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Abstract 

We combine features extracted from pre-trained convolutional neural networks (CNNs) with the 

fast, linear Exemplar-LDA classifier to get the advantages of both: the high detection perfor-

mance of CNNs, automatic feature engineering, fast model learning from few training samples 

and efficient sliding-window detection. 

The Adaptive Real-Time Object Detection System (ARTOS) has been refactored broadly to be 

used in combination with Caffe for the experimental studies reported in this work. 

1. Introduction 

In 2014, we presented the Adaptive Real-Time Object Detection System (ARTOS) [1]. It 

features a fast method for learning linear classifiers from positive samples only, which are 

collected automatically from ImageNet [2]. The user may inspect a visualization of the model 

mixture, which is based on Histograms of Oriented Gradients (HOG) [3] as features, and can 

remove components from the model as well as add new ones learned from domain-specific in-

situ images to improve the overall performance of the model for the task at hand. Object 

detection is performed by applying template-matching with a sliding-window approach, which 

is significantly sped up by leveraging the Fourier transform [4]. 

Though HOG features have previously been state-of-the-art for many years, an actually 

not-so-new method outperformed them recently: The huge amounts of available data gave new 

rise to the approach of Neural Networks, which originated in the 1980s. Nowadays, this method 

is used in the field of computer vision in the form of so-called Convolutional Neural Networks 

(CNNs), which prepend a sequence of convolutional, activation and pooling layers to the actual 

fully-connected net [5]. The idea behind this architecture is that many feature extraction meth-

ods are based on convolving the image with a pre-defined filter followed by dividing the image 

into cells and pooling histograms or the average or maximum value from those cells to form 

the final feature vector. The eminent advantage of CNNs is that not only the weights for the 

classifier (i.e., the fully-connected net), but also the weights of those convolutions are learned 

automatically to minimize a specific loss function. This relieves researchers from the burden of 

manual feature engineering and leads to convolutional image features that are tuned towards 

the given task and data. 

                                        
This research was supported by grant DE 735/10-1 of the German Research Foundation (DFG). 
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Yielding very promising results for the task of image classification, attempts to adapt CNNs 

for object detection have been made soon and led to regional classifiers [6]. These are performing 

better than detectors based on HOG features, but at a cost: First, a sliding-window approach 

for classifying every possible bounding box on multiple scales of the image with a CNN cannot 

be accelerated using the Fourier transform as it is possible with linear classifiers. Second, CNNs 

are usually very prone to overfitting and, thus, require a lot of diverse training data for every 

class. 

By extending ARTOS, we aim for combining the best of both worlds: the automatic feature 

engineering of CNNs with a linear classifier which allows for both training and detection at 

high speed. 

2. Refactoring of ARTOS 

2.1 Generalization 

The first version of ARTOS relied strongly on the FFLD library [4] for detection and HOG 

feature extraction. We have loosened this dependence and refactored ARTOS completely to 

work with arbitrary feature representations.1 

Thanks to these efforts, it also became possible to switch feature extractors at run-time or 

to use several different feature extractors at once. In consequence, the type of features used for 

model creation and their hyper-parameters are now stored together with the learned parameters 

in the model file and, so that they can be restored for detection automatically. 

2.2 Model Evaluation API and GUI 

The first version of the ARTOS library already contained a ModelEvaluator class, which could 

be used to evaluate the performance of models on test data in terms of precision, recall, F-

measure and average precision. But that class was mainly used by ARTOS internally for 

threshold optimization and was exclusive to the C++ library.  

In ARTOS v2, this functionality has not only been exposed to the C interface of the library, 

but is by now also available for the user via the Python GUI for comfortable and easy model 

evaluation. Figure 1 shows the evaluation dialog where the user may specify the test data to 

be used. After the detector has been run for all selected models on all test images, a dialog will 

display several performance metrics as well as a recall-precision curve. 

3. Extraction of CNN Features 

The idea behind the project described in this report is to boost the object detection performance 

of ARTOS by replacing HOG features with the same features a CNN would use. That is, the 

output of the last layer before the fully-connected network, which handles the actual classifi-

cation. Those features serve as input for the linear classifier learned by ARTOS using the 

Exemplar-LDA method [7]. A linear model for the CNN features will allow for fast template-

matching and hopefully give better results than HOG models, since the features have been 

optimized for the distinction between the classes in question. 

Fortunately, several CNNs pre-trained on ImageNet images from 1000 classes do already 

exist. We use the Caffe library [8] to propagate images through such nets and extract features 

from a layer of the network. ARTOS will automatically analyze the parameters of all layers 

from the input layer to the one used for feature extraction and derive the number of pixels in 

                                        
1 ARTOS v2 is available as open source on GitHub: https://github.com/cvjena/artos 

https://github.com/cvjena/artos
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a cell and the number of pixels removed from the borders of the image based on the stride, 

pad and kernel_size parameters of convolutional and pooling layers.  

3.1 Pre- and post-processing 

Most pre-trained networks have been learned on images from which the mean pixel value of 

each channel has been subtracted. Therefore, ARTOS must pre-process images in the same 

way. 

Due to the high memory consumption of the internal data structures of Caffe and for higher 

throughput, we resize large images so that the larger dimension is not greater than 1024 pixels.  

First experiments with CNN features ended in numerical problems, since the outputs of 

some CNN layers may be numerically large and the learning method of ARTOS needs to 

compute a covariance matrix of those features. In the end, most of these covariance matrices 

were practically asymmetric and not invertible. Scaling the features extracted from the CNN 

to the range [−1,1] did not only solve this problem, but also improved the performance of 

models learned with features from channels which were not problematic before. But since doing 

so requires knowledge of the maximum possible value for each channel, an additional learning 

step had to be introduced for learning those maxima from some training images. ARTOS pro-

vides a separate tool for doing this and saves the detected maxima in a text file. 

After all, the following steps are performed to extract CNN features from a given image: 

1. Scale down the image if necessary. 

2. Convert the image to the color space of the network (ARTOS uses RGB, while Caffe 

stores color images as BGR or may even expect grayscale images). 

3. Subtract the mean pixel value for each channel from the image. 

4. Resize the input layer of the net to match the size of the image and propagate that 

change to all layers up to the one which features will be extracted from. 

Figure 1: Left: New version of the model catalogue with selection controls for managing and evaluating multiple 

models at once. Right top: Dialog for selecting test images for evaluation. Right bottom: Evaluation results. 
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5. Propagate the net from the first layer to the one which features are to be extracted 

from. 

6. Extract the output from the blob belonging to the layer in question. 

7. Scale the extracted features to the range [−1,1] (approximately). 

Before these features can be used to learn a model for any class, the following steps have to be 

performed only once: 

1. Use Caffe to train an adequate CNN or find a pre-trained one. 

2. Learn the maximum values of each feature channel of the layer in question from various 

scales of a large number of sample images. 

3. Learn the mean feature cell and the autocorrelation function of the scaled CNN features 

from various scales of a large number of sample images. 

3.2 PCA 

Convolutional layers of CNNs usually have a large number of channels (around 256-512). This 

does not only result in high memory consumption for storing the features of images, but may 

also turn out to be prohibitive for the Exemplar-LDA learning method, which has to recon-

struct a covariance matrix for all features and cells. Consider the scenario of learning a new 

model and let 𝑀,𝑁 ∈ ℕ be the width and the height of the model in cells, respectively, and 𝐹 

the number of feature channels. For the Exemplar-LDA learning method, a covariance matrix 

with (𝑀 ⋅ 𝑁 ⋅ 𝐹)2 coefficients had to be reconstructed from the pre-trained autocorrelation func-

tion. That means that the memory consumption of that covariance matrix grows quadratic 

with the number of features. For example, consider a rather small model size of 12×12 cells 

and a number of 512 features. In that case, more than 20 GB of RAM would be required just 

for storing the covariance matrix. 

One possible, but very time-consuming solution would be to define and train a CNN with 

a smaller number of feature channels. An easier approach, however, is to perform a dimension-

ality reduction by applying PCA on the features extracted from the net. ARTOS uses this 

technique to reduce the 𝐹 dimensions of a feature cell 𝑥 ∈ ℝ𝐹 extracted from the net and al-

ready scaled to [−1,1] to a new feature cell 𝑥 = 𝐴 ⋅ (𝑥 − 𝑚). 

ARTOS also ships with a tool that can be used to learn 𝐴 and 𝑚 from a number of training 

images, which adds one more step to the pre-learning procedure mentioned in 3.1. The effects 

of dimensionality reduction will be evaluated in section 4.4, while section 5 mentions another 

way to work around this issue. 

3.3 Combinations of multiple layers 

Another common problem regards the accuracy of the localization of the objects detected in 

an image: To reduce the number of input units for the fully-connected network and to mitigate 

the impact of minor spatial variations, most CNNs end up with quite large pooling regions like, 

for example, 32×32 pixels, which is quite much compared to the 8×8 pixel cells of HOG. While 

that is unproblematic for image classification, it affects the spatial resolution of object detection 

and potentially leads to many displaced bounding boxes. This is particularly fatal for narrow 

objects, where a displacement of just one cell may significantly affect the area of the intersection 

of the detected region with the ground-truth bounding box. 

Following the solution proposed by [6], ARTOS is able to extract features from multiple 

layers of the CNN. These are then concatenated to form the final feature matrix, which will 

have the size of the largest layer, i.e., the one with the smallest cell size and highest resolution. 
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This requires oversampling of the smaller layers, which is done with nearest-neighbor interpo-

lation. Since the resulting feature space will have a high dimensionality, PCA should be applied 

afterwards to reduce it. 

The motivation of this approach is the idea, that the features of the deeper layers may be 

more useful for determining the class of a given region in the image. However, since those 

features have a rather low resolution, the features from upper layers may provide additional 

information that could support accurate localization. 

We evaluate this approach in section 3.3. 

4. Experiments and Evaluation 

4.1 Datasets and CNNs 

We have tested features extracted from several layers of two pre-trained CNNs: The first one 

is the BVLC reference net2 (alias CaffeNet), which ships with Caffe and contains 5 convolu-

tional layers, whereby the last such layer yields 256 feature channels. The second one is the 

VGG16 network3 with 13 convolutional layers [9], which won the ILSVRC 2014 competition 

[10]. The last convolutional layer of that net yields 512 channels. Both nets have been trained 

on the 1000 classes of the aforementioned challenge. 

The training images for the models learned by ARTOS come from ImageNet too, while we 

evaluate the performance of the models on images from PASCAL VOC 2012 [11] (trainval 

dataset). Experiments are made on six classes: airplane, bottle, car, chair, cow and person. 

Table 1 contains detailed information about the number of images used for training und eval-

uation per class. 

4.2 The problem of nested detections 

First inspections of qualitative detection results revealed a new problem arising from the use 

of CNN features: They perform just too well for the task of classification, which leads to fuzzy 

localization. It can be observed that a CNN is able to correctly classify an image if the object 

of interest is located in a sub-region of the image and does not fill it entirely. Likewise, a sliding-

window detector using CNN features often does not only classify the smallest possible bounding 

                                        
2 https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet  
3 https://gist.github.com/ksimonyan/211839e770f7b538e2d8  

Class Training Images Test Images 

Synset Samples Part of ILSVRC Images Objects 

Airplane n02691156 376 No 670 865 

Bottle n02876657 342 Yes 706 1259 

Car n02958343 894 Yes 1161 2017 

Chair n03001627 228 Yes 1119 2354 

Cow n01887787 411 No 303 588 

Person n00007846 178 No 4087 8566 

Table 1: List of classes and datasets used for training and evaluation. 

https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
https://gist.github.com/ksimonyan/211839e770f7b538e2d8
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box around an object as positive, but also a lot of larger bounding boxes containing that one. 

This results in nested detections with many of these being too large for being eliminated by 

non-maxima suppression. Some examples are shown in Figure 2. The detected bounding boxes 

often even take up almost the entire image. 

A first attempt to deal with this problem by reducing the overlap threshold for non-maxima 

suppression from 0.5 to 0.4 increased the average precision of the detection results slightly, but 

did not eliminate the problem completely. We also investigated an approach for using separate 

thresholds for nested and for truly overlapping detections, but the impact on average precision 

was extremely small. 

Thus, all results presented in the following for CNN features have been attained with a 

reduced overlap threshold of 0.4 for non-maxima suppression. The overlap threshold used for 

telling apart true and false positives during evaluation, which usually is 0.5, has not been 

altered, of course.  

4.3 Performance of CNN features 

First, we evaluated the performance of features extracted from single layers of a CNN and 

compared it to the average precision scored by a HOG model on the same dataset. The back-

ground statistics needed by the LDA learning method have been learned on 6000 images from 

ImageNet. This number of images is a trade-off between the quality of the statistics and the 

time needed for learning it. For practical purposes, one should rather use about 32000 images 

for learning statistics. 

The results of these experiments as shown in Table 2 lead to several findings: There is no 

point in using features extracted from a pooling layer, since those contain less information than 

the layer they pool from and have a lower resolution. This motivated the idea, that features 

from convolutional layers may be more useful than features from activation layers, but this is 

clearly untrue for CaffeNet, where performance drops significantly when using the convolutional 

layer before the ReLU layer. The reason for this may be, that negative values of neurons in a 

convolutional layer carry no information for the network, since they will be set to 0 in the 

ReLU layer. Thus, only the absolute value of positive neurons is relevant, while the amplitude 

of negative values may be just noise. Interestingly, the situation is completely different for the 

VGG network, where features from the convolutional layer perform better than those from the 

activation layer in 3 out of 5 cases. It seems to depend on the network architecture and perhaps 

the training algorithm whether features from convolutional layers in front of an activation layer 

are useful or not. 

  

Figure 2: Examples of nested detections for the classes airplane (left) and cow (right). 
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AP HOG pool5 relu5 conv5 pool5 relu5_3 conv5_3

Person 4.37% 22.98% 25.23% 21.63% 24.52%

Car 22.44% 19.37% 23.52% 15.25% 23.15% 29.33% 31.09%

Chair 4.23% 9.24% 10.18% 2.84% 10.46% 15.56% 9.11%

Cow 14.88% 12.21% 26.36% 17.28% 13.00% 26.91% 29.10%

Bottle 15.41% 12.47% 14.97% 6.72% 14.15% 20.27% 20.01%

Airplane 26.77% 37.28% 40.37% 29.55% 36.18% 42.73% 49.46%

Model Size

Person 9x12 5x7 11x14 11x14 5x7 11x14 11x14

Car 14x8 6x3 12x6 12x6 6x3 12x6 12x6

Chair 9x12 4x5 7x10 7x10 4x5 7x10 7x10

Cow 10x8 3x2 5x4 5x4 3x2 5x4 5x4

Bottle 6x18 2x7 5x14 5x14 2x7 5x14 5x14

Airplane 17x6 7x3 14x5 14x5 7x3 14x5 14x5

Cell Size 8x8 32x32 16x16 16x16 32x32 16x16 16x16

BVLC Reference Caffenet VGG (16 layers)

 
Figure 3: Recall-Precision graphs of models using features extracted from the best performing layer of each of 

the two CNNs compared to models based on HOG features. 

  

Table 2: Comparison of the average precision scored by models using features extracted from different CNN 

layers with models using HOG features. The best result for each class is highlighted in green and the worst one 

in red. The size of each model and the resolution of the feature cells is shown in the tables below the test results. 
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Results for the class “person” are missing for the layers “relu5_3” and “conv5_3” of the VGG 

net, since they provided too much feature channels for a reconstruction of a covariance matrix 

of the respective model size. There was just not enough RAM. For the same reason, we were 

unable to test the performance of earlier layers with a smaller cell size. 

While the features from CaffeNet are already superior to HOG features in almost all cases 

(with only one exception), the features from the much deeper VGG network clearly outperform 

HOG. This is also emphasized by the precision-recall graphs in Figure 3, where we compare 

the features from the best-performing layer of each of the two networks with HOG features. 

In addition to this purely quantitative analysis, some qualitative examples and a roundup 

of common mistakes can be found in section 4.5. 

It should be mentioned that previous works have found it beneficial to cluster training 

samples by aspect ratio as well as by HOG or Whitened HOG features and to learn a mixture 

consisting of models for each cluster [1, 7]. Figure 4 shows that this effect is a lot smaller when 

using CNN features. While clustering by aspect ratio may still result in a very small improve-

ment, clustering by features does not take average precision any higher. This could indicate 

that the CNN features are already able to capture the characteristics of different sub-types of 

the same class, so that splitting up the training set in advance is not necessary. But even when 

clustering is applied for learning of HOG models, the models based on CNN features are still 

superior. 

4.4 Impact of dimensionality reduction 

One possible reason for the superiority of CNN features over HOG features might be the higher 

dimensionality of the feature space, which implies a higher amount of free parameters for the 

linear classifier. Therefore, we applied PCA for dimensionality reduction as described in section 

3.2 and compared the performance of models using the reduced feature space with the perfor-

mance of the models using the original features extracted from the CNN. 

As shown in Figure 5, a reduction of the full feature space to 128 features can be performed 

without a significant loss of performance in almost all cases. Doing so may even result in better 

performance, since fewer free parameters leave smaller room for overfitting. Considering the 

class “person”, dimensionality reduction is actually necessary for learning a model with features 

from the VGG net, since the use of 512 features led to too large covariance matrices for that 

class. 
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Figure 4: Comparison of performance of models using HOG features and models using CNN features under 

different clustering settings: no clustering (1x1), 2 aspect ratio clusters (2x1), 2 aspect ratio and 3 feature clusters 

per aspect ratio cluster (2x3). 
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While a reduction to 64 dimensions may also be reasonable given the improvements in 

speed and memory consumption implied by fewer dimensions, performance drops significantly 

when using only 32 features. Nevertheless, that case is of particular interest because that is 

also the number of features used by HOG and, thus, allows for a fair comparison. Despite the 

decreased performance compared to the full CNN feature space, the models using only 32 CNN 

features extracted from the VGG net still perform a lot better than models using HOG features 

(refer to Table 2 for the average precision of HOG models). In the case of the features extracted 

from CaffeNet and reduced to 32 dimensions, the classes “car” and “bottle” are better recognized 

by HOG models. 

4.5 Qualitative results and error analysis 

To get deeper insights into the performance and the problems of the CNN models than the flat 

average precision values provide, we have conducted further analyses for the features from the 

layer “conv5_3” of the VGG net using the VOC Error Diagnosis tool4 [12]. 

The area plots in Figure 7 show the distribution of false positive types plotted against the 

number 𝑁∗ = 𝑁 𝑁𝑗⁄  of top detections considered, where the number of detections 𝑁 is normal-

ized by the total number of objects 𝑁𝑗 for the respective category 𝑗. That means, an optimal 

detector would yield 100% truly positive detections (white area) in the range [0,1]. A false 

positive is considered a localization error (blue area) if it fulfills the relaxed overlap criterion 

with threshold 0.1 instead of 0.5. Furthermore, the plots differentiate between confusions with 

similar categories (red area), non-similar objects (green area) and with the background (violet 

area). The recall under the usual overlap criterion is plotted as solid red line and the recall 

under the relaxed overlap criterion as dashed red line. 

The detections for the class “cow” are mainly dominated by confusions with similar objects 

(76%), primarily sheep, horses and dogs (see also Figure 6). In consideration of the other four 

classes, localization errors take up between 15% and 21% of the top-ranked 𝑁𝑗 detections. 

                                        
4 http://dhoiem.cs.illinois.edu/projects/detectionAnalysis/  
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The bar plots below the area plots in Figure 7 visualize the possible impact on average 

precision if a specific type of false positives would be eliminated. For example, a better distinc-

tion between cows and similar animals could lead to an absolute improvement in terms of 

average precision by 0.2. In general, improving localization accuracy would result in large gains 

for all classes. The corresponding bar in the chart consists of two segments: The first one shows 

the impact if all duplicate or poor localizations would be removed, while the second one assumes 

that those detections would be corrected so that false positives would be turned into true 

positives, which is very effective. Doing so could improve average precision by between 0.09 

and 0.17.  

Figure 6 shows some examples of the most common types of errors observed during our 

experiments. The problem of nested detections, which belongs to the group of localization 

errors, has already been described in section 4.2. Besides inaccurate localization caused by, e.g., 

Figure 7: Distribution of false positive types (top) and impact of elimination of specific types on average preci-

sion (bottom) for models VGG features (layer conv5_3). See text for an explanation of these plots. 

Nested Detections 

Confusion with Similar Objects 

Grouped Detections 

Partial Detections 

Inaccurate Localization 

Figure 6: Examples of common types of false positives detected by a model using features from VGG 16 (layer: 

conv5_3) on Images from PASCAL VOC 2012 (trainval). 
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the coarse resolution of CNN features, another common problem of CNN features is the detec-

tion of multiple neighboring objects in a single bounding box. In contrast, often only parts are 

detected, in extreme cases even multiple parts of the same object, but not the object as a whole. 

A qualitative comparison between detection performance of HOG models and models using 

features from the layer “conv5_3” of the VGG net is shown in Figure 9. For a threshold-neutral 

comparison, we have chosen the threshold for each model so that it maximizes the F1-score of 

the model on the data set. That means, the detections shown on the images are the best trade-

off between precision and recall one can achieve with those models. The images shown in the 

figure have not been cherry-picked, but selected at random from the entire data set. 

4.6 Combinations of multiple layers 

Section 3.3 motivated extracting features from multiple layers of the same net for improved 

localization accuracy. Though [6] were successful with such an approach, corresponding exper-

iments conducted using ARTOS with a linear classifier have been rather disappointing. 

Table 3 compares the average precision of three multi-layer models with HOG models and 

the best single-layer model for each net. The features extracted from multiple layers have been 

transformed into a feature space with 128 dimensions (see 3.2). Though two of the multi-layer 

models have a higher or equal resolution as HOG, they perform even worse than HOG models 

in almost all cases. A more detailed analysis with the VOC Detection Analysis tool shown in 

Figure 8 reveals that those models have a very poor precision compared to Figure 7, though 

the amount of localization errors decreased slightly for some categories. 

Further investigations would be necessary to figure out the cause of this poor performance. 

It may be related to the Exemplar-LDA learning method or its implementation. During the 

training of the models using features from three layers of the VGG network, we noticed that 

the reconstructed covariance matrices were not positive definite, so that a regularizer had to 

be added to the main diagonal of the matrix for a successful Cholesky decomposition. 

 
AP HOG BVLC (relu5) VGG (conv5_3) BVLC (relu2 + relu5 -> 128) BVLC (relu3 + relu4 + relu5 -> 128) VGG (conv3_3 + conv4_3 + conv5_3 -> 128)

Person 4.37% 25.23% 5.55% 12.50% 14.54%

Car 22.44% 23.52% 31.09% 11.14% 8.91% 12.90%

Chair 4.23% 10.18% 9.11% 1.94% 2.13% 2.32%

Cow 14.88% 26.36% 29.10% 7.70% 13.03% 17.09%

Bottle 15.41% 14.97% 20.01% 2.21% 3.42% 6.14%

Airplane 26.77% 40.37% 49.46% 21.27% 26.98% 19.64%

Model Size

Person 9x12 11x14 11x14 15x20 11x14 15x20

Car 14x8 12x6 12x6 20x11 12x6 20x11

Chair 9x12 7x10 7x10 15x20 7x10 15x20

Cow 10x8 5x4 5x4 10x8 5x4 20x15

Bottle 6x18 5x14 5x14 7x20 5x14 7x20

Airplane 17x6 14x5 14x5 20x8 14x5 20x8

Cell Size 8x8 16x16 16x16 8x8 16x16 4x4

Table 3: Comparison of average precision scored by models using features extracted from multiple CNN layers 

compared to HOG and single-layer models. Best results per row highlighted in green, worst in red. 

Figure 8: Distribution of false positive types for models using combined features from three layers of the VGG 

net: conv3_3, conv4_3, conv5_3. See section 4.5 for an explanation of these plots. 
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Figure 9: Exemplary images from the 6 VOC data sets with detections yielded by HOG models (blue) and 

models using features from the VGG net (layer conv5_3) (red). 
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4.7 Speed 

The improved recognition performance of CNN features comes at the cost of a slower learning 

and detection speed. We have conducted the experiments described in this report on a machine 

with an Intel Core i7-4770 CPU (3.4 GHz quad-core) and an Nvidia Tesla K40c GPU. 

While features can be extracted from the rather small CaffeNet without any overhead com-

pared to the computation of HOG features, feature extraction from the more powerful VGG 

net takes six times as long. The major portion of time is spent forwarding the net, as illustrated 

in Figure 10 (left). However, when extracting features from multiple layers of different size, the 

extraction of the features from the memory of the net takes an even higher amount of time due 

to the necessary oversampling of the smaller layers. 

But the speed of feature extraction is not the only factor that influences the speed of train-

ing and detection: the dimensionality of the feature space plays another important role. The 

size of the covariance matrix that must be reconstructed and decomposed for model learning 

grows quadratic with the number of features (see section 3.2) and dominates the entire learning 

process (see Figure 10 right). The Cholesky decomposition of that covariance matrix alone 

takes up 13 minutes for a model of size 10x8 cells when using 512 features. 

Concerning detection, one Fourier transform must be performed for each feature plane. 

While ARTOS processes 4 images of size 640×480 pixels per second with HOG features, this 

throughput decreases to 0.33 images per second when using features from the layer “conv5_3” 

of the VGG network, which provides 512 features. In this case, the entire detection takes ten 

times as long as feature extraction. Thus, applying PCA for dimensionality reduction could be 

of great advantage for retaining real-time detection capabilities (see section 3.2).  
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Figure 10: Left: Time taken by the single parts of the feature extraction procedure for an image of size 1024x786 

pixels and different CNNs. Right: Time taken by the single components of the Exemplar-LDA model learning 

procedure for a model of size 10x8 cells and 302 training samples. 
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5. Shortcomings and Future Work 

The refactoring of ARTOS described in section 2 made it possible to experiment with arbitrary 

features combined with the linear Exemplar-LDA learning method. In particular, features ex-

tracted from CNN networks have turned out to be clearly superior to HOG features. In contrast 

to existing CNN-based object detection algorithms, the use of a linear classifier allows for fast 

template matching by leveraging the Fourier Transform. But the advantages also come along 

with new problems, which have been described in section 4: 

Localization errors. Most pre-trained CNNs end up with a rather large cell size, leading 

to a coarse localization resolution. While [6] solved this problem by combining features from 

multiple layers, this approach could not prove to be beneficial in combination with the ARTOS 

framework at all. Another possible solution mentioned by [6] could be to learn a bounding box 

regression separately, using the features from more fine-grained layers to predict a translation 

of the detected bounding box to improve localization accuracy. It may also be possible to use 

a separate classifier based on another type of features (from larger CNN layers or HOG fea-

tures) to detect just the corners of the object in the neighborhood of the bounding box detected 

by the coarse-grained classifier. The predicted positions of the object corners could be used to 

adjust the position and size of the initial bounding box. 

Vague object boundaries. In opposition to HOG features, CNN features seem to not 

depend that much on a strict alignment of the object boundaries with the bounds of the current 

window. As a consequence, nearby objects are often grouped in a single bounding box. On the 

other hand, nested bounding boxes around a single object can be observed quite often. A more 

sophisticated non-maxima suppression could help to eliminate these problems. 

Curse of dimensionality. Typical CNNs usually provide hundreds of features. This does 

not only slow down detection, but may also preclude training of models due to the high amount 

of memory needed for storing the full covariance matrix. The dimensionality reduction experi-

ments in section 4.4 show that such a high-dimensional feature space may be not necessary at 

all. But regardless of the possibility of dimensionality reduction, the covariance matrix recon-

structed from the much more compact autocorrelation function is of a very special shape: It is 

a symmetric Block-Toeplitz-matrix, which is highly redundant, since blocks of coefficients are 

constant along any diagonal. Given this, the Cholesky decomposition might not be the most 

efficient method for solving the equation system that is the core of the WHO learning method. 

There may exists a method which does not need the full covariance matrix, but works on the 

autocorrelation function instead and, therefore, saves a lot of memory as well as time. 

Dedicated CNN architectures. The CNNs used throughout this report for feature ex-

traction have been learned in the face of non-linear neural network classifiers and the task of 

image classification instead of object detection. It would be interesting to see if net architectures 

tuned for the task of detection could yield better results. The last convolutional layer of such 

nets should contain a reasonable number of feature planes (less than 128) for the sake of speed, 

but with a rather small cell size (e.g. 8×8 pixels) for better localization accuracy. An even more 

consistent approach could be to already learn the coefficients of the convolutional layers with 

respect to loss information generated by a linear classifier instead of a large fully-connected 

neural net. A binary linear classifier could easily be modeled by a single fully-connected layer 

with a single neuron. 
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