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Abstract Histogram based real-time object tracking methods, lile Mean-
Shift tracker of Comaniciu/Meer or the Trust-Region trackkLiu/Chen, have
been presented recently. The main advantage is that a $ugtedyram allows
for very fast and accurate tracking of a moving object evethéncase of partial
occlusions and for a moving camera. The problem is whicltogisim shall be
used in which situation. In this paper we extend the framkwbhistogram based
tracking. As a consequence we are able to formulate a trittieuses a weighted
combination of histograms of different features. We corapaur approach with
two already proposed histogram based trackers for différistorgrams on large
test sequences availabe to the public. The algorithms rremirtime on standard
PC hardware.

1 Introduction

Data driven, real-time object tracking is still an impottand in general unsolved prob-
lem with respect to robustness in natural scenes. Obvipimslynany different, high-
level tasks in computer vision, there is the need for traglkirmoving object in real-
time without having specific knowledge about its 2D or 3D stuwe. In general, it is
necessary in surveillance tasks, action recognition,gadiin of autonomous robots,
etc. Usually, tracking is initialized based on change d&irdn the scene. From this
moment on, the position of the moving target is identifiedanteconsecutive frame.

Several approaches for 2D data driven tracking have beaeipted in the past, for
example feature based [1], template based [2, 3], and, reosttly, histogram based
methods [4, 5]. In all cases, tracking, i.e. correspondeeteeen successive frames, is
solved by defining and solving an optimization problem. Treemdifference between
the approaches consists in the representation of the abijddhe way the optimization
problem is solved.
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In this paper, we focus on histogram based methods, whebibket to be tracked
is identified by a histogram of a priori defined features. Orapnent example for a
feature is color resulting in a color histogram used to idgthe object. We present an
extension of histogram based tracking where instead ofgeshristogram a weighted
combination of several different histograms can be usedréfér to this tracker in
the following ascombined histogram tracker (CHT). For tracking, we formulate the
optimization problem in a general way, such that the Meaifi-$81] as well as the
Trust-Region [7] optimization can be applied. This allowsd maximum of flexibility
for the parameters that are estimated during tracking ¥amgle, translation, rotation,
and scaling. We compare the CHT with already presenteddratotrackers using only
one specific histogram. The results show a significanthebgtrformance of the CHT
with respect to accuracy during tracking, and at the same without loosing its real-
time capability.

The paper is structured as follows. In section 2 we introdustdgram based track-
ing methods together with two already presented local apéition methods, the Mean-
Shift and the Trust-Region algorithm. In section 3 we préseatigorous mathematical
description for the CHT. We show how the optimization problean be solved again
using the Mean-Shift and the Trust-Region algorithm. $&cti deals with the exper-
iments. We show results on a large set of labeled image segsavailable to the
public, which allows quantitative evaluation and compamisThe paper concludes with
a discussion and an outlook to future work.

2 Region Based Object Tracking Using Histograms

2.1 Representation and Tracking

In general, the target is identified by an image regitin:(¢)), wherez(t) contains the
time variant parameters of the region, also referred to asthte of the region. One
simple example for a regioR(x(t)) is a rectangle of fixed dimensions. The state of
the regionz(t) = (m.(t), m,(t))Tis the center of gravity of that rectangle in pixel
coordinatesn, (t) andm,(t) for each time step. With this simple model translation
of atarget region can be easily described by estimatifig i.e. center of gravity of the
rectangle, over time. If the size of the region is also inellith the state, estimation of
scale is possible.

The information contained within the region is used to mdtlel moving object.
The information may consists of the color, the gray valuecentain other features,
like the gradient. At each time stepand for each state(t) the representation of
the moving object consists of a probability density funetigx(t)) of the chosen
features within the regio®(x(¢)). In practice, this density function has to be esti-
mated from image data. For performance reasons, a weigtemjfamq(x(t)) =
(q1(z(t), q2(x(t)),...,qn(z(t)))T of N binsg;(x(t)) is used as a non-parametric
estimation of the true density, although it is well knowntttias is not the best choice
from a theoretical point of view [8]. Each individual bin(x(¢)) is computed by

G(@(t) =Cary >, La@)d(bi(u) —i),i=1,....N (1)

ueR(x(t))
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with L, (u) being a suited weighting function introduced beldw,u) the func-
tion that maps the pixel to the number; of the bin which the feature at position
u fallsinto (j € {1,...,N}), and$ being the Kronecker-Delta function. The value
Coy =1/ ZHGR(E@) Ly +)(u) is a normalizing constant. In other words, (1) counts
all occurrences of pixels that fall into binwhere the increment within the sum is given
by the weighting functior. ) ().

Object tracking can now be defined as an optimization prob®tarting with an
initial target region — for example, manually or automalticdefined in the firstimage
att = 0 — an initial histogramy(«(0)) can be computed. Fer> 0 the corresponding
region is defined by

x(t) = argmin D(q(x(0)), q(x)) 2)

x

with D(-, -) being a suited distance function defined on histograms. imvork we use

two local optimization techniques, the Mean-Shift aldarit[4] and the Trust-Region
algorithm [5]. In the context of histogram based trackingpaa global optimization
using a particle filter can be applied [9].

2.2 Kernel and Distance Functions

There are two open aspects left: the choice of the weightingtfonZ,, ;) (v) in equa-
tion (1) and the distance functidn(-, -). The weighting function is typically chosen as
a kernel, whose support is exactly the regi®fx(¢)). Different kernel profiles can be
used, like the Epanechnikov, the biweight, or the trunc&adss profile [10].

For the optimization problem in (2) several distance fumtdion histograms have
been proposed, like the Bhattacharya distance, the Kulbaitker distance, the Eu-
clidean distance or the scalar product distance. It is wooting that for the following
optimization no metric is necessary. The main restrictioth@ given distance functions
in our work is the following special form

N
D(q(2(0)),q(z(1))) = D <Z d(qn(2(0)), qn(w(t)))> (3)
n=0

with a monotone, bijective functioP, and a functioni(a, b), which is twice differen-
tiable forb. Now, substituting (3) into (2) we get

N
z(t) = argmax <—ssm(f7) > d(q((0)), Q(fv))> 4)
T n=0

wheresgn(D) = 1 or sgn(D) = —1 if D is monotonly increasing or decreasing,
respectively. More details can be found in [10].
2.3 Optimization

This section deals with the optimization of (4) using the M&hift algorithm. Hints
are given in the end how the optimization can be solved bytRagion optimization.
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The main idea is to do a Taylor series expansion of the rightils&dde of (4). After
a couple of computations and simplifications (for detag® [ 0]) we get

N

x(t) ~ argmax Co Z La(u) Z 5(be(u) — n)we(n) (5)

ueR(x) n=1

We (be(u))
with the weights

dd(a,b)
b

@y (be(w)) = —sgn(D) 6)

(a,0)=(qv, (w) (£(0)), @y, () (2))

This special reformulation allows us to interpret the wésgh, (b, (u)) as weights on
the pixel coordinates. For a certain distance functidn(-, -) we need to calculate the
corresponding pixel weights. Finally, we can apply the M&ift algorithm for the
optimization of (5), since (5) is a weighted kernel densiyiraation. Due to lack of
space, for details, on how the Mean-Shift algorithm is agahlithe reader is referred
to [11,10]. Alternatively, the Trust-Region optimizatiatgorithm can be applied. In
this case, we need the gradient and Hessian matrix of thehagid side of (4). Both
guantities can be derived in closed form [10]. The advantégee Trust Region method
is, that — besides estimation of translation of the targgibie— also rotation and scale
can be integrated in the optimization problem [10].

2.4 Example

Now we give an example for the equations and quantities ptedeabove. Using the
Bhattacharyya distance between histograms (as in [4]nelefs

D(q(=(0)), q(2(t))) = /1 - B(g(x(0)), q(x(t))) (7
with N
B(q(z(0)),q(x(1) = > _ V¢u(2(0)) - gn(x(t)) (8)
we haveD(a) = /1 — a, d(a,b) = v/a - band
~ o1 g (x(0))
) = 2\ g alt) ©

3 Combination of Histograms

Up to now, the formulation of histogram based tracking setia a certain histogram of
n-dimensional features, defined a priori for the trackind @ishand. Some examples
are gray value histograma = 1), edge histogramsy(= 1) or RGB color histograms

W. Kropatsch et al. (Eds.): DAGM 2005, LNCS 3663, pp. 254-Z8105.
©Springer-Verlag Berlin Heidelberg 2005



(n = 3). Certainly, using several different features for repntisg the object to be
tracked will result in better tracking performance, esplyiif the different features
are weighted dynamically according to the situation in tbeng. For example, color
might be a problem, if illumination changes. In this caséoimation on the edges
might be more useful. On the other side, a unique color of tbeimg object in a highly

textured environment will favour for color and against eslg@ne idea would now
be, to combine several features into one histogram of ladgeension. The problem
with that idea is the curse of dimensionality: higher dimenal features result in very
sparse histograms so that the estimation of the true, ynderiensity becomes very
inaccurate. This problem prevents us from just combinifffgidint features to a bigger
feature vector with larger dimension.

We propose now a different solution for combining histogsashdifferent feature
for object tracking. The key idea is to use a weighted contlinaf several histograms
with low dimensions instead of one weighted histogram wightdimension. Le#{ =
{1,..., H} be the set of features used for representing the object. &ar feature
h € H we define a separate functibﬁ) (u). The number of bins in histogramis Ny,
and might differ between the histograms. Also, for eaclolgistm a different weighting

functionL(mh(i)(u) can be applied, i.e. different kernels for each individustidgram are
possible if necessary. This resultshhdifferent weighted histogramg”) ((t)) with

the bins

a" (@(t) = C)

W > LU (i (w) —i),h e H,i=1,..., Ny (10)

x(t)
u€R(x(t))

We now define a combined representation of the objegt(hyt)) = (q(h)(‘”(t)))hen
and a new distance function (compare (2)), based on the vegiglum of the distances
for the individual histograms

D* =" BuDu(a™(x(0)),q"™ (2(1))) (11)

heH

whereg;, > 0 being the contribution of the individual histogrdirto the object resp-
resentation. The quantitigs, can be adjusted to best model the object in the current
context of tracking. Currently, we set these parametersraalby. In future work we
plan to find the optimal values automatically and to dynathicadjust them during
tracking.

As before, for the Mean-Shift as well as for the Trust-Regimethod we can for-
mulate a corresponding optimization problem. If we use tmaesweighting function
L 1) (u) for all histograms and as state = (m,,m,)” the position of the moving
object in the image plane, we get

z(t) ~argmaxCoy > Lo(u) Y @ (b (u) (12)
z uER(x) heH

Wh,t (u)
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which is again a weighted kernel density estimation. ThestamtC, can be shown to
be independent af. The corresponding pixel weights are

whe(w) = > @ (b (w) (13)
heH
adp(a,b
= Z —ﬁhsgn(Dh)% (14)
heH (a,b)=(qgM ((0)),q™ (x))

whered), (a, b) is defined as in (3) for each individual featureFor the Trust-Region
optimization again gradient and Hessian matrix have to bigetk Details can be found
in [10].

4 Experiments

We will now show that a weighted combination of differenttbgrams is suited to im-
prove tracking performance. In the experiments we use gtevideos of the CAVIAR
project [12], originally recorded for action and behaviogcognition experiments. Al-
though, we do not have this kind of application in mind, theeds are prefectly suited,
since they are recorded in natural environment, with chamigj@mination and scale of
the moving persons as well as partial occlusions. Most itambrthe moving persons
are hand-labelled, i.e. for each frame a reference rectasgtored.

To evaluate the results of the original Mean-Shift and FRe&gion tracker as well
as our proposed CHT we used an area based criterion. We reghsuttifference of
the returned region A and the ground-truth region B by

|AN B

e(A =1 - —
B =1 T+ 1m0

(15)
This error metric is zero, if the two regions are identicald @ne if they do not over-
lap. If the two regions have the same size, the error inceaaith increasing distance
between the center of both regions. Also, equal center ffeteit size if taken care of.
In the experiments we combined three different histogrdre.first is the standard
color histogram consisting of the RGB channels, abbredisgt¢he figures asgb. The
second histogram is computed from a sobel edge strengtteifgeagn), with the edge
strength normalized to fit the gray value range from 0 to 25% third histogram is
computed from a corner interest mamqijev). This interest map is based on the interest
operator returning the smallest eigenvalue of the streanatrix from a x 5 window
around the respective pixel [13]. Thus, high values in thergst map correspond to
corners in the image. For simplicity reasons, we call thisdgjram a corner histogram.
In Figure 1 for the Mean-Shift the accuracy of tracking isuilmented using the er-
ror percentile. For a certain percentile (x—axis) we measure the largest er¢0A, B)
(y—axis, compare (15) taking into account &% best images only. In the left figure,
we only evaluated images until object lost, in the right fegatl images are consid-
ered. The reader can verify, that a combination of RGB withaaignt histogram leads
to a significant improvement of tracking stability compatedh pure RGB histogram
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evaluation until object lost only evaluation using all images

10 '—— ‘ms-rgb-gradn-s 4 | 10 '—— 'ms-rgb-gradn-s
""" % ms-rgb-minev-s —— ms-rgh-minev-s -
08t ¥ ms-rgb-s ¥/ 08t ¥ ms-rgb-s X
5 06 S 067
@ @
0.4 0.4
0.2 0.2
L L L L L L L L L L 0 L L L L L L L L L L
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
percentile in percent percentile in percent

Figure 1. Error percentile using CHT of RGB and gradient (rgb-gradmjl GB and corner
histogram (rgb-minev) as well as pure RGB histogram tra¢kgiv). Results are give for the
Mean-Shift-Tracker with scale estimation, Biweight-KeknKullback-Leibler distance for all
individual histograms

tracker as well as a tracker with a combination of RGB and eohistogram. We got
similar results for the corresponding Trust-Region tracked our extension to com-
bined histograms. The weightly for combining RGB with corner and edge histogram
(compare (11)) has been empirically setit® and0.2, respectively. To automatically
find these weights for a certain object and to adjust them mhyecedly during tracking
is one of the focus of our future work.

The computation time for one images is on average less thase2 on a PIV, 3.2
GHz compared to approximately 1 msec for a tracker using éstedram only. One
example of a successful tracking including correct scaleesion is shown in Figure 2.

5 Conclusion

In our paper we have presented a mathematically consisk¢emnson of histogram
based tracking, which we call combined histogram tracke. dduld show that the
corresponding optimization problems can still be solveédgithe Mean-Shift as well
as the Trust-Region algorithm without loosing real-timgataility. The formulation
allows the combination of an arbitrary number of histograwith varying dimensions
as wells as individual distance functions between two gistms. This allows for a
maximum of flexibility in the application of the method. Inetlexperiments we have
shown for three different feature histograms that a contlmnaof two of them can
improve tracking accuracy and stability. The improvemedntaurse depends on the
chosen histogram and on the object to be tracked itself. Gwpertant result is, that
tracking can still be performed in real-time on standard R@ware. In the end we
like to stress again, that similar results are achievedgusia Trust-Region algorithm,
although the presentation in this paper was focused on thenMhift algorithm. For
more details, the reader is referred to [10].

In our future work we will investigate the adaptive combioatof histograms dur-
ing tracking such that the weights of the histograms are ahycaly adjusted depending
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on the context of tracking, the objects, and background Al& are going to compare

sy

stematically the CHT with state of the art 2-d trackeg like tracker of Perez [9].

Figure 2. Tracking result for one of the images sequences from the BRviest bed (first and
last image of the sucessfully tracked person). Ground tathcomputed region of the moving

pe

rson (ellipses) are almost the same, even in the casemjelascale.
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