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Abstract Histogram based real-time object tracking methods, like the Mean-
Shift tracker of Comaniciu/Meer or the Trust-Region tracker of Liu/Chen, have
been presented recently. The main advantage is that a suitedhistogram allows
for very fast and accurate tracking of a moving object even inthe case of partial
occlusions and for a moving camera. The problem is which histogram shall be
used in which situation. In this paper we extend the framework of histogram based
tracking. As a consequence we are able to formulate a trackerthat uses a weighted
combination of histograms of different features. We compare our approach with
two already proposed histogram based trackers for different historgrams on large
test sequences availabe to the public. The algorithms run inreal-time on standard
PC hardware.

1 Introduction

Data driven, real-time object tracking is still an important and in general unsolved prob-
lem with respect to robustness in natural scenes. Obviously, for many different, high-
level tasks in computer vision, there is the need for tracking a moving object in real-
time without having specific knowledge about its 2D or 3D structure. In general, it is
necessary in surveillance tasks, action recognition, navigation of autonomous robots,
etc. Usually, tracking is initialized based on change detection in the scene. From this
moment on, the position of the moving target is identified in each consecutive frame.

Several approaches for 2D data driven tracking have been presented in the past, for
example feature based [1], template based [2, 3], and, most recently, histogram based
methods [4, 5]. In all cases, tracking, i.e. correspondencebetween successive frames, is
solved by defining and solving an optimization problem. The main difference between
the approaches consists in the representation of the objectand the way the optimization
problem is solved.
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In this paper, we focus on histogram based methods, where theobject to be tracked
is identified by a histogram of a priori defined features. One prominent example for a
feature is color resulting in a color histogram used to identify the object. We present an
extension of histogram based tracking where instead of a single histogram a weighted
combination of several different histograms can be used. Werefer to this tracker in
the following ascombined histogram tracker (CHT). For tracking, we formulate the
optimization problem in a general way, such that the Mean-Shift [6] as well as the
Trust-Region [7] optimization can be applied. This allows for a maximum of flexibility
for the parameters that are estimated during tracking, for example, translation, rotation,
and scaling. We compare the CHT with already presented histogram trackers using only
one specific histogram. The results show a significantly better performance of the CHT
with respect to accuracy during tracking, and at the same time without loosing its real-
time capability.

The paper is structured as follows. In section 2 we introducehistogram based track-
ing methods together with two already presented local optimization methods, the Mean-
Shift and the Trust-Region algorithm. In section 3 we present a rigorous mathematical
description for the CHT. We show how the optimization problem can be solved again
using the Mean-Shift and the Trust-Region algorithm. Section 4 deals with the exper-
iments. We show results on a large set of labeled image sequences available to the
public, which allows quantitative evaluation and comparison. The paper concludes with
a discussion and an outlook to future work.

2 Region Based Object Tracking Using Histograms

2.1 Representation and Tracking

In general, the target is identified by an image regionR(x(t)), wherex(t) contains the
time variant parameters of the region, also referred to as the state of the region. One
simple example for a regionR(x(t)) is a rectangle of fixed dimensions. The state of
the regionx(t) = (mx(t), my(t))T is the center of gravity of that rectangle in pixel
coordinatesmx(t) andmy(t) for each time stept. With this simple model translation
of a target region can be easily described by estimatingx(t), i.e. center of gravity of the
rectangle, over time. If the size of the region is also included in the state, estimation of
scale is possible.

The information contained within the region is used to modelthe moving object.
The information may consists of the color, the gray value, orcertain other features,
like the gradient. At each time stept and for each statex(t) the representation of
the moving object consists of a probability density function p(x(t)) of the chosen
features within the regionR(x(t)). In practice, this density function has to be esti-
mated from image data. For performance reasons, a weighted histogramq(x(t)) =
(q1(x(t)), q2(x(t)), . . . , qN (x(t)))T of N bins qi(x(t)) is used as a non-parametric
estimation of the true density, although it is well known that this is not the best choice
from a theoretical point of view [8]. Each individual binqi(x(t)) is computed by

qi(x(t)) = Cx(t)

∑

u∈R(x(t))

Lx(t)(u)δ(bt(u) − i), i = 1, . . . , N (1)
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with Lx(t)(u) being a suited weighting function introduced below,bt(u) the func-
tion that maps the pixelu to the numberj of the bin which the feature at position
u falls into (j ∈ {1, . . . , N}), andδ being the Kronecker-Delta function. The value
Cx(t) = 1/

∑

u∈R(x(t)) Lx(t)(u) is a normalizing constant. In other words, (1) counts
all occurrences of pixels that fall into bini, where the increment within the sum is given
by the weighting functionLx(t)(u).

Object tracking can now be defined as an optimization problem. Starting with an
initial target region — for example, manually or automatically defined in the first image
at t = 0 — an initial histogramq(x(0)) can be computed. Fort > 0 the corresponding
region is defined by

x(t) = argmin
x

D(q(x(0)), q(x)) (2)

with D(·, ·) being a suited distance function defined on histograms. In our work we use
two local optimization techniques, the Mean-Shift algorithm [4] and the Trust-Region
algorithm [5]. In the context of histogram based tracking, also a global optimization
using a particle filter can be applied [9].

2.2 Kernel and Distance Functions

There are two open aspects left: the choice of the weighting functionLx(t)(u) in equa-
tion (1) and the distance functionD(·, ·). The weighting function is typically chosen as
a kernel, whose support is exactly the regionR(x(t)). Different kernel profiles can be
used, like the Epanechnikov, the biweight, or the truncatedGauss profile [10].

For the optimization problem in (2) several distance functions on histograms have
been proposed, like the Bhattacharya distance, the Kulback-Leibler distance, the Eu-
clidean distance or the scalar product distance. It is worthnoting that for the following
optimization no metric is necessary. The main restriction on the given distance functions
in our work is the following special form

D(q(x(0)), q(x(t))) = D̂

(
N∑

n=0

d(qn(x(0)), qn(x(t)))

)

(3)

with a monotone, bijective function̂D, and a functiond(a, b), which is twice differen-
tiable forb. Now, substituting (3) into (2) we get

x(t) = argmax
x

(

−sgn(D̂)

N∑

n=0

d(q(x(0)), q(x))

)

(4)

wheresgn(D̂) = 1 or sgn(D̂) = −1 if D̂ is monotonly increasing or decreasing,
respectively. More details can be found in [10].

2.3 Optimization

This section deals with the optimization of (4) using the Mean Shift algorithm. Hints
are given in the end how the optimization can be solved by Trust Region optimization.
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The main idea is to do a Taylor series expansion of the right hand side of (4). After
a couple of computations and simplifications (for details, see [10]) we get

x(t) ≈ argmax
x









C0

∑

u∈R(x)

Lx(u)

N∑

n=1

δ(bt(u) − n)w̃t(n)

︸ ︷︷ ︸

w̃t(bt(u))









(5)

with the weights

w̃t(bt(u)) = −sgn(D̂)
∂d(a, b)

∂b

∣
∣
∣
∣
(a,b)=(qbt(u)(x(0)),qbt(u)(x))

(6)

This special reformulation allows us to interpret the weights w̃t(bt(u)) as weights on
the pixel coordinatesu. For a certain distance functionD(·, ·) we need to calculate the
corresponding pixel weights. Finally, we can apply the Mean-Shift algorithm for the
optimization of (5), since (5) is a weighted kernel density estimation. Due to lack of
space, for details, on how the Mean-Shift algorithm is applied, the reader is referred
to [11, 10]. Alternatively, the Trust-Region optimizationalgorithm can be applied. In
this case, we need the gradient and Hessian matrix of the right hand side of (4). Both
quantities can be derived in closed form [10]. The advantageof the Trust Region method
is, that — besides estimation of translation of the target region — also rotation and scale
can be integrated in the optimization problem [10].

2.4 Example

Now we give an example for the equations and quantities presented above. Using the
Bhattacharyya distance between histograms (as in [4]), defined as

D(q(x(0)), q(x(t))) =
√

1 − B(q(x(0)), q(x(t))) (7)

with

B(q(x(0)), q(x(t))) =

N∑

n=1

√

qn(x(0)) · qn(x(t)) (8)

we haveD̂(a) =
√

1 − a, d(a, b) =
√

a · b and

w̃t(n) =
1

2

√

qn(x(0))

qn(x(t)
(9)

3 Combination of Histograms

Up to now, the formulation of histogram based tracking relies on a certain histogram of
n-dimensional features, defined a priori for the tracking task at hand. Some examples
are gray value histograms (n = 1), edge histograms (n = 1) or RGB color histograms
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(n = 3). Certainly, using several different features for representing the object to be
tracked will result in better tracking performance, especially, if the different features
are weighted dynamically according to the situation in the scene. For example, color
might be a problem, if illumination changes. In this case, information on the edges
might be more useful. On the other side, a unique color of the moving object in a highly
textured environment will favour for color and against edges. One idea would now
be, to combine several features into one histogram of largerdimension. The problem
with that idea is the curse of dimensionality: higher dimensional features result in very
sparse histograms so that the estimation of the true, underlying density becomes very
inaccurate. This problem prevents us from just combining different features to a bigger
feature vector with larger dimension.

We propose now a different solution for combining histograms of different feature
for object tracking. The key idea is to use a weighted combination of several histograms
with low dimensions instead of one weighted histogram with high dimension. LetH =
{1, . . . , H} be the set of features used for representing the object. For each feature

h ∈ H we define a separate functionb
(h)
t (u). The number of bins in histogramh is Nh

and might differ between the histograms. Also, for each histogram a different weighting
functionL

(h)
x(t)(u) can be applied, i.e. different kernels for each individual histogram are

possible if necessary. This results inH different weighted histogramsq(h)(x(t)) with
the bins

q
(h)
i (x(t)) = C

(h)
x(t)

∑

u∈R(x(t))

L
(h)
x(t)(u)δ(b

(h)
t (u) − i), h ∈ H, i = 1, . . . , Nh (10)

We now define a combined representation of the object byφ(x(t)) =
(
q

(h)(x(t))
)

h∈H

and a new distance function (compare (2)), based on the weighted sum of the distances
for the individual histograms

D∗ =
∑

h∈H

βhDh(q(h)(x(0)), q(h)(x(t))) (11)

whereβh ≥ 0 being the contribution of the individual histogramh to the object resp-
resentation. The quantitiesβh can be adjusted to best model the object in the current
context of tracking. Currently, we set these parameters empirically. In future work we
plan to find the optimal values automatically and to dynamically adjust them during
tracking.

As before, for the Mean-Shift as well as for the Trust-Regionmethod we can for-
mulate a corresponding optimization problem. If we use the same weighting function
Lx(t)(u) for all histograms and as statex = (mx, my)

T the position of the moving
object in the image plane, we get

x(t) ≈ argmax
x

C0

∑

u∈R(x)

Lx(u)
∑

h∈H

w̃h,t(b
(h)
t (u))

︸ ︷︷ ︸

wh,t(u)

(12)
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which is again a weighted kernel density estimation. The constantC0 can be shown to
be independent ofx. The corresponding pixel weights are

wh,t(u) =
∑

h∈H

w̃h,t(b
(h)
t (u)) (13)

=
∑

h∈H

−βhsgn(Dh)
∂dh(a, b)

∂b

∣
∣
∣
∣
∣
(a,b)=(q(h)(x(0)),q(h)(x))

(14)

wheredh(a, b) is defined as in (3) for each individual featureh. For the Trust-Region
optimization again gradient and Hessian matrix have to be derived. Details can be found
in [10].

4 Experiments

We will now show that a weighted combination of different histograms is suited to im-
prove tracking performance. In the experiments we use the test videos of the CAVIAR
project [12], originally recorded for action and behaviourrecognition experiments. Al-
though, we do not have this kind of application in mind, the videos are prefectly suited,
since they are recorded in natural environment, with changein illumination and scale of
the moving persons as well as partial occlusions. Most important, the moving persons
are hand-labelled, i.e. for each frame a reference rectangle is stored.

To evaluate the results of the original Mean-Shift and Trust-Region tracker as well
as our proposed CHT we used an area based criterion. We measure the differencee of
the returned region A and the ground-truth region B by

e(A, B) = 1 − |A ∩ B|
1
2 (|A| + |B|) (15)

This error metric is zero, if the two regions are identical, and one if they do not over-
lap. If the two regions have the same size, the error increases with increasing distance
between the center of both regions. Also, equal center but different size if taken care of.

In the experiments we combined three different histograms.The first is the standard
color histogram consisting of the RGB channels, abbreviated in the figures asrgb. The
second histogram is computed from a sobel edge strength image (gradn), with the edge
strength normalized to fit the gray value range from 0 to 255. The third histogram is
computed from a corner interest map (minev). This interest map is based on the interest
operator returning the smallest eigenvalue of the structure matrix from a5 × 5 window
around the respective pixel [13]. Thus, high values in the interest map correspond to
corners in the image. For simplicity reasons, we call this histogram a corner histogram.

In Figure 1 for the Mean-Shift the accuracy of tracking is documented using the er-
ror percentile. For a certain percentilepz (x–axis) we measure the largest errore(A, B)
(y–axis, compare (15) taking into account thepz% best images only. In the left figure,
we only evaluated images until object lost, in the right figure all images are consid-
ered. The reader can verify, that a combination of RGB with a gradient histogram leads
to a significant improvement of tracking stability comparedto a pure RGB histogram
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Figure 1. Error percentile using CHT of RGB and gradient (rgb-gradn) and RGB and corner
histogram (rgb-minev) as well as pure RGB histogram tracker(rgb). Results are give for the
Mean-Shift-Tracker with scale estimation, Biweight-Kernel, Kullback-Leibler distance for all
individual histograms

tracker as well as a tracker with a combination of RGB and corner histogram. We got
similar results for the corresponding Trust-Region tracker and our extension to com-
bined histograms. The weightsβh for combining RGB with corner and edge histogram
(compare (11)) has been empirically set to0.8 and0.2, respectively. To automatically
find these weights for a certain object and to adjust them dynamically during tracking
is one of the focus of our future work.

The computation time for one images is on average less than 2 msec on a PIV, 3.2
GHz compared to approximately 1 msec for a tracker using one histogram only. One
example of a successful tracking including correct scale estimation is shown in Figure 2.

5 Conclusion

In our paper we have presented a mathematically consistent extension of histogram
based tracking, which we call combined histogram tracker. We could show that the
corresponding optimization problems can still be solved using the Mean-Shift as well
as the Trust-Region algorithm without loosing real-time capability. The formulation
allows the combination of an arbitrary number of histogramswith varying dimensions
as wells as individual distance functions between two histograms. This allows for a
maximum of flexibility in the application of the method. In the experiments we have
shown for three different feature histograms that a combination of two of them can
improve tracking accuracy and stability. The improvement of course depends on the
chosen histogram and on the object to be tracked itself. One important result is, that
tracking can still be performed in real-time on standard PC hardware. In the end we
like to stress again, that similar results are achieved using the Trust-Region algorithm,
although the presentation in this paper was focused on the Mean-Shift algorithm. For
more details, the reader is referred to [10].

In our future work we will investigate the adaptive combination of histograms dur-
ing tracking such that the weights of the histograms are dynamically adjusted depending
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on the context of tracking, the objects, and background. Also, we are going to compare
systematically the CHT with state of the art 2-d tracker, like the tracker of Perez [9].

Figure 2. Tracking result for one of the images sequences from the CAVIAR test bed (first and
last image of the sucessfully tracked person). Ground truthand computed region of the moving
person (ellipses) are almost the same, even in the case of change in scale.
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