated filter retrieving only those images that are
relevant for the analysis is highly desirable.

The notion of relevance is usually not fixed but depends on the objective
currently pursued by the analysts. In the case of flood impact analysis, hydrologist
might sometimes be interested in determining whether a certain area is flooded
or not, which might be difficult to detect based on just a few water level
measurements or due to mobile flood-protection walls that may alter the
flooding process and expected inundation areas. However, while VGI images can
be of great benefit for this task, just retrieving all images of the flooding is not
sufficient in general. Because at another point of time, the information objective
of the analysts might be to determine inundation depth as a key indicator of
flooding intensity. In this regard, a different set of images would be relevant,
showing visual clues for inundation depth such as partially flooded traffic-signs
or people walking through the water. Another example is the task of determining
the type and degree of water pollution from images, which changes the set of
relevant image features drastically.

These image characteristics are sometimes difficult to verbalize in natural
language. An example image, however, can often capture the search objective
much more easily. Moreover, text-based search always runs the risk of missing
relevant images with insufficient textual descriptions. Thus, we propose an
approach based purely on the image content.

Since all the information objectives an analyst might have in mind constitute
an open set, it is not possible to train a fixed set of classifiers for distinguishing
between relevant and irrelevant samples. Instead, we propose an interactive
image retrieval approach to assist the analyst in finding those images that are
relevant with respect to the current task.



4 Barz, Schroter, Miinch, Yang, Unger, Dransch, Denzler

>

A

. Q»/ Baseline Retrieval |, [ e ||| &2 ),/ Refinement

of similar images based on user feedback

- .

Query Image Similar Images
provided by the user, sorted by similarity
representative for
the task at hand §
Q4, 8, ) (5, 9, )
®

Figure 1: Schematic illustration of our interactive image retrieval process.

This procedure is illustrated in Fig. 1: The user first provides a so-called query
image that should capture the search objective reasonably well. The system then
extracts image features for this query and compares it with all other images in
the database or social media image stream using the Euclidean distance between
images in the feature space. The result is a list of retrieved images, ranked by
their proximity to the query. This procedure is known as content-based image
retrieval (Smeulders et al, 2000) and has been an active topic of research since
1993 (Niblack et al).

However, the results of this baseline retrieval will be suboptimal in most
cases, since it is based on just a single query image. Thus, the system enables
the user to flag some of the retrieved images as relevant or irrelevant. This
information will then be incorporated to obtain a refined list of retrieval results,
which should match the search interest pursued by the user more precisely. This
step can be repeated until the user is satisfied with the result.

In this work, we investigate how to construct an image retrieval pipeline
that is suitable for retrieving flood images by comparing several types of
features extracted from deep neural networks for the baseline retrieval and
various approaches to incorporate relevance feedback. To enable a quantitative
evaluation, we introduce a novel dataset comprising 3,435 images of the
European Flood 2013 from Wikimedia Commons plus 275 images showing
water pollution from various sources. All images have been annotated by domain
experts with respect to their relevance regarding three pre-defined information
objectives.
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The remainder of this paper is organized as follows: We will first briefly
review related work on using VGI images for disaster management in Sect. 2.
Our novel flood dataset is introduced in Sect. 3 and various baseline retrieval and
relevance feedback methods are described and evaluated in Sect. 4. Section 5
concludes this work and discusses directions for future research.

2 Related Work

Many approaches for leveraging VGI from social media focus on linguistic
patterns (e.g., Ireson, 2009), text-based classification (e.g., Sakaki et al, 2010;
Yinet al, 2012) and keyword-based filtering (e.g., Vieweg et al, 2010; Fohringer
etal, 2015).

Similar to our motivation, Schnebele and Cervone (2013) used volunteered
data which have been retrieved using the photo, video and news Google search
engines for a flood in Memphis (US) in May 2011. These information have been
combined with remote sensing, digital elevation and other data to produce flood
extent and flood hazard maps.

Twitter messages have been used by Brouwer et al (2017) to estimate flooding
extents. While this approach uses only Twitter text message contents, it applies
a set of keywords to filter relevant tweets. Geolocation information is derived
from location references contained in the tweet.

Fohringer et al (2015) proposed to derive information about flood events
from images posted on Twitter or Flickr and found them to contain “additional
and potentially even exclusive information that is useful for inundation depth
mapping”. Likewise, Rosser et al (2017) retrieve geo-tagged imagery from
Flickr using a defined study area and time window in combination with the
keyword “flood”. In this approach, only the image location is used to delineate
flooded areas in combination with other data sources. However, both works do
not employ any automatic image-based filtering but collect all tweets containing
some predefined keywords and then analyze the relevance of all images included
in these tweets manually. On the one hand, this tedious process is prohibitive for
rapid flood impact estimation due to the time needed for inspecting all images.
Further, the initial keyword-based filtering involves the risk of missing a large
portion of relevant images due to the lack of matching keywords in the text.

We show how these issues can be overcome using computer vision techniques
for filtering based on the image content only.
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3 A Dataset for Flood Image Retrieval

A quantitative evaluation of our interactive image retrieval approach demands a
sufficient number of both flood and non-flood images. In addition, we need to
know for each image whether it is relevant for a certain task or not.

While obtaining non-flood-related images is rather easy, since any existing
dataset such as, for example, the Flickr100k dataset (Philbin et al, 2007)
comprising 100,031 images from Flickr could be used for that, finding a
sufficient number of images relating to a certain flood event is more difficult. We
used Wikimedia Commons as a source for flood images, since it already provides
dedicated categories for major flood events, the images are released under a
permissive Creative Commons license, and many of them contain geotags.

In the following subsections we describe how we collected flood images
and annotated them with respect to their relevance regarding three exemplary
information objectives. The dataset, including metadata and annotations, can be
obtained at https://github.com/cvijena/eu-flood-dataset.

3.1 Collecting Flood Images

The Wikidata project strives towards creating machine-readable representations
of all structured information present in Wikipedia. This information can be
queried fully automatically using the SPARQL query language, which allows
retrieving a list of all flood events recorded on Wikipedia with an associated
Wikimedia Commons category. We can then use the Wikimedia Commons API
to fetch all images and their metadata from those categories automatically. With
a large margin, the highest number of images is available for the Central Europe
floods of 20131, which comprises 3,855 images in total (as of July 2017). We
hence decided to use this event as a basis for our flood dataset. After excluding
sub-categories that relate exclusively to public transportation during the flood
but do not show actual flooding, a total of 3,435 images remain.

However, these images do not show any water pollution, in which we are also
interested. Thus, we added another set of 275 images to the dataset, which we

'https://commons.wikimedia.org/wiki/?curid=26466898
(accessed: July 21st, 2017)
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have collected manually from the web by querying image search engines for the
names of recent major oil spill events. To this end, we have again used a list of
oil spills provided on WikipediaZ2.

3.2 Relevance Annotations

For a quantitative evaluation and comparison of several image retrieval methods,
we need to simulate the behavior of a user of our proposed interactive image
retrieval system. To enable such a simulation, we have defined a set of three
common tasks, which could be pursued by a hydrologist using the system:

Flooded vs. dry Does the image help to determine whether a certain area is
flooded or not? Usually, one would assume flooding of a certain area based
on the intersection of the water level height and the elevation of the terrain.
However, the area might actually be dry due to a flood-protection wall,
for example. An image considered as relevant would show the boundary
between flooded and dry areas. Images that do not show any inundation
at all are considered not relevant. While these could be used to track the
spread of the flood at a certain location over time, we only consider the
individual relevance of images in this work, ignoring aspects that might
become relevant when compared with other images in the dataset.

Inundation depth s it possible to derive an estimate of the inundation depth
from the image due to visual cues such as, for example, traffic signs or other
structures with known height? If there is no flooding at all, the image is
considered as not relevant for inundation depth.

Water pollution Does the image show any pollution substances? The focus is
on heavy contamination by chemical substances such as oil, for example.

2https://en.wikipedia.org/w/index.php?title=List_of_oil_spills
(accessed: May 30th, 2018)
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Figure 2: Venn diagram of the sets of images per task in our novel dataset.

Each image in the dataset has been assigned to one of several domain experts
for annotation. Any image could be relevant for one, multiple, or none of the
tasks described above.

Figure 2 shows the number of images marked as relevant for each task, the
overlap of the categories, and an example image for each task. 9.5% of the
images were found not to show any flooding situation despite being associated
with the flood in Wikimedia Commons. We assigned the special label “irrelevant”
to these images and treat them in the same way as the distractor images from
the Flickr100k dataset (see Sect. 4).

Due to limited resources, we only obtained a single annotation for each image.
However, an additional domain expert was asked to assure the quality of random
samples from the set of annotations and to select between 100 and 250 ideal
query images for each task that reflect the search objective well and could be
used as initial query images for our image retrieval approach.
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3.3 Important Image Regions

(a) Flooded vs. dry. (b) Inundation depth. (c) Water pollution.

© Matgj Batha (CC BY-SA 3.0) © Dr. Bernd Gross (CC BY-SA 3.0) © Kallol Mustafa (CC BY-SA 4.0)

Figure 3: Examples for annotations of important image regions.

Besides relevance annotations for images as a whole, we have also asked one
domain expert to highlight important regions on some of the images selected
as queries for each task. This aims to account for the fact that the relevance
of a certain image is often due to a particular small part of the image without
which it would not be relevant at all, e.g., partially flooded traffic signs in the
case of the inundation depth task. We also allowed the expert to mark multiple
relevant regions per image and to create groups of regions that have to be present
together in a single image for being relevant. Example annotations are shown
in Fig. 3b. We do not make use of these region-level information in our image
retrieval system at the moment, but plan to do so in the future.

4 Interactive Image Retrieval

In the following, we describe and compare several methods for the two compo-
nents of our interactive image retrieval pipeline depicted in Fig. 1: Constructing
a feature space for the baseline retrieval of similar images and incorporating
relevance feedback provided by the user.

All methods are evaluated on a combination of our novel flood dataset
introduced in Sect. 3 and images from Flickr100k (Philbin et al, 2007) as
distractors. While Flickr100k comprises a total of 100,031 images, we excluded
those tagged with “river” or “water”, since some of them show flooding situations.
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After this, 97,085 distractor images remain, which we do not expect to show
flooding given their tags. The set of flood-related images from our novel dataset
hence accounts for as few as 4% of the combined dataset.

We employ the normalized discounted cumulative gain (Jarvelin and Kekaldi-
nen, 2002) among the top 100 results (NDCG@100) as performance metric,
which does not only measure the fraction of relevant images among the top
100 results but considers their order as well, assigning higher weights to earlier
positions in the ranking. For a query ¢ and a ranked list of n > k retrieved
images with relevance labels y; € {0,1},i = 1, ..., n, the NDCG@k is defined
as:

min{k, |R(q)|}

k
_ Yi ;
NDCG@k(yy,...,yn |l q) = (; log, (i + 1))/( ; log, (i + 1))’
(1

where R(g) denotes the set of all images relevant for the query ¢. The best
NDCG hence is 1.0 and the worst is 0.0. We cap the ranking at k£ = 100 since
the advantage of our image retrieval system for finding relevant flood images
vanishes if the user has to inspect more than 100 results.

In the following, we always report the average NDCG@ 100 over all 611
query images from our dataset identified as suitable by the domain experts,
which are issued as individual queries to the system. Images from the dataset
are considered as relevant with respect to a certain query if they are assigned to
the label for which the query image has been selected as “ideal example”.

4.1 Baseline Retrieval

The main challenge of content-based image retrieval (CBIR) is constructing a
feature space where similar images lie close together, so that retrieval can be
performed by searching for the nearest neighbors of the query in that space. The
notion of similarity is often fuzzy and depends on the application. This relation
is most often defined as two images either showing the same object, objects of
the same class, or being “visually similar”, which is difficult to formalize.
Traditional CBIR approaches usually consist in detecting invariant keypoints
in an image, extracting handcrafted local descriptors from the neighborhood
of these keypoints, embedding them in a high-dimensional space, and finally
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aggregating them into a single global image descriptor. A good summary of
these approaches has been given by Babenko and Lempitsky (2015).

In the past few years, however, such approaches have been outperformed
by deep-learning-based image features extracted from a convolutional neural
network (CNN) (LeCun et al, 1989) pre-trained on a classification task. A
CNN typically consists of a sequence of convolution operations with learned
filters and non-linear activation functions in-between. After certain layers,
the feature map is sub-sampled using local pooling operations. The result
of the last convolutional layer is hence a low-resolution map of features for
different regions of the image. These local feature vectors are then aggregated
by averaging with either uniform or learned weights and fed through a sequence
of so-called fully-connected layers, which essentially realize a multiplication of
the features with a learned matrix followed by a non-linear activation function.
In classification scenarios, the output of the final layer is interpreted as the
logits of a probability distribution over the classes. The entire network is trained
end-to-end using backpropagation (LeCun, 1985), so that all the intermediate
feature representations are learned from data and optimized for the task at hand,
where the degree of abstraction from visual to semantic features increases with
the depth in the network (Zeiler and Fergus, 2014).

Surprisingly, Babenko et al (2014) found these features, which they extracted
from the fully-connected layers of a pre-trained network, to also perform
competitively for the task of content-based image retrieval. The traditional
CBIR approaches with handcrafted features were finally outperformed using
local CNN features extracted from the last convolutional layer (Babenko and
Lempitsky, 2015). These need to be aggregated into a global image descriptor
first, which provides additional leeway for adapting the pre-trained features to
the retrieval scenario. Besides simple average and maximum pooling, a variety
of sophisticated pooling functions has been proposed in the past few years. In
this work, we evaluate the following ones:

Average Pooling (avg) Uniform average (Babenko and Lempitsky, 2015).

Partial Mean Pooling (PMP) Averaging over the top 10% highest activations
per channel (Zhi et al, 2016). This combines average and maximum pooling.

Generalized-Mean Pooling (GeM) Using the LP-norm of each spatial feature
map (Radenovié et al, 2018), which generalizes between average (for p = 1)
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and maximum (for p — oo) pooling. We have empirically found p = 2 to
work well on our dataset.

Adaptive Co-Weighting (adacow) Combination of spatial and channel-wise
weighting, where the spatial weights are based on the sum of activations at
each position and channel weights are determined in a way so that frequently
occurring bursty features get a low weight (Wang et al, 2018).

In all cases, we extract the local features to be aggregated from the last
convolutional layer of the so-called VGGI16 convolution neural net architecture
(Simonyan and Zisserman, 2014), pre-trained? for classification on millions
of images from the ImageNet dataset (Russakovsky et al, 2015). This is the
network architecture that has initially been used by Babenko et al (2014) and
Babenko and Lempitsky (2015) for the first CBIR approaches using neural
features and has remained popular until today. We also evaluate global image
features extracted from the first fully-connected (FC) layer of the same CNN,
as done by Babenko et al (2014). This corresponds to a complex aggregation
function with learned weights for both feature dimensions and spatial positions.
Regardless of the aggregation function being used, we always L’-normalize
the final global image descriptors, which has proven to be beneficial for image
retrieval, because the direction of high-dimensional feature vectors often carries
more information than their magnitude (Jégou and Zisserman, 2014; Horiguchi
etal, 2019)

Besides the use of pre-trained CNNs for feature extraction, neural networks
trained end-to-end specifically for image retrieval have shown superior perfor-
mance recently. In this regard, we evaluate the approach of Gordo et al (2017),
who extended a ResNet-101 architecture (He et al, 2016) with R-MAC pooling
(sum-pooling over maximum-pooled features from several regions of interest;
Tolias et al, 2016), followed by PCA and L>-normalization. This network has
been trained for image retrieval on a landmarks dataset using a triplet loss,
which enforces similar images to be closer together in the feature space than
dissimilar ones. We denote this approach as “Deep R-MAC” 4.

3 The pre-trained VGG16 model can be obtained at
http://www.robots.ox.ac.uk/vgg/research/very_deep/ (accessed July 10th, 2019).

4 The pre-trained Deep R-MAC model can be obtained at https://github.com/figitaki/deep-retrieval
(accessed July 10th, 2019).
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Figure 4: Baseline retrieval performance.

The performance comparison in Fig. 4a shows that aggregated convolutional
features perform significantly better than features extracted from fully-connected
layers which are presumably already too class-specific. The choice of the pooling
method makes only a slight difference, while PMP performed best. Features
from the Deep R-MAC network fine-tuned for object retrieval provided even
better performance than VGG16, resulting in an NDCG@ 100 of 51.8% for the
simple baseline retrieval.

For these experiments, all images have been resized so that their larger side
is 512 pixels wide, except for fully-connected (FC) pooling, which only works
with rather small images of size 224 x 224 due to the fixed number of learned
weights. Following Gordo et al (2017) we have also evaluated averaging image
descriptors extracted from 3 differently scaled versions of the same image,
where we resized the larger side to 550, 800, and 1050 pixels.

The results in Fig. 4b show that the use of multiple resolutions leads to an
absolute improvement of NDCG @ 100 by about 3%, regardless of the features.

Since the number of images and queries per task in our flood dataset is
not balanced (cf. Fig. 2), we also report the per-task performance of the two
best-performing types of features in Fig. 4c. Obviously, finding images relevant
for pollution is much more difficult than the other two tasks, which we do not
solely attribute to the small number of relevant images, but also to the fact that
images of oil films are easily confused with photos of abstract art from Flickr.
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4.2 Relevance Feedback

Approaches for incorporating relevance feedback into image retrieval can usually
be divided into four categories:

Query Point Movement The query vector is modified based on the feedback,
e.g., by averaging over the features of all images marked as relevant
(Rocchio, 1971). These approaches belong to the oldest ones in information
retrieval, but since their use is very limited, we will not address them in this
work.

Probabilistic The distribution of the probability that a particular image is
relevant given the feedback is estimated. Here, we investigate the simple
kernel density estimation (KDE) method proposed by Deselaers et al (2008).

Classification A classifier is trained for distinguishing between relevant and
irrelevant images. In this work, we investigate two approaches for this:
an Exemplar-LDA classifier (Hariharan et al, 2012) and a support vector
machine (SVM, Cortes and Vapnik, 1995), falling back to a One-Class
SVM (Scholkopf et al, 2001) if only positive feedback is given.

Metric Learning A new metric d : RP? x RP — R is applied to the D-
dimensional feature space RP, minimizing the distance between relevant
images and maximizing the distance between relevant and irrelevant ones.
Many approaches use a Mahalanobis metric of the form dps(x1, x2) =
(x1 —x2)TM (x| — x») and learn a positive semi-definite matrix M € RP*P.
This is equivalent to a linear transformation of the data into a new space
where the Euclidean distance corresponds to dj; in the original space.

In this work, we investigate the feature weighting approach of Deselaers et al
(2008), the diagonal variant of MMC (Xing et al, 2003), and information-
theoretic metric learning (ITML, Davis et al, 2007). The first two approaches
learn a diagonal matrix M, which corresponds to a weighting of individual
features, but use different objectives and optimization algorithms: Deselaers
et al (2008) minimize the ratio of distances between similar and dissimilar
samples using gradient descent, while Xing et al (2003) employ a convex
optimization objective minimizing the distance of similar samples while
keeping dissimilar ones away by at least a fixed radius. ITML (Davis
et al, 2007), in contrast, learns a full matrix M, so that similar pairs are



Enhancing Flood Impact Analysis using Interactive Image Retrieval 15

closer than a certain threshold and dissimilar ones are apart by at least
another threshold. This is possible despite the high dimensionality of the
feature space and limited annotations thanks to regularization towards the
Euclidean distance as a prior metric. We choose the two thresholds needed
for ITML on a per-query basis as follows: All pairs of relevant images
should be closer to each other than half the distance between the query
and the first irrelevant retrieval result. The distance of all images tagged as
irrelevant to any relevant image should be greater than the 95th percentile
of the distances between the query and all images in the dataset.

Additionally, we investigate combinations of the three metric learning methods
with the KDE-based approach of Deselaers et al (2008).

The annotations of our flood dataset allow us to completely simulate the
feedback process for a quantitative evaluation: For all the 611 images denoted as
ideal queries, we first perform the baseline retrieval and then mark 10 random
images out of the top 100 results either as relevant or irrelevant according to
their labels. This is repeated for a total number of 10 feedback rounds and the
retrieval quality is evaluated after each round in terms of the NDCG@100. To
get an impression of the variance of the results, we repeat the entire experiment
10 times with different random sub-samples of 75% of the dataset.

Based on the findings from the previous section, we use the two best-
performing types of features (Deep R-MAC and PMP on the last convolutional
layer of VGG16), averaged over multiple image scales.

VGG16 with PMP (multi-resolution) Deep R-MAC (multi-resolution)

1
KDE

—— SVM
Exemplar-LDA

©

=) - T Feature Weighting
3 0.8 = S
s _— Feature Weighting + KDE
8 07 I — Diagonal MMC
% T - Diagonal MMC + KDE
0.6 L ITML
F - ITML + KDE
1787
0.5
0.4
01 2 3 4 5 6 7 8 910 01 2 3 45 6 7 8 910
Feedback Rounds Feedback Rounds

Figure 5: Comparison of methods for incorporating relevance feedback.
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The results averaged over the 10 repetitions are shown in Fig. 5, where round
0 denotes the performance of the baseline retrieval. It can be seen that the
simple KDE method already performs quite well, especially better than the two
feature weighting techniques. The two classification-based approaches (SVM
and Exemplar-LDA) apparently suffer from the limited amount of annotations
and behave extremely unstable during the first rounds. ITML, on the other hand,
provides superior performance from the beginning and leads to an NDCG@ 100
of 86.9% after 5 rounds of feedback and 92.9% after 10 rounds. Though KDE
can be added on top of any other method, the benefit when combined with ITML
is too marginal to justify the computational overhead.

After 5 rounds of feedback, the SVM-based approach starts to outperform
ITML slightly when using Deep R-MAC features. However, the performance
during the first few rounds is of greater importance, since we do not expect
most users to regularly spend more than five rounds of feedback for refining the
results. During the early iterations, however, SVM performs worst among all
methods. It might hence be an interesting direction for future work to investigate
how ITML and SVM can be combined to improve performance at all stages of
the process.

The maximum standard deviation of all methods and all feedback rounds over
the 10 repetitions was 1.2%. We conducted a paired Student’s 7-test to assess the
significance of the differences between the methods in Fig. 5 at a significance
level of 5%. At the final feedback round, all differences are significant except that
between Exemplar-LDA and Diagonal MMC + KDE when using Deep R-MAC
features. At the first round, all differences are significant for VGG16 features
and all besides that between ITML and Feature Weighting + KDE for Deep
R-MAC features. For VGG16 features, ITML and ITML + KDE performed
significantly better than all other methods across all rounds. With the Deep
R-MAC features, ITML coincided with Feature Weighting + KDE at round 1
and with SVM at round 4, but was otherwise significantly different from the
rest. SVM started to perform significantly better than the rest from round 7
on. Besides that, Feature Weighting, Feature Weighting + KDE, and Diagonal
MMC, performed significantly different from the rest in at least 9 of 10 rounds.



Enhancing Flood Impact Analysis using Interactive Image Retrieval 17

5 Conclusions and Future Work

We have proposed an interactive image retrieval approach with relevance
feedback for finding flood images on online image platforms that are relevant for
a particular information interest. To evaluate our approach, we have presented a
novel dataset comprising 3,710 flood images annotated with relevance labels
regarding three exemplary search objectives and important image regions.

For the baseline retrieval, Deep R-MAC features (Gordo et al, 2017) averaged
over multiple image scales perform best. Convolutional features extracted from
other networks not fine-tuned for object retrieval can also perform well when
aggregated using partial mean pooling (Zhi et al, 2016).

Regarding the incorporation of relevance feedback, an SVM-based approach
provides the best performance in the long run, but needs a substantial amount
of feedback for being useful. Information-theoretic metric learning (Davis
et al, 2007), on the other hand, provides superior performance during the early
feedback rounds and remains competitive with SVM later on. Finally, the simple
KDE method of Deselaers et al (2008) has turned out to be a quick and decent
baseline as well, which is particularly easy to implement and combine with
existing frameworks. Using relevance feedback, the average NDCG@ 100 can be
improved from 55% yield by the baseline retrieval to 87% after five rounds and
93% after ten rounds of feedback, which we expect to be useful for hydrologists
to find relevant images quickly.

In the future, we would like to investigate how the selection of important
image regions can be integrated as an additional component of the system to
improve the relevance of the retrieved images even further, as proposed by
Freytag et al (2015), for example. It seems also appealing to combine ITML
with the SVM-based approach to improve the performance at all stages of
the feedback process. Moreover, it seems promising to apply active learning
methods for asking the user for feedback regarding certain actively selected
images from which the system expects the most benefit. Finally, the interactive
image retrieval system should be integrated into a visual analytics interface
providing data from other sensors as well, enabling a case-study on a more
recent flood event with real users.
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