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Abstract 41 

The demand for large-scale and long-term information on tree growth is increasing rapidly as 42 

environmental change research strives to quantify and forecast the impacts of continued 43 

warming on forest ecosystems. This demand, combined with the now quasi-global 44 

availability of tree-ring observations, has inspired researchers to compile large tree-ring 45 

networks to address continental or even global-scale research questions. However, these 46 

emergent spatial objectives contrast with paleo-oriented research ideas that have guided the 47 

development of many existing records. A series of challenges related to how, where, and 48 

when samples have been collected is complicating the transition of tree rings from a local to a 49 

global resource on the question of tree growth. Herein, we review possibilities to scale tree-50 

ring data (A) from the sample to the whole tree, (B) from the tree to the site, and (C) from the 51 

site to larger spatial domains. Representative tree-ring sampling supported by creative 52 

statistical approaches is thereby key to robustly capture the heterogeneity of climate-growth 53 

responses across forested landscapes. We highlight the benefits of combining the temporal 54 

information embedded in tree rings with the spatial information offered by forest inventories 55 

and earth observations to quantify tree growth and its drivers. In addition, we show how the 56 

continued development of mechanistic tree-ring models can help address some of the non-57 

linearities and feedbacks that complicate making inference from tree-ring data. By embracing 58 

scaling issues, the discipline of dendrochronology will greatly increase its contributions to 59 

assessing climate impacts on forests and support the development of adaptation strategies.  60 
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1. Introduction 61 

1.1. An increasing need to scale tree-ring data 62 

Climate change during the Anthropocene is now considered a certainty (Marotzke et al., 63 

2017) and environmental research focuses increasingly on quantifying and forecasting the 64 

impacts of continued warming on ecosystems and natural resources. Forests receive 65 

particular attention because they absorb large amounts of excess atmospheric CO2 generated 66 

by human activities (Le Quéré et al., 2016) and store this carbon in woody biomass for 67 

decades to centuries (Körner, 2017). Importantly, rising temperatures can have either 68 

beneficial or detrimental effects on forests, depending on their present climatic limitations 69 

(Babst et al., 2013; Charney et al., 2016; St George and Ault, 2014). For instance, climate 70 

warming in cold-humid areas can stimulate tree growth through a prolonged growing season 71 

and more rapid cellular development (Cuny et al., 2014; Rossi et al., 2016). In drier regions, a 72 

warming-induced increase in atmospheric water demand triggers physiological responses in 73 

trees that lower hydraulic conductivity, reduce the production and allocation of carbohydrates 74 

to structural growth, and ultimately increase tree mortality (Adams et al., 2017). This 75 

continuum of possible consequences from warming provides an incentive to understand how 76 

changes in the biotic and abiotic environment affect forest ecosystem processes across a 77 

range of spatial and temporal scales. 78 

 79 

Measurements of secondary growth patterns in trees, shrubs, and perennial herbs 80 

(subsequently called “tree rings”) are the primary resource to retrospectively provide tree 81 

growth information across large environmental gradients and at sub-annual to multi-82 

centennial time scales. Such data are increasingly used to study the impacts of global change 83 

on forest ecosystems. A number of recent studies have compiled large tree-ring networks to 84 

hind- and forecast forest growth variability in response to climate (Babst et al., 2013; 85 
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Charney et al., 2016; Martin‐Benito and Pederson, 2015; Restaino et al., 2016; St George 86 

and Ault, 2014; Tei et al., 2017), track the recovery of growth after extreme events 87 

(Anderegg et al., 2015; Wu et al., 2017), relate growth variability to canopy dynamics 88 

(Vicente-Serrano et al., 2016, Seftigen et al., in press), or search for signals of CO2 89 

fertilization (Frank et al., 2015; Gedalof and Berg, 2010; Girardin et al., 2016; Peñuelas et al., 90 

2011). In addition, tree-ring data are increasingly used to quantify aboveground biomass 91 

increment (Babst et al., 2014b), improve our physiological understanding of wood formation 92 

(Rathgeber et al., 2016), and calibrate mechanistic models for climate reconstruction (Guiot 93 

et al., 2014). 94 

 95 

Table 1: Definitions of important terms used in this review (partly inspired by Scholes, 2017) 96 

Term Definition 

Scale (noun) Spatial extent and/or temporal duration. 

Scale (verb) Extrapolation or projection of a result from one scale to another. Herein, we 

focus primarily on the scaling of forest growth and biomass increment (as 

opposed to, e.g., scaling from local to global temperature variations; Neukom 

et al., 2014). Linear scaling (i.e., proportional or additive scaling) assumes 

that the driving processes are homogeneous over the scale range and that no 

interactions in space or time impose non-linearities. An example is the 

scaling of forest biomass increment from a sample of 0.1-hectare forest plots 

to a 10,000-hectare landscape. If heterogeneities (e.g., in forest type or time-

since-disturbance) make simple linear scaling inaccurate, power-law scaling 

can capture nonlinearities across scales. For example, the scaling of bole 

diameter to whole-tree biomass involves allometric (power-law) equations, 

that are usually empirically derived, but may be (quasi-)mechanistic. 

Downscaling The process of disaggregation of a result to a smaller scale; i.e., a few-to-

many problem. Climate system downscaling is a well-known example. The 

aggregated result is known; the challenge is to assign values (along with 

uncertainty) to the underlying subunits, according to some information about 

their heterogeneity. 

Upscaling The process of aggregation to a larger scale; i.e., a many-to-few problem. An 

example is the upscaling of information from many trees within a site to a 

single site-level estimate (e.g. a mean site chronology). Another example is 

the summing of biomass increment estimates from all trees in a forest plot to 

reach a stand-level estimate of biomass increment. 
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Resolution Also known as “grain”, the smallest measurement unit in either space or time. 

 97 

Tree-ring records are available on all forested continents (Babst et al., 2017; Brienen et al., 98 

2016), inviting the use of existing and the development of new tree-ring archives for a variety 99 

of research contexts. However, tree rings remain a very local and variable product of tree-100 

internal processes that are modulated by a tree’s immediate biotic and abiotic environment 101 

(Rathgeber et al., 2016). Inference and prediction at large spatial scales based on such local 102 

data (involving scaling, interpolation, and projection; Table 1) is challenging and introduces 103 

uncertainty that researchers need to be aware of and – to the extent possible – quantify 104 

(Figure 1). Scaling is complicated by heterogeneity (Scholes, 2017), for example when a tree-105 

ring collection insufficiently represents forest structure, composition, and disturbance 106 

regimes across a landscape. Dendrochronologists often counteract heterogeneity by 107 

increasing the number of collected samples per tree, site, or region. This approach can indeed 108 

reduce uncertainties around the mean record for the desired scale (e.g. a site or regional 109 

chronology), but its success for improving spatial representation of tree growth critically 110 

depends on the underlying sampling strategy (see below). Another challenge for scaling is 111 

that fixed statistical relationships derived from a given dataset may not capture the high 112 

dimensionality in driver and response variables, their couplings, non-linear processes and 113 

feedbacks. This calls for a better understanding of the true variability in the system and 114 

ideally for mechanistic process representation to model tree growth (see Section 4). Given the 115 

above context, we find it prudent to briefly pause and examine the potential and challenges 116 

associated with scaling tree-ring information before making large-scale inference. Herein, we 117 

address the following three upscaling steps: 118 

 119 

(A) From the sample to the whole tree: Tree-ring samples are collected as cross-sections, 120 

increment cores, or micro-cores. Regardless of the shape or size of samples, individual 121 
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measurements capture growth only at one position along/around the stem, branch, or 122 

root. Multiple samples are thus often collected from the same individual to better capture 123 

its growth variability. After visually and statistically ensuring correct dating of each 124 

annual growth ring (i.e. “crossdating”; Black et al., 2016; Stokes and Smiley, 1968), the 125 

measurements of all samples are generally combined to represent the radial growth of 126 

the individual. This first step of upscaling (Table 1) usually involves averaging or 127 

pooling, but the representation of tree-level change may be with raw measurements, 128 

detrended and/or standardized tree-ring indices, conversion to basal area increment, or 129 

other forms of allometric scaling or structural modeling. 130 

(B) From the tree to the site: A “site” is the area that encompasses the sampled individuals. 131 

Upscaling to the site level means combining the measurements from all individuals into 132 

one or multiple time series that are usually referred to as “chronologies”. An underlying 133 

assumption is thereby that the site is a subsample of a population of trees and the derived 134 

chronology is typically regarded as the best estimate of this population’s growth 135 

variability (Wigley et al., 1984). The criteria for sampling trees within a site vary 136 

according to the aims of a given study. For example, old and dominant individuals are 137 

selectively sampled for dendroclimatic reconstructions; plot designs, stratified or random 138 

samplings are often preferred for dendroecological studies; and trees with specific 139 

characteristics (e.g. scars) are targeted to assess the natural disturbance history of a site. 140 

Researchers are also interested in within-site variability that is driven by micro-site 141 

conditions (e.g. topography Salzer et al., 2014) and may contain relevant ecological 142 

information that is otherwise averaged out when only a mean site chronology is 143 

calculated (Buras et al., 2016; Peters et al., 1981). 144 

(C) From the site to larger spatial scales: Site records are compiled into tree-ring networks 145 

to cover regions or continents. Depending on the research question, these networks are 146 
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either assessed in their entirety, or sites may be grouped and analyzed by species (Zhang 147 

et al., 2018), growth variability (Seim et al., 2015), growth trends (Hellmann et al., 148 

2016), climate response (Babst et al., 2013; Björklund et al., 2017; Charney et al., 2016; 149 

Martin‐Benito and Pederson, 2015), or biogeography (Girardin et al., 2016). Moreover, 150 

spatial assessments often include analyses of climate-growth relationships – sometimes 151 

combined with clustering techniques, dimension reduction, or embedded in a machine 152 

learning framework (see Section 2.2.1). The resulting regional records are assumed to 153 

represent the geographic space covered by the underlying tree-ring network, an 154 

assumption that will need thorough testing in the future (see Sections 2 and 5). 155 

 156 

 157 

Figure 1: Overview of the different spatial scales and propagating uncertainty associated 158 

with the scaling of tree-ring data. Sources of uncertainty are listed for each scaling step 159 

(A-C) using Norway spruce (Picea abies) as an example. The sample images are adapted 160 

from (Babst et al., 2014a) and the species distribution map is from 161 

lutherie.net/eurospruce. If scaling steps A-C are carefully followed and uncertainties are 162 

adequately considered, tree-ring data can theoretically meet the demand for global 163 

information on long-term forest growth. In practice, however, a series of challenges 164 

related to how, where, and when samples have been collected accompanies the transition 165 

of tree rings from a local to a global data resource (see Section 1.2). 166 
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1.2. Challenges associated with scaling tree-ring data 167 

Environmental systems are best represented if the collected data are extensive and distributed 168 

systematically or randomly across the target space (e.g. geographic or bioclimatic space). 169 

This is not the case for the vast majority of existing tree-ring records, in part because scaling 170 

was historically not the goal of dendrochronological sampling. Instead, data collection 171 

strategies and methods have been driven by study-specific goals, for example to date 172 

archaeological material, detect disturbance events, reconstruct climate, or assess the co-173 

variation of tree growth with an environmental variable. Moreover, the scope of tree-ring 174 

research has continuously been expanded to include ecophysiology (Levesque et al., 2017), 175 

wood anatomy (von Arx et al., 2016), and growth phenology (Cuny et al., 2015; Trouet et al., 176 

2012). This is fortunate because these emerging fields are considerably advancing our 177 

understanding of tree functioning, which will allow non-linearities and feedbacks to be 178 

mechanistically modeled and reconstructed (see Section 4). Yet, their sampling strategies are 179 

also not necessarily geared towards representing larger spatial scales with tree-ring 180 

observations. This diverse sampling background complicates upscaling of tree-ring 181 

information across all three steps: 182 

 183 

(A) Representing the whole tree: Mature trees are usually sampled along the lower part of 184 

the stem, which is oldest and most accessible. How representative stem growth at this 185 

location is for the entire tree body depends on the dynamics of resource allocation and 186 

biomass formation. Assessing this variability would at a minimum require sampling 187 

individual trees at multiple heights, a laborious technique that is more readily applied to 188 

shrubs (Buchwal et al., 2013) but rarely performed on tall trees (but see e.g. Chhin et al., 189 

2010; Monserud and Marshall, 2001; van der Maaten-Theunissen and Bouriaud, 2012). 190 

In addition, tree boles are never perfect cones and uncertainty due to collecting only few 191 
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samples around the stem needs to be reduced (Bakker, 2005). Another limitation of most 192 

existing tree-ring records is that tree dimensions (e.g. diameter and height) at the time of 193 

sampling have not been recorded. This hampers the estimation and reconstruction of 194 

whole-tree volume or biomass – and thus the representation of absolute growth (Babst et 195 

al., 2014b). Aside from physical sampling, our limited understanding of tree-internal 196 

processes can bias ecophysiological conclusions drawn from tree-ring data. For instance, 197 

tree-ring stable isotope ratios differ from those of freshly produced carbohydrates in 198 

leaves because additional isotopic fractionation and mixing occur during transport and 199 

transitory storage (Gessler et al., 2014). These effects are not well understood. 200 

(B) Representing the site: A traditional focus of tree-ring sampling has been on old and 201 

dominant individuals of a single species (Cook et al., 1995) that respond to a strong 202 

common environmental driver. This approach has served to maximize the common 203 

growth variability among trees, which could then be used, e.g. as a proxy for 204 

instrumentally measured climate variables or to reconstruct disturbance events. Such 205 

selective sampling clearly hampers the objective of quantifying forest growth, because 206 

failure to represent the full tree population at a site and over time can severely bias tree-207 

ring estimates of biomass accumulation (Brienen et al., 2017; Nehrbass‐Ahles et al., 208 

2014; Peters et al., 2015). In addition, the documentation of most tree-ring records in 209 

public archives (e.g. the International Tree Ring Data Bank; ITRDB) is insufficient in 210 

terms of site extent, species composition, and forest age or size structure.  211 

(C) Representing larger spatial scales: To represent tree growth across regions or even 212 

continents, ideal networks of tree-ring sites densely cover the geographic extent of the 213 

study area and reflect, in proportion to the area they occupy, the range of bioclimatic and 214 

ecological conditions experienced by species within this area. This ideal has probably 215 

rarely been achieved. Instead, traditional sampling for dendroclimatological purposes has 216 



 10 

often targeted areas with marginal growth conditions, which only occupy a small fraction 217 

of the landscape. We note, however, the difficulty of evaluating the spatial 218 

representativeness of existing networks because appropriate reference datasets are often 219 

lacking (see Section 2.1). If very large amounts of tree-ring data are compiled in mixed-220 

species networks, their coverage can be more readily assessed. For example, a recent 221 

evaluation of the ITRDB indicated good coverage of climates with a mean annual 222 

temperature below 15 °C, whereas the spatial distribution of sites was strongly biased 223 

towards North America and Europe (Babst et al., 2017). Yet, even across these well-224 

replicated continents, most records are subject to the above-mentioned sampling biases 225 

and the lack of biometric measurements restricts analyses to relative (i.e. detrended) 226 

growth variability and its climate response (Babst et al., 2013; Charney et al., 2016; St 227 

George and Ault, 2014). Going forward, it will be important to develop new tree-ring 228 

networks in more consistent and spatially representative ways (see Sections 2 and 3). 229 

 230 

Uncertainties arising from the above-listed challenges may be more or less relevant in the 231 

context of a given study, but they generally propagate through all spatial scales (Figure 1). 232 

This does not preclude tree rings from being used in global research, but emphasizes the need 233 

to i) understand how data are derived and ii) carefully treat data with explicit characterization 234 

of uncertainties. Hereafter, we review possibilities to facilitate the scaling of existing and 235 

newly collected tree-ring data with emphasis on quantifying tree growth and its drivers across 236 

increasingly large geographic and bioclimatic domains. In Section 2, we discuss statistical 237 

approaches to derive spatial patterns from existing networks, such as the ITRDB. Section 3 238 

highlights possibilities to produce spatially explicit records of forest growth, by integrating 239 

the temporal information from tree rings with the spatial information from forest inventories 240 

and remotely sensed earth observations. Section 4 describes tree-ring and vegetation models 241 
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of increasing complexity and scope that can provide a mechanistic understanding of tree 242 

growth, which is particularly relevant for predictions into future time frames. In addition to 243 

this general review, we provide in each section a practical and illustrative example related to 244 

tree ring-based inference at large scales. We end our article with some perspectives for future 245 

research. 246 

 247 

2. Spatial patterns from detrended tree-ring data 248 

2.1. On the climate sensitivity bias in global archives 249 

Assessing the relationships between tree growth and monthly to seasonal climate has been a 250 

core objective of many tree-ring network analyses. This is because climate is the most 251 

important driver of inter-annual growth variability around the globe (St George and Ault, 252 

2014) and long-term instrumental records of temperature, precipitation, and derivatives 253 

thereof are readily available. The obtained statistical relationships between radial tree growth 254 

and climate variation are strongest in areas where one or few climate parameters are highly 255 

limiting for growth (Fritts, 1976), for example at the cold or dry edge of a species’ 256 

distribution range. These marginal growth environments (where trees often also live long) are 257 

frequently targeted by dendroclimatologists to maximize the co-variation of the tree-ring 258 

proxy with the desired climate parameter for reconstruction (e.g. Wilson et al., 2016). Hence, 259 

it seems likely that – even though palaeoclimatology is only one facet of tree-ring research – 260 

marginal sites are overrepresented in global tree-ring archives. Depending on its severity, this 261 

bias may enhance the derived magnitudes and biogeographic patterns in the climate response 262 

of forests (Babst et al., 2013; Charney et al., 2016; St George and Ault, 2014; Zhang et al., 263 

2018) and the networks cannot be considered to be fully representative of forest growth at 264 

large scales. 265 

 266 
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Quantifying this potential oversensitivity to climate in large tree-ring archives requires the 267 

development of new, representative reference networks (see Section 3.1). Initial research in 268 

this direction suggests considerable geographic variation in the magnitude of the climate 269 

sensitivity bias. For example, Klesse et al (in review a) found that ITRDB tree ring-width 270 

records in the US Southwest were 40 to 60% more sensitive to climate variation than 271 

surrounding samples collected in forest inventory plots. When the two datasets were used to 272 

estimate growth trends in response to projected climate change through 2099 in this region, 273 

the ITRDB trees implied a 41% greater decline in growth compared to the representative 274 

forest inventory sample. By contrast, a Europe-wide comparison of tree-ring data from the 275 

ITRDB against a newly collected network of sample plots showed no significant difference in 276 

climate sensitivity (Klesse et al. in review b). Hence, a general statement on the magnitude of 277 

the climate sensitivity bias in the ITRDB cannot be made at this point. Further evaluation 278 

efforts – including collating existing data not available through public repositories and/or 279 

developing new networks of tree-ring records – will be crucial to quantifying existing biases 280 

and increasing the representativeness of tree-ring archives for global forest growth. Also, 281 

further work on defining and using consistent metrics for sensitivity may be required to 282 

elucidate the magnitude and characteristics of this bias. 283 

 284 

2.2. Statistical projection of relative growth variability 285 

The collection of dense tree-ring networks worldwide and in near real-time is impractical. 286 

Hence, the goal of upscaling from sites to landscapes (scaling step C, Figure 1) has to be 287 

achieved via the statistical projection (or mechanistic modeling, see Section 4) of tree growth 288 

across areas where measurements are missing. This is possible using empirically calibrated 289 

relationships between tree growth and its abiotic drivers. One limitation of this approach, 290 

however, is the small number of available predictor variables that are spatially resolved and 291 
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cover sufficiently long time scales. Indeed, most remotely sensed earth observation records 292 

(e.g. of soil moisture, land cover, or forest disturbance regimes) are still not long enough to 293 

allow for the calibration of robust statistical models that could be used to predict tree growth. 294 

This leaves long-term gridded climate products (e.g. Harris et al., 2014) as the only option, 295 

with associated caveats when used in the context of bioclimatic niches (Ols et al., 2017). 296 

Predicting growth variability from climate alone is clearly a simplification of the highly 297 

complex set of drivers and responses that shape forests. Accordingly, higher-end calibration 298 

statistics for temperature reconstruction have achieved around 50-60% of the variance 299 

explained for the instrumental target (Wilson et al., 2016), whereas seasonal climate-growth 300 

relationships that emerge from large networks are on average much weaker (St George and 301 

Ault, 2014). In addition, the seasonality in climate response changes considerably between 302 

species and across climate space (Babst et al., 2013; Cook et al., 2001; Teets et al., 2018), 303 

making it impossible to globally attribute growth variability to climate during a single season. 304 

For all these reasons, novel and creative statistical approaches are needed to project radial 305 

growth variability at large spatial scales. 306 

 307 

2.2.1 Practical Example 1: Towards gridded tree-ring width anomalies for Europe 308 

Here we present and evaluate a machine learning approach to produce gridded tree-ring 309 

products at continental scales. We thereby pursue a purely statistical approach (as opposed to 310 

mechanistic formulations of biophysical processes; see Section 4) and estimate relative radial 311 

growth variability from a set of climatic predictor variables in a regression model. We used 312 

random decision forests (RDF; Breiman, 2001), a well-established technique that provides a 313 

flexible framework for learning nonparametric and nonlinear relationships when faced with 314 

many and collinear predictors. Our RDF models each contained 100 random decision trees 315 

and the final tree-ring width anomalies were predicted by averaging the outputs of each 316 
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individual decision tree to prevent overfitting. RDF models need to be trained with observed 317 

datasets (Figure 2). For this we used European tree-ring width chronologies from the ITRDB, 318 

detrended with a 30-year cubic smoothing spline, and climate data from the corresponding 319 

CRU TS-3.22 grid cells (Harris et al., 2014). Climate variables included monthly minimum, 320 

mean and maximum temperature, diurnal temperature range, ground frost frequency, 321 

precipitation, wet day frequency, vapor pressure, potential evapotranspiration, and cloud 322 

cover. Climate data from the preceding and current years (24 months in total) were entered in 323 

the model to account for lag effects frequently observed in tree-ring data (Zhang et al., 2018). 324 

The ITRDB contains enough data (~1000 European sites) to train individual RDF models 325 

separately for the most frequent tree genera (Table 2), many of which are primarily 326 

represented by one species. In addition, we trained a model where sites from all genera were 327 

pooled together. To evaluate model performance, we applied a leave-one-site-out cross-328 

validation, under the condition that a specific chronology was only estimated based on other 329 

sites of the same genus that do not fall within the same CRU TS-3.22 grid cell (i.e. to prevent 330 

biases). 331 

 332 

 Monthly predictor variables Seasonal predictor variables 

Genus MEF  RMSE MEF  RMSE 

Abies 0.329 0.146 0.261 0.527 

Fagus 0.313 0.179 0.257 0.512 

Larix 0.158 0.204 0.090 0.302 

Picea 0.310 0.127 0.245 0.515 

Pinus 0.240 0.130 0.173 0.430 

Quercus 0.326 0.136 0.267 0.534 

All sites 0.287 0.145 0.225 0.485 

Table 2: Performance of random forest regression models for predicting the growth 333 

variability of individual tree genera across Europe, assessed with a leave-one-site-out 334 

validation. Seasonal climatic predictors were aggregated for both the previous and current 335 

years (March – May; June – August; September – November) and the winter in between 336 

(December – February). MEF – Nash-Sutcliffe modeling efficiency; RMSE – root mean 337 

square error 338 
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 339 

Across the entire European network, approximately 29% of the variance was explained (i.e. a 340 

Nash-Sutcliffe modeling efficiency (MEF; Nash and Sutcliffe, 1970) of about 0.29; Table 2). 341 

Importantly, RDF models with monthly predictors yielded stronger predictive accuracy 342 

compared to those with seasonally aggregated predictors. This emphasizes the relevance of 343 

changing seasonality in climate response across the represented climatic domains (Babst et al., 344 

2013). The RDF models for individual genera performed similarly to the overall model (31-345 

33% explained variance), except for Larix and Pinus where MEF was lower. For Larix, this 346 

is likely due to well-documented periodic defoliation by the Larch budmoth (Esper et al., 347 

2007), which negatively affects growth and partly decouples it from its climatic drivers. 348 

Excluding known budmoth years is thus a possibility to improve future RDF predictions. For 349 

Pinus, the lower RDF performance could simply be related to the large number of Pinus 350 

species that are represented on the ITRDB, which increases both the distribution range and 351 

the diversity in climate response. 352 

 353 

After the training phase described above, the inferred RDF models were combined with the 354 

gridded data products of the CRU TS-3.22 dataset to project radial growth anomalies across 355 

Europe, yielding annual raster maps of relative growth variability for each tree genus (Figure 356 

S1, Appendix A). Projection excluded those areas falling outside the geographic distribution 357 

of a given genus (referencing the 1 km2 resolution distribution maps in the European Atlas of 358 

Forest Tree Species; de Rigo et al., 2016). Accordingly, a CRU TS-3.22 grid cell (0.5° 359 

resolution) was included, if it covered at least one smaller grid cell from the distribution maps 360 

that reported a presence of the genus at >5%. Encouragingly, our first results show clear 361 

differences in spatial growth variability among genera (Appendix A), even for those that 362 

belong to the same plant functional type. In addition to attributing these patterns to specific 363 

drivers, we are working on improving the RDF performance. This can potentially be achieved 364 
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by including not only the inter-annual climate variability in the models, but also the long-365 

term mean climatic conditions at each site. This way, the contrasting effects of, for instance, a 366 

warm anomaly under cold-humid (expected growth increase) vs. hot-dry (expected growth 367 

decrease) conditions can be better accounted for. Investigations at the species-level, rather 368 

than the genus-level, could also be explored in the future for potential improvements in 369 

modeling skill. In addition, we aim to consider non-climatic drivers in the RDF models as 370 

suitable spatial data become available. 371 
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 372 

Figure 2: Random decision forest approach to produce gridded projections of radial tree 373 

growth variability. This example includes all Fagus sylvatica sites that were available from 374 

the International Tree-Ring Data Bank as of October 2016.  375 
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2.3.  Spatially varying climate responses of radial tree growth 376 

The statistical exercise presented in Section 2.2.1 assumes that the derived climate-growth 377 

relationships apply throughout the study domain, either across all species or in taxonomic 378 

groups (genera) – an assumption that we address in the following. It also showed that 379 

predicting relative growth variability from climate variability alone leaves a considerable 380 

fraction of the variance unexplained. By contrast, changes in the underlying climate-growth 381 

relationships should be more straightforward to predict and project because they follow gross 382 

biogeographic patterns (Babst et al., 2013; Charney et al., 2016). Indeed, a substantial body 383 

of literature has successfully mapped historical climate-growth relationships across space and 384 

time (Martin‐Benito and Pederson, 2015; Restaino et al., 2016; St George and Ault, 2014). 385 

However, if the goal is to interpolate local observations of climate response across the 386 

intervening geographic space between unevenly distributed sites, a series of spatial 387 

challenges emerges. A first challenge relates to differences in the climate response among 388 

species at a given location (Teets et al., 2018). Accounting for such differences requires high-389 

resolution maps of species composition for the entire target region, which may not exist 390 

everywhere and/or lack in-situ quality assessment (Serra-Diaz et al., 2017). Hence, the 391 

influence of species composition on the climate response of forests remains difficult to assess 392 

at large scales (Grossiord et al., 2014). A second challenge stems from limited information on 393 

micro-climate, nutrient availability, hydrology and topography. Such abiotic micro-site 394 

conditions can alter the climate response of trees (Nicklen et al., 2016; Salzer et al., 2009), 395 

but high-resolution data across the scaling area are rarely available. These two challenges are 396 

compounded by a third challenge: a shortage of tree-ring data for many species and certain 397 

ecoregions, especially in the tropics, that are severely under-represented in public archives 398 

(Babst et al., 2017). 399 

 400 
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These spatial challenges require finding a balance between the level of detail that is 401 

considered in an analysis, and the spatial scale that can be reached with the available data. 402 

One relatively simple option is to construct a single statistical model that describes growth as 403 

a function of the climatic niche that encompasses all trees within the scaling region, 404 

regardless of species (e.g. the “all sites” RDF model in Section 2.2.1). If we looked at a slice 405 

of this growth-climate function along one climate axis of the niche, we would expect it to 406 

look unimodal (Figure 3a). However, the underlying function is multivariate, nonlinear, and 407 

relatively data-intensive to parameterize. In addition, this approach ignores species-specific 408 

drivers of tree growth (including pests and pathogens, Esper et al., 2007) and assumes that 409 

spatial differences in climate response can be solely attributed to gradients in the baseline 410 

climate, rather than to differences in species composition, competition, or other co-variates. 411 

In other words, site- and species-specific characteristics are averaged out for the sake of 412 

generalization, which may be necessary to reach very large spatial domains. In a global 413 

context, it may be plausible to subject all species to the same treatment because 414 

biogeographic patterns in climate response are generally more pronounced than differences 415 

between species (Fritts 1976). 416 

 417 
Figure 3: Idealized growth rate as a function of a single climate variable across the target 418 

niche (a). This function can be approximated by a series of linear segments obtained from 419 
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local climate response zones (b).  420 

 421 

A refined version of this approach, while still pooling all species, is to construct separate 422 

growth-climate functions for geographic sub-areas (“response zones”) of the target domain 423 

(Charney et al., 2016). This allows approximating the global response curve with a series of 424 

local linear models specific to these response zones (Figure 3b). The zones themselves could 425 

be based on existing ecoregions (Omernik and Griffith, 2014) or other (e.g. geological) 426 

criteria to account for some of the missing non-climatic co-variates. Alternatively, they can 427 

be inferred from the climate responses contained in the tree-ring time series themselves. For 428 

instance, Charney et al. (2016) defined response zones by first clustering tree-ring sites across 429 

North America based on their climate correlation functions and then used an RDF analysis to 430 

assign all grid cells on the landscape to one of the clusters according to their baseline 431 

climates. This has the significant advantage that, as baseline climates shift in the future, both 432 

geographic (i.e. poleward) shifts in the response zones and changes in the climate sensitivity 433 

itself can be accounted for. Moving forward, a further refinement could be to capture 434 

variation in the local slopes of climate-growth relationships using models that include both 435 

long-term baseline climates and short-term climate anomalies (and interactions between 436 

them) as predictors of growth. In particular, this would capture continuous variation in 437 

climate-growth responses across climatic gradients. 438 

 439 

Clearly the most precise approach would be to construct the growth-climate function 440 

including the effects of individual species. Besides considering species-specific 441 

characteristics, this would also account for the fact that populations near the distribution limit 442 

are genetically adapted to respond less strongly to variability in limiting climatic drivers 443 

(Housset et al., 2018). However, detailed maps of species locations and composition would 444 

still be required to represent the actual climate response at a given location (de Rigo et al., 445 
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2016; Serra-Diaz et al., 2017) and weight the species-specific responses in a mixed species 446 

system. In addition, representative tree-ring data from across the entire target space are 447 

needed, which are currently not available for most species. Establishing this observational 448 

basis through data mining initiatives and especially the development of new and spatially 449 

representative tree-ring networks will be key to enabling the projection of species-specific 450 

climate responses with precision.  451 

 452 

In contrast to the spatial challenges described above, temporal limitations to empirically 453 

forecasting the climate response will not be resolved by extensive and representative 454 

sampling. One reason for this is that the overlap between tree-ring and instrumental data is 455 

often limited to a few decades and extrapolation to future time frames is thus based on 456 

relatively short-term observations. This is problematic because the climate response is not 457 

only determined by how tree growth responds to climate on an inter-annual basis, but can be 458 

modified by longer-term climate patterns (Madrigal-González et al., 2017; Mendivelso et al., 459 

2014) that are not captured in short time series. In addition, there may be a compounding 460 

effect when “ecological memory” leads to lagged responses after disturbances or climate 461 

anomalies (Ogle et al., 2015), or when a recurring climate anomaly alters the growth response 462 

itself (Brzostek et al., 2014; Galiano et al., 2012). For example, one hot summer may lead to 463 

only a minor decrease in growth rate in a drought-prone region, whereas a sequence of hot 464 

summers can cause increasingly dramatic growth declines. By contrast, there can be 465 

acclimation, wherein the recurrence of a climate anomaly (e.g. drought) lessens the strength 466 

of the growth response (Ainsworth and Long, 2005; Farrior et al., 2015).  This is possible 467 

because trees are plastic organisms that can shift their resources over time, e.g. by growing 468 

more roots, restructuring branches, thickening the bark, or decreasing leaf size. Such 469 

physiological changes allow trees to better conserve water and return to normal growth more 470 
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rapidly after a drought episode. Moreover, ecosystem-level responses to climate change will 471 

also influence the growth of trees. For example, drought induced mortality (Adams et al., 472 

2017) often results in a reduction in stand density and living biomass. This process is similar 473 

to selective thinning that enhances growth and survival by sharing of available resources 474 

amongst fewer individuals (Clark et al., 2016). In addition, when we aim to forecast over 475 

time periods of generations, we have to consider the possibility of genetic adaptation and 476 

species migration (Aitken et al., 2008; Housset et al., 2018). Both of these processes tend to 477 

make future generations of trees growing at a location better suited to the new climate than 478 

the preceding generations. Finally, the trees of the future are likely to experience different 479 

combinations of temperature, precipitation, and atmospheric CO2 concentrations than those in 480 

the past (Ainsworth and Long, 2005; Frank et al., 2015). Hence, any attempt to statistically 481 

forecast based on stationary observations from the past is always associated with increased 482 

uncertainty (Gustafson, 2013). For all of these reasons, an advanced mechanistic 483 

understanding of tree growth and climate response is needed (see Section 4). 484 

 485 

3. Integration of tree rings with other ecological or Earth observations 486 

Tree-ring data offer decadal- to multi-centennial-length records of radial tree growth at 487 

annual to sub-annual resolution, allowing growth variability and its drivers to be investigated 488 

through time. However, quantifying absolute tree- and site-level growth (scaling steps A and 489 

B, Figure 1) from tree rings requires additional information about tree architecture (i.e. 490 

allometries) and forest stand characteristics. This information is increasingly available from 491 

forest inventories and remotely sensed earth observations. In turn, tree-ring data can help 492 

compensate for the coarse temporal resolution of forest inventories (plots are typically 493 

revisited once every 3-10 years) and the generally short time-series of both data streams. 494 

Bringing together the temporal and spatial strengths of these three types of observations 495 
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provides new opportunities to quantify tree growth across a range of scales (Zuidema and 496 

Frank, 2015). 497 

 498 

3.1. Forest inventories 499 

Tree rings have been used to assess tree growth in a forestry context since the mid-19th 500 

century, but it is only recently that collections made by forest inventory programs or in other 501 

permanent sample plots are being developed into data networks. Examples of these initiatives 502 

include Canada (Duchesne et al., 2017), the western United States (DeRose et al., 2017), 503 

Romania (Bouriaud et al., 2016), Mexico (G. Gutierez-Garcia, pers. comm.), and parts of the 504 

tropics (Brienen et al., 2016). These data have been used, for instance, to detect signals of 505 

CO2 fertilization (Girardin et al., 2016) or to assess shifts in growth response to climate 506 

(Charru et al., 2017; D’Orangeville et al., 2016). Here we describe opportunities to quantify 507 

trends and temporal variability of tree growth that emerge from this type of tree-ring network. 508 

We also discuss statistical tools for integrating tree-ring with forest inventory data and 509 

thereby move beyond the traditional statistical modeling based solely on the principle 510 

limiting factors (Fritts, 1976). Finally, we identify some of the challenges that remain for 511 

combining tree-ring and forest inventory data into long-term records.  512 

 513 

Collecting tree-ring data in a forest plot context can have three major advantages with respect 514 

to the scaling and projection of growth or aboveground biomass increment (ABI): 1) 515 

sampling can be performed in a comparatively representative or unbiased manner, 2) absolute 516 

rather than relative tree growth can be quantified, and 3) the inventory offers complementary 517 

information on the characteristics of the forest stand in which a tree is growing. Together, 518 

these advantages help overcome some of the limitations for estimating biomass growth 519 

associated with traditional tree-ring sampling (see Section 1.2). National forest inventory 520 
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(NFI) programs are specifically designed to make estimates of forest characteristics (area or 521 

volume of forest; number and dimensions of trees) at large spatial scales from carefully 522 

designed networks of sampling plots (Bechtold and Patterson, 2005). The design may vary 523 

from one political entity to another (McRoberts et al., 2009), but their spatial representation 524 

of forested areas is essentially unparalleled. Within plots, the collection of increment cores in 525 

an objective manner with respect to tree species and size or age classes attempts to make 526 

sampling more representative of a forest (and overall forest growth) compared to that 527 

designed for dendroclimatological purposes (Nehrbass‐Ahles et al., 2014). Tree-ring data 528 

collected in forest plots that are not part of an NFI (e.g. (Davis et al., 2009; Klesse et al., 529 

2016) also make useful contributions to the overarching goal of building representative 530 

networks, particularly when the plots are arranged along environmental gradients (e.g., 531 

Buechling et al., 2017; Foster et al., 2016; Rollinson et al., 2016; Sánchez-Salguero et al., 532 

2015). Ensuring “representativeness” within forest stands and across landscapes is key to 533 

addressing the heterogeneities, nonlinearities, and feedbacks that make scaling a challenge 534 

(Scholes, 2017).  535 

 536 

Increment cores collected in forest plots are usually associated with measurements of tree 537 

dimensions and stand conditions. A measurement of diameter at breast height (DBH) at the 538 

time of sampling makes it possible to reconstruct annual tree diameter (Bakker, 2005), which 539 

can then be transformed into absolute estimates of tree growth (Alexander et al., 2017; Babst 540 

et al., 2014b). Analyzing absolute growth is key to addressing questions about the role of 541 

forests in the terrestrial carbon cycle and integrating tree-ring data with observed or simulated 542 

forest productivity (Babst et al., 2014a, Klesse et al. in review b). In this context, metrics like 543 

basal area increment (BAI) and ABI are more useful and interpretable than relative growth 544 

variability generated by detrending raw tree-level measurements (Cook et al., 1995) to 545 
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construct a site-level chronology. Besides the associated loss of inter-tree variability in 546 

absolute growth rates, detrending is one of the most subjective and debated aspects of tree-547 

ring research because the choice of method critically affects the environmental information 548 

that is preserved in ring-width time-series (Cook, 1987; Melvin and Briffa, 2008; Sullivan 549 

and Csank, 2016).   550 

 551 

Individual tree growth is also influenced by competition from neighboring trees, and in a 552 

carbon accounting context it becomes critical to quantify, understand, and project such 553 

demography-driven changes in forest growth (Chen et al., 2016; Trotsiuk et al., 2016). 554 

Capturing the influence of competition on individual tree growth is also key to scaling step B 555 

(Figure 4) because individual tree growth both influences and is influenced by forest stand 556 

basal area, forming a self-regulating (density-dependent) feedback. Tree-ring data collected 557 

in a forest plot context allow for modeling the influence of forest stand conditions explicitly, 558 

as exemplified in several recent studies (Buechling et al., 2017; Foster et al., 2016; Rollinson 559 

et al., 2016; Sánchez-Salguero et al., 2015). Accounting for such in-situ information in 560 

statistical models is expected to produce more realistic predictions of tree growth compared 561 

to those based exclusively on climate variability. 562 

 563 

 564 

Figure 4: Scaling of tree growth from observations of bole diameter and tree-ring width to 565 

tree- and site-level aboveground biomass (AGB) involves upscaling steps A and B. Forest 566 
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plot data provide information on the drivers of tree growth, including site factors such as 567 

slope, aspect, soil conditions, stand-level basal area, and climate.  568 

 569 

These three characteristics of tree-ring data collected in a forest plot context – 570 

representativeness, absolute growth, and accompanying information on the forest stand and 571 

sampling design therein – enable the scaling from individual observations of bole diameter 572 

and radial increments to stand- and landscape-scale biomass accumulation (Figure 4). Annual 573 

reconstructions of DBH can be transformed to whole tree biomass increments using 574 

allometric equations (scaling step A; Forrester et al., 2017). We note that the use of 575 

allometric equations is associated with its own set of uncertainties (Alexander et al., 2017; 576 

Nickless et al., 2011), some of which can be constrained with additional information derived 577 

from tree rings. For example, time series of wood density variation, combined with allometric 578 

estimates of tree volume, can improve estimates of whole-tree biomass increment (Bouriaud 579 

et al., 2015; Clough et al., 2017). Tree-level biomass increment can then be summed across 580 

individuals in the plot and adjusted by a known expansion factor (step B). Subsequently, the 581 

plot-level biomass estimates can be scaled to the target population using plot-level expansion 582 

factors or pre-determined sample-based estimators (Bechtold and Patterson, 2005). 583 

Alternatively, plot-level estimates are projected onto some other spatial scale using remote 584 

sensing observations (step C; Section 3.2; Jucker et al., 2017). 585 

 586 

Integration of tree-ring and other forest inventory data can also take the form of data 587 

assimilation. The two data streams can, for example, be assimilated using a state-space model 588 

(Clark et al., 2007), or a hierarchical Bayesian model with two respective regressions linked 589 

by a constant of proportionality (Evans et al., 2017). Both of these statistical approaches can 590 

additionally take advantage of bole diameter re-measurement data for mixed datasets 591 

composed of trees with and without increment cores, and model the multiple influences on 592 

the growth of all individual trees explicitly. Assimilation of these two sources of information 593 
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that describe the common process of tree growth advances our understanding of that process, 594 

while refining estimates of both process variability and measurement uncertainty. The ability 595 

to quantify both process variability and measurement uncertainty provides the opportunity to 596 

improve reconstructions and forecasts of forest growth and productivity at sites for which 597 

only one data type is available (Dietze, 2017). Finally, if forest inventory records are 598 

sufficiently long to inform about forest mortality, it becomes possible to characterize the 599 

relationship between growth and mortality. With a better understanding of the growth-600 

mortality relationship, forest growth and productivity can be reconstructed further back in 601 

time. 602 

 603 

An important limitation on long-term reconstructions of NFI plot-level growth arises from 604 

temporal changes in stand conditions (e.g., demography and competition). Specifically, trees 605 

alive at the time of sampling do not necessarily represent a random subset of the trees that 606 

once lived (i.e. the forest composition and characteristics back in time). While random or 607 

systematic sampling avoids the biases associated with the tree-selection principle of 608 

traditional dendroclimatology, other biases remain (e.g., slow-grower survivorship bias or 609 

fading record; Brienen et al., 2012; Swetnam et al., 1999). These pitfalls highlight the merits 610 

of establishing and maintaining permanent NFI remeasurement plots on a multi-decadal scale 611 

that can track temporal changes in stand conditions and complement time-series of climatic 612 

predictors in statistical models. However, most existing NFIs do not yet offer sufficient 613 

temporal depth to account for forest dynamics. One possible solution is to apply the best 614 

available empirical models of stand development (i.e., growth-and-yield models, density 615 

management diagrams, empirical succession mapping) to reconstruct past stand conditions. 616 

Related (Bayesian) approaches may use state data assimilation or a state-space modeling 617 

framework to parameterize models of stand development from experimental forests where 618 
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data do extend for several decades. Addressing the slow-grower survivorship bias and the 619 

competitive influence of trees that are no longer on the landscape will be crucial to fully 620 

realizing the research potential of paired tree-ring and forest plot data to reconstruct forest 621 

growth in pre-inventory times. 622 

 623 

3.2. Earth observations 624 

Remotely sensed earth observations are a crucial tool for large-scale quantification and 625 

monitoring of ecosystem dynamics across space, and more recently also across time (e.g. 626 

(Zhu et al., 2016). The increasing length of continuous satellite records, e.g. the Landsat Data 627 

Continuity Mission (LDCM), facilitates integration with temporally more coarsely resolved 628 

data such as tree rings (Vicente-Serrano et al., 2016). In addition, we emphasize here that the 629 

combination of tree-ring data with earth observations is not restricted to large-scale 630 

applications, but that it can support and advance all three scaling steps (Figure 5). This is 631 

possible because – independent of the spatial scale – all information derived from remote 632 

sensing systems is fundamentally based on relating spectral reflectance data to field 633 

measurements via empirical models.  634 

 635 
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 636 

Figure 5: Overview of the spatial scales at which tree-ring and remotely sensed observations 637 

can be integrated to support the three upscaling steps (A-C). dam - decameter 638 

 639 

Terrestrial light detection and ranging data (LiDAR; also called terrestrial laser scanning, 640 

TLS) are the remotely sensed data most relevant at the individual tree scale. The application 641 

of TLS systems to characterize forest stands began about a decade ago (see Newnham et al., 642 

2015 for a review) and recent methodological advances have included structural modeling of 643 

individual trees based on TLS point clouds (Åkerblom et al., 2015). The potential to estimate 644 

above-ground (and even below-ground; Liski et al., 2014) biomass from such data is 645 

increasingly explored (Calders et al., 2015). But similar to conventional forest inventory data 646 

(Section 3.1), TLS does not provide temporal information on tree growth. Hence, the 647 

integration of tree-ring and TLS data to reconstruct historical tree dimensions (scaling step A, 648 

Figure 1) is promising, because it helps mitigate uncertainties related to the use of allometric 649 

functions and may offer a more precise representation of individual tree shapes (Wagner et 650 

al., 2017). Application of TLS in dense forest stands can, however, be complicated by 651 
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occlusion effects (e.g. bushes or small trees blocking the view of the scanner), weather 652 

conditions (wind, precipitation, or fog), and limitations of the scanning device itself. The 653 

latter concern is mostly the coarser spatial resolution of distant tree parts (i.e. crowns) 654 

compared to that of lower stem parts, as well as the time it takes to scan an entire forest stand 655 

from a sufficient number of angles to produce a continuous point cloud. Both these 656 

methodological challenges and the expected benefits of integrating TLS data with tree-ring 657 

measurements to produce long-term tree volume reconstructions are yet to be explored. 658 

 659 

Airborne remote sensing is showing the most potential for scaling to the site level (step B, 660 

Figure 1). LiDAR can provide three-dimensional information about vegetation structure at 661 

local to regional scales and structure from motion photogrammetry (Westoby et al., 2012) can 662 

provide approximations thereof. Such information can be calibrated against in-situ data of 663 

basal area, canopy height, biomass, stand density, or leaf area to assess spatial variability in 664 

these parameters (Jucker et al., 2017). If repeated LiDAR flights are available, though still 665 

challenging, it is even possible to monitor temporal dynamics in integrated and height-666 

specific canopy parameters (Griebel et al., 2017). Temporally resolved LiDAR data are still 667 

very rare, but should become more readily available with the increasing use of aircraft 668 

(Cunliffe et al., 2016) and drones (Tang and Shao, 2015) in forest monitoring programs. 669 

Because of the discontinuous data availability in both space and time, integration of airborne 670 

LiDAR with tree-ring records has so far been limited. This link will be strengthened in the 671 

future as advances are made on both sides: tree-ring sampling will become spatially more 672 

representative (Section 3.1); airborne LiDAR will increasingly be used to characterize not 673 

only larger forest stands, but also individual trees (Eysn et al., 2015), which can complement 674 

the application of TLS in complex stands. These efforts are converging towards more precise 675 

estimation and reconstruction of tree- and stand-level biomass and/or basal area increment. 676 
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 677 

While integration of tree-ring data with terrestrial and airborne LiDAR is still in its infancy, 678 

combining tree-ring and spectral data from polar-orbiting satellites is well established. 679 

Examples of environmental research that has used this combination include ecology (D'arrigo 680 

et al., 2000; Dorman et al., 2015; Huang et al., 2015), entomology (Çoban et al., 2014; 681 

Sangüesa-Barreda et al., 2014) and hydrology (Morales et al., 2015). For example, tree-ring 682 

data have been used to verify insect defoliation classifications inferred from remote sensing 683 

(Babst et al., 2010; Çoban et al., 2014), or as a proxy to reconstruct inter-annual fluctuations 684 

in lake area observed from Landsat time series (Morales et al., 2015). The satellite-derived 685 

parameter most frequently combined with tree rings has been the Normalized Difference 686 

Vegetation Index (NDVI), a measure of vegetation greenness. With now over thirty years of 687 

repeated observations, global data products such as the Global Inventory for Mapping and 688 

Modeling Studies (GIMMS; Tucker et al., 2005), have allowed for the comparison of tree-689 

ring and NDVI responses to environmental change across a range of spatial and temporal 690 

scales (Coulthard et al., 2017; Kaufmann et al., 2004; Vicente-Serrano et al., 2013). The most 691 

common approaches have been to either compare the climate signals that are embedded in 692 

these two data streams (Del Castillo et al., 2015; Girardin et al., 2014; Pasho and Alla, 2015), 693 

or to correlate time series of tree rings and NDVI directly (Beck et al., 2013; Berner et al., 694 

2011; Bunn et al., 2013; D'arrigo et al., 2000; Girardin et al., 2016; Poulter et al., 2013; 695 

Vicente-Serrano et al., 2016). Generally, these studies have found a positive correlation of 696 

moderate strength between inter-annual NDVI variability and annual tree growth. However, 697 

there are notable exceptions along the North American Arctic treeline (Beck et al., 2013), in 698 

Europe (Pasho and Alla, 2015), and in parts of Canada (Girardin et al., 2016) where a 699 

significant positive correlation is not detected. These previous findings point to two main 700 

challenges associated with the integration of tree-ring and satellite observations. 701 
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 702 

The first challenge concerns the mismatch in spatial scale between site-level observations of 703 

tree rings and raster data from satellite sensors. The latter integrate surface reflectance 704 

information at various spatial scales, e.g, 30 m for Landsat, 250 m for MODIS, and 1-8 km 705 

for AVHRR. Each pixel integrates a mixture of species, disturbance histories, and land use 706 

activities that may affect the spectral information and complicate the comparison with single-707 

species tree-ring chronologies. The second challenge emerges from temporal mismatches 708 

between the processes of canopy formation, leaf-level photosynthesis (observed by satellites), 709 

and wood formation (integrated in annual rings) in trees. The climate response of 710 

photosynthesis is more or less instantaneous, but there is a well-documented time lag 711 

between photosynthetic carbon uptake, growth, and biomass increment (Cuny et al., 2015). 712 

Furthermore, it is well known that climate variability can have lagged effects on tree growth 713 

via the storage and remobilization of carbohydrate reserves (Richardson et al., 2013; Zhang et 714 

al., 2017, Fritts, 1976). For all these reasons, tree-ring data and vegetation indices cannot be 715 

expected to fully correspond, and the dynamics of these processes and associated temporal 716 

lags likely differ among ecosystems, species, and climatic domains. 717 

 718 

3.2.1 Practical Example 2: Comparing tree-ring and NDVI data across Canada 719 

To illustrate the temporal mismatch of canopy processes and stem growth, we compared tree-720 

ring width, NDVI, and their correlations with monthly CRU TS-3.22 temperature (Harris et 721 

al., 2014) from the corresponding grid cells across Canada’s boreal forest (Figure 6). We 722 

obtained tree-ring width data from 598 plots (19 species) that were established as part of the 723 

Canadian NFI program. The tree-ring data were detrended using generalized negative 724 

exponential models and whitened (see Girardin et al., 2016 for details). For each plot, we 725 

obtained the corresponding GIMMS-3g NDVI record (Tucker et al., 2005), aggregated into a 726 
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0.5° regular grid using nearest-neighbor interpolation and subsequently averaged at monthly 727 

resolution. Point-wise Pearson correlations were computed among all three datasets over the 728 

1982-2002 period. This analysis showed that tree-ring width and NDVI correlate in areas 729 

where they are both driven by temperature during the same season (Figure 6). In some areas, 730 

however, the seasonality in the climate response differed clearly between NDVI and tree-ring 731 

width, which may at least partly explain why some studies report a spatially heterogeneous 732 

correlation between the two metrics (Beck et al., 2013; Girardin et al., 2016; Pasho and Alla, 733 

2015). From this example it is evident that spatiotemporal patterns in tree-ring data and 734 

vegetation indices are not equivalent – their representation of different tree organs together 735 

with associated differences in processes and climatic drivers need to be considered in any 736 

comparison. 737 
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 738 

Figure 6: Pearson correlation coefficients between detrended tree-ring width (TRW), the 739 

normalized difference vegetation index (NDVI), and temperature (tmp) over the 1982-2002 740 

period. Panel (a): June-August NDVI vs. TRW; Panel (b): NDVI vs. tmp; Panel (c) June-741 

August NDVI vs. tmp; Panel (d): TRW vs. tmp. Please note that sites and grid cells are 742 

ordered by increasing latitude in panels (b-d). Dashed lines separate the previous and current 743 

year. 744 

 745 

4. Mechanistic modeling of tree growth 746 

Static statistical relationships derived from observations are clearly limited in terms of 747 

representing feedbacks in ecosystems (Scholes, 2017), and it is not clear how well these past 748 

relationships will serve to predict forest responses to the novel conditions in the 749 

Anthropocene. Hence, there is need to include more process information when linking wood 750 
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formation to environmental variability, when reconstructing historical climate (Guiot et al., 751 

2014), and especially when attempting to forecast into a future time frame (Gustafson, 2013). 752 

Figure 7 illustrates the current range of tree-ring model complexity, from highly empirical 753 

monthly time-step approaches (e.g. Tolwinski-Ward et al., 2011) to highly physiological 754 

simulations of carbon and water flows in whole trees at very fine time steps (De Schepper 755 

and Steppe, 2010; Hölttä et al., 2010). A new approach is also shown within this scheme, 756 

with the objective of linking specific cambial-growth and whole-tree physiological models 757 

for global applications (see Section 4.2.1 for a description). 758 

 759 
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Figure 7: Models of xylogenesis have been developed at different levels of complexity and 760 

across a range of temporal scales. Efforts are now being made to develop a new and broadly 761 

applicable modeling approach (Section 4.2.1) that will simulate whole tree growth as a 762 

function of environmental influences on physiological processes. Tmp – temperature; prc – 763 

precipitation; lat – latitude; St – photosynthates; Rw – soil moisture 764 

 765 

4.1. Simulating radial growth as a function of climatic controls 766 

Wilson and Howard (1968) published the first model of intra-annual xylogenesis, which 767 

reproduced the daily cellular development throughout the growing season using “rules” to 768 

regulate cellular division, enlargement, wall thickening, and death. Realistic daily xylem 769 

development was simulated, but as no environmental controls were imposed (i.e. the rates of 770 

growth processes were model inputs), this approach can be considered “descriptive”. A 771 

handful of models were subsequently published (Howard and Wilson, 1972; Stevens, 1975; 772 

Wilson, 1973) that still required time-varying input parameters to produce realistic growth 773 

rings. To overcome these limitations, Fritts et al. (1991) developed a mechanistic model of 774 

daily cellular development called TRACH that was driven by temperature, water balance, and 775 

day length. This approach was already more general and relatively mechanistic, but it 776 

required as input the number of cells produced during the growing season and did not 777 

consider the supply of growth substrates (see Section 4.2). Expanding upon some of the ideas 778 

in TRACH, the now widely used Vaganov-Shashkin (VS) forward model of tree-ring 779 

formation (Vaganov et al., 2006) was developed. The VS model is built around the 780 

assumption that external multivariate environmental forcing exerts a direct and potentially 781 

non-linear influence on secondary tree growth. Accordingly, tree rings and their internal 782 

structure (e.g. cell number and size) are simulated based on climatic controls on the kinetics 783 

of cell formation (Cuny et al., 2014; Rathgeber et al., 2016). The VS model includes two 784 

basic conditions for the non-linear dependence of wood formation on the environment: the 785 

Principle of Limiting Factor (Fritts, 1976) with respect to daily temperature and soil moisture, 786 
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and a threshold growth response function to represent the dependence of cell formation on 787 

ambient temperature and soil moisture (Vaganov et al., 2006). 788 

 789 

The output of the VS model includes synthetically generated standardized tree-ring indices 790 

that would be expected if local climate were the only external driver of tree growth. The skill 791 

of the VS model (unless fine-tuned for specific sites) is thereby roughly comparable to that 792 

achieved with statistical transfer function methods commonly applied in dendrochronology 793 

(Cook and Pederson, 2011; Evans et al., 2006). However, the VS model has significant 794 

advantages over purely statistical models in that it provides daily-resolved estimates of 795 

integral growth rates throughout the year and attributes them to different climatic drivers 796 

(Shishov et al., 2016). This greatly facilitates the interpretation of inter- and intra-annual 797 

growth patterns, for instance when capturing a reduction in radial growth rates during 798 

summer drought in Mediterranean areas (Touchan et al., 2012). The applicability of the VS 799 

model has also been demonstrated for other biomes across Asia and North America 800 

(Anchukaitis et al., 2006; Evans et al., 2006; Shi et al., 2008; Zhang et al., 2011). 801 

Comparisons between VS-simulated and observed tree-ring chronologies are particularly 802 

interesting, as they allow assessing whether temporal non-stationarity in climate-growth 803 

relationships arise from climate change alone (Anchukaitis et al., 2006), or from other abiotic 804 

or biotic sources. 805 

 806 

Problematically, it is impractical to upscale site-level chronologies (step C, Figure 1) using 807 

the VS model. This is because not all of the detailed information (more than 40 tunable input 808 

parameters) required to drive the simulation of cell-level processes is available at large spatial 809 

scales. Attempting to facilitate such large-scale application, a numerically more efficient 810 

forward tree-ring model, the Vaganov-Shaskin Lite (VSL), has been developed (Tolwinski-811 
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Ward et al., 2011). The VSL model excludes the cell-level processes and has thus been 812 

reduced to a product of three limiting climatic factors: temperature, soil water balance and 813 

solar radiation. Furthermore, it runs on monthly time steps and contains only 12 tunable 814 

parameters. Monthly-resolved climatic input data are broadly available from meteorological 815 

stations and often contain much fewer gaps than daily observations. A disadvantage of this 816 

simplification is that the VSL model cannot resolve sub-monthly growth processes related to, 817 

for example, growth phenology and the formation of “false rings” (Touchan et al., 2012). In 818 

short, the VSL model is widely applicable and has been deemed capable of reproducing the 819 

variability in tree-ring width chronologies from more than 2000 sites on the ITRDB 820 

(Breitenmoser et al., 2014). Moreover, outputs from satellite Earth observations (Section 3.2) 821 

and dynamic global vegetation models (DGVMs; Section 4.3) are often provided at monthly 822 

resolution, making the VSL model a good candidate for pseudo-proxy experiments (Evans et 823 

al., 2013). 824 

 825 

The VS and VSL models have proven valuable to study forest growth responses to climate 826 

variability and change, but they still only include climate variables as input parameters and 827 

do not consider other internal and external drivers of tree growth. The incorporation of the 828 

principle of limiting factors in these models is the primary constraint on their ability to 829 

forecast tree growth and its climate response beyond that of commonly employed statistical 830 

models (Section 2). An interesting prospect is to integrate these VS-type models with 831 

vegetation models that explicitly simulate relevant biological processes such as 832 

photosynthesis, respiration, and resource allocation. For example, Mina et al. (2016) 833 

demonstrated that simulations of stand basal area with the ForClim model (Bugmann, 1996) 834 

could be improved by implementing the seasonal climate response of synthetic tree-ring 835 

chronologies from the VSL model. Such model-model integration approaches appear 836 



 39 

promising and should be extended to larger scales (e.g., using newly developing NFI 837 

networks; Section 3.1) and a variety of DGVMs. 838 

 839 

4.2. Towards large-scale modeling of whole-tree growth 840 

Tree rings are increasingly used to study the impacts of environmental change on forest 841 

ecosystems and carbon cycling (Babst et al., 2014a; Babst et al., 2017). For such applications, 842 

it is not sufficient to model only direct climate impacts on radial growth (Section 4.1). 843 

Models need to additionally account for indirect effects of changing external forcing (climate, 844 

CO2, etc.) via canopy-level processes (Li et al., 2014). An early example of this is the model 845 

of Deleuze and Houllier (1998) that – similar to the VS model – was also designed to reduce 846 

the parameterization requirements of TRACH and predicts intra-annual wood density profiles 847 

of conifer species. In addition to simulating cambial cell division, enlargement, and wall 848 

thickening as functions of climate, their model assumes that wall thickening is co-limited by 849 

the supply of photosynthates, calculated from temperature and transpiration under the 850 

assumption of fixed foliar mass. This model has been successfully used to study intra-annual 851 

fluctuations in wood density, in combination with a more comprehensive treatment of plant 852 

water and photosynthate transport (Wilkinson et al., 2015). However, the implemented cohort 853 

approach to cellular differentiation limits comparisons with observed radial files (von Arx et 854 

al., 2016) and does not include scaling of radial-file growth to the whole tree.  855 

 856 

Considering other processes and time-scales, (De Schepper and Steppe, 2010) developed a 857 

whole-tree model of reversible (diurnal fluctuations in water content) and irreversible 858 

(structural growth) stem diameter variations, using a very detailed representation of dynamic 859 

water and sugar transport between numerous levels in a tree on a time step of less than one 860 

second. Irreversible radial growth occurs as a function of local turgor and sugar content, but 861 
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the focus of the model is on reversible changes. (Hölttä et al., 2010) built on this model by 862 

adding cellular-level dynamics and thereby produced a remarkably comprehensive approach 863 

to modeling whole-tree growth, albeit omitting hormonal control. Their approach is very 864 

promising as a detailed physiological treatment and produces interesting conclusions 865 

regarding the effect of tree size on environmental influences. However, photosynthesis and 866 

transpiration are computed off-line, rather than as part of the model simulation, and a very 867 

large number of empirical parameters are required. Furthermore, the high-resolution time-868 

stepping and consequent computing demands presently limit its application for large-scale 869 

studies of forest-environment interactions. Despite the knowledge of xylogenesis captured by 870 

these models, there is to date no generally applicable approach to modeling whole-tree 871 

growth at large scales. This would require a broadly applicable model structure with a few 872 

key parameter differences between plant functional types (or ideally species), as is currently 873 

implemented for photosynthesis in DGVMs (Section 4.3).  874 

 875 

4.2.1 Practical example 3: Towards a broadly applicable whole-tree model 876 

Building on the approaches discussed above, a whole-tree model called “Grow_Up” is 877 

currently being constructed (Friend et al., in prep) that should be capable of being 878 

parameterized for any species and will be incorporated into a DGVM framework. A tree is 879 

assumed to grow as a coordinated whole, led by nutrient uptake and allocation, with foliage 880 

activity promoting cambial growth, resulting in demand for carbon and nutrients from the 881 

developing xylem. Cells in one lateral radial file per tree are represented, with the processes 882 

of division, enlargement, wall thickening, and death controlled by a range of external and 883 

internal factors (Figure 8). The activities of apical meristems are also considered to enable 884 

whole-tree growth as described in (Hayat et al., 2017), an earlier version of this model. 885 

Reserve pools of carbon, nitrogen, and phosphorus enable carry-over effects between years, 886 
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and the relative activities of the different meristems are controlled by shading, nutrient status, 887 

soil water, and phenological signals. 888 

 889 

Three vectors are used to hold the state variables of the cells in the radial file: the cell 890 

development stage (i.e. cambial initial, xylem mother, enlarging, thickening, or mature), 891 

radial cell diameter, and cell wall thickness. When a cell matures, it is added to the tree stem 892 

and not treated further, although heartwood formation occurs in response to canopy die-back. 893 

The vectors start with the innermost immature cell along the radial file and end at the 894 

innermost phloem mother cell, which is a fixed anchor. The vectors are adjusted as cells are 895 

added through division or lost through maturation. The primary outputs directly derived from 896 

the xylogenetic component of Grow_Up are annual width and mass increment of the stem, as 897 

well as intra-ring density profiles. More detailed outputs such as the weekly kinetics of 898 

cellular development can also be produced for comparison with observations obtained using 899 

microcores (e.g. Cuny et al., 2014). This basic xylogenetic scheme is assumed to be universal 900 

in all tree species. However, the understanding of the rules governing cambial activation and 901 

dormancy, the rates of cellular division, transitions between cell types, rates of expansion, 902 

and rates of cell wall thickening, is currently incomplete and so the focus is now on testing 903 

various hypotheses. 904 
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 905 

Figure 8: New model of cell development in a radial file using a vector approach and rules 906 

for cell differentiation based on internal and external drivers. Tmp – temperature; St - 907 

photosynthates 908 

 909 

Initial assumptions for the controls on the development of the radial file assume that the rates 910 

of growth of cambial, mother, and enlarging cells are influenced by water supply, 911 

temperature, a hormonal signal from the canopy, and the concentration of sugars in the 912 

cambium using simple response functions. Cambial cells divide when they reach a critical 913 

size, producing mother cells. Mother cells divide if they reach a critical size and transition to 914 

(non-dividing) enlarging cells when they reach a certain distance from the phloem. Enlarging 915 

cells enter the thickening phase once they reach a critical size, and thickening continues up to 916 

a critical limit at which the cell dies and becomes mature and functional xylem (see Figure 8). 917 

The critical cell sizes and cell wall thicknesses, as well as the rates of thickening, are 918 

currently fixed parameters, with only the rates of cellular growth depending on environmental 919 

factors. These assumptions are being tested using microcores collected as components of 920 

various field campaigns and experiments (e.g. Cuny et al., 2014). This scheme is currently 921 

being implemented within the HYBRID9 DGVM framework (a derivative of the model of 922 
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(Friend, 2010; Friend and White, 2000), and it is anticipated that this new approach will 923 

challenge the predictions of the current generation of DGVMs in fundamental ways, as well 924 

as open them up to direct comparison with tree-ring archives. 925 

 926 

4.3. Tree-ring integration with ecophysiological and dynamic global vegetation models 927 

Climate policy relies heavily on predictions from earth system models, including their crucial 928 

DGVM sub-components required to model terrestrial carbon fluxes, water exchange, and 929 

energy balances (Boucher et al., 2016). Current DGVMs struggle, however, to simulate forest 930 

growth and its climate response accurately, particularly at annual or longer time scales 931 

(Anderegg et al., 2015; Pappas et al., 2017; Rollinson et al., 2017; Tei et al., 2017; Zhang et 932 

al., 2017). Hence, we see great potential for both tree-ring observations and ecophysiological 933 

models of tree growth to help evaluate and improve DGVMs. A conceptual challenge thereby 934 

is to reconcile the carbon source (i.e. photosynthesis) and sink limitations on tree growth 935 

(Fatichi et al., 2014; Körner, 2015). Sink limitations (see Section 4.1) and their possible 936 

feedbacks on photosynthesis are currently not implemented in DGVMs, which generates 937 

uncertainty (Friend et al., 2014) because growth is treated only as a downstream process. 938 

Explicitly representing xylogenesis in DGVMs (see Section 4.2.1), or at least evaluating 939 

DGVMs at stand and regional scales using ecophysiological models with explicit tree growth 940 

modules, could be a promising way to refine projections of terrestrial carbon cycling. Until 941 

this approach can be fully implemented and rigorously tested, tree rings should continue to be 942 

used in DGVM development by serving as observational references for model-data 943 

comparisons and model parameterization. 944 

 945 

Past research has revealed a large spread in the ability of different DGVMs to reproduce 946 

patterns observed in tree rings. Besides being exceedingly sensitive to climate variability 947 



 44 

(Rollinson et al., 2017; Zhang et al., 2017; Klesse et al. in review b), modeled NPP tends to 948 

recover much more quickly after extreme events (Anderegg et al., 2015) and lacks the 949 

memory effects that are commonly observed in tree-ring observations also in non-extreme 950 

years (Pappas et al., 2017; Zhang et al., 2017). Accordingly, neither the significant 951 

correlations with previous year’s climate, nor the positive auto-correlation structure of most 952 

tree-ring time series are simulated accurately. These findings point to deficits in the carbon 953 

allocation schemes that are implemented in current DGVMs (Sitch et al., 2015). Carbon 954 

allocation and turnover have been identified as an important source of uncertainty (Bloom et 955 

al., 2016; De Kauwe et al., 2014; Friend et al., 2014; Montané et al., 2017) that is 956 

compounded by a shortage of long-term observations of root and foliar dynamics.  957 

 958 

The MAIDEN model (Misson, 2004), an ecophysiological model with a sophisticated carbon 959 

allocation scheme, has shown high correlations (r > 0.5) with tree-ring chronologies from 960 

coniferous and broadleaf species at Mediterranean and boreal sites (Gea-Izquierdo et al., 961 

2015; Gennaretti et al., 2017). MAIDEN uses mechanistic rules for the temporal allocation of 962 

photosynthates to four carbon pools (leaves, stem, roots, and non-structural carbohydrates) 963 

according to phenological phases. While its large-scale application to estimate tree growth is 964 

still limited because certain allocation parameters need to be fitted site-by-site, the integration 965 

of the MAIDEN model with tree-ring observations has already been proposed with a view on 966 

paleo-applications. For instance, (Guiot et al., 2014) have advocated the use of this and other 967 

ecophysiological models in the inverse mode to hindcast climate variability over centuries. In 968 

this application, the model parameters are first manually or automatically optimized to 969 

represent the observed radial increment. Using model-data-fusion techniques (Peng et al., 970 

2011) the tree-ring data are then assimilated into the model to iteratively constrain the most 971 

likely climate conditions (i.e. probability distributions) that produce the observed radial 972 
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increment in a given year (Boucher et al., 2014). For the pre-instrumental period when only 973 

tree-ring data are available, the climate probability distribution of a chosen reference (i.e. 974 

average) year is iteratively modified according to the annual tree-ring anomaly for that year 975 

(Guiot et al., 2014). This way, a climate probability distribution for each year of the 976 

reconstruction is determined. Such climate reconstructions based on ecophysiological models 977 

have the advantage over purely empirical calibrations that the influence of non-climatic 978 

effects that are represented in the model (e.g. CO2) can be assessed. Additionally, 979 

mechanistic models are positioned to extract climatic information from tree-ring sites located 980 

away from the extreme growth environments typically considered for dendroclimatic 981 

reconstruction. Recalling that classical site selection practices for dendroclimatology were 982 

designed to optimize the signals from a single growth limiting factor (e.g., warm season 983 

temperatures or spring precipitation; see Section 2.1), vast areas where tree growth is 984 

influenced by multiple climatic parameters have remained more moderately utilized and 985 

primarily incorporated in drought reconstructions, whereby drought metrics such as the 986 

Palmer Drought Severity Index and the related tree-ring signals extracted are driven by both 987 

thermal and moisture conditions (e.g. Cook et al., 2015; Cook et al., 2004). Mechanistic 988 

models are positioned to identify separately the precipitation and temperature signals back in 989 

time embedded within tree-ring chronologies with mixed and temporally changing growth 990 

limitations. 991 

 992 

With a view on DGVM development, model-data-fusion approaches involving tree-ring data 993 

(see above) could constrain carbon allocation to stem growth and thereby help evaluate and 994 

improve allocation schemes. In addition, a series of model inter-comparison exercises would 995 

be useful to determine why some models perform better than others in simulating forest 996 

growth and its climate response. Such exercises are being conducted for various ecosystem 997 
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variables (see e.g. the MsTMIP project of the North American Carbon Program; 998 

https://nacp.ornl.gov/MsTMIP.shtml) and we are convinced that including tree-ring 999 

benchmarks from various ecoregions will be quite fruitful for providing quantitative insight 1000 

in the representation of critical processes in DGVMs. However, one challenge for comparing 1001 

multiple models with tree rings will be to generate parameters that are spatially and 1002 

conceptually comparable. On one hand, estimates of absolute growth rates (e.g. in g C m-2y-1) 1003 

from tree rings facilitate comparisons with standard DGVM output (e.g. net primary 1004 

productivity, in g C m-2y-1). On the other hand, transforming radial growth into biomass 1005 

increment generates uncertainty (see Section 3.1) that is best avoided if tree-ring data are to 1006 

serve as an observational benchmark. Hence, we advocate that tree-ring width should become 1007 

a standard output parameter (or “emergent property”) of DGVMs and that the detail of the 1008 

implemented carbon pools (leaves, branches, stem, coarse and fine roots, non-structural 1009 

carbohydrates, etc.) in the models be re-examined for comparison with tree rings and other 1010 

ecological data. 1011 

 1012 

5. Perspectives for tree-ring research 1013 

Our discussion around the statistical scaling of tree-ring data in sections 2 and 3 has 1014 

emphasized the need for representative sampling to capture the heterogeneity of forested 1015 

landscapes. The systematic or random distribution of samples along the body of an individual 1016 

tree, of individual trees within a site, and of sites across the landscape will allow for more 1017 

robust past and future projections across the space where observations are sparse or missing. 1018 

In addition, representative sampling of the area covered by the grid cells of raster data 1019 

products should reduce the spatial mismatch between tree-ring data and satellite Earth 1020 

observations or DGVM output. This objective of spatial representativeness is somewhat new 1021 

to the field of dendrochronology. While other disciplines (e.g. ecosystem ecology or forestry) 1022 
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have a long history of optimizing sampling schemes for spatial or temporal scaling (Scholes, 1023 

2017), these ideas have only recently started to enter the broad scope of tree-ring research 1024 

and require a certain rethinking of established protocols. For example, if tree-ring sampling 1025 

should represent the absolute growth rates of a larger population of trees (e.g. a stand), the 1026 

strength of the common growth variability among trees (traditionally assessed by the mean 1027 

inter-series correlation) and metrics of how well a finite sample represents the theoretical 1028 

population chronology (Expressed Population Signal; Buras, 2017; Cook and Peters, 1997; 1029 

Wigley et al., 1984) are insufficient quality criteria. Hence, new quality criteria as well as 1030 

guidelines for tree-ring sampling need to be established that serve both the needs of 1031 

individual studies and the overarching goal of scaling. We recommend that this be done 1032 

through interdisciplinary research initiatives that involve experts form complimentary 1033 

disciplines, including dendrochronology, forest and landscape ecology, forestry, and 1034 

statistical ecology. 1035 

 1036 

At present, we have the best understanding of uncertainties in tree-ring data at the site level. 1037 

Over the past years, a number of studies have characterized trend biases in time series of tree 1038 

growth (e.g. Brienen et al., 2012; Brienen et al., 2017; Peters et al., 2015) or the impact of 1039 

sampling practices on tree-ring quantification of stand-level above-ground biomass increment 1040 

(Alexander et al., 2017; Nehrbass‐Ahles et al., 2014). These studies will serve as important 1041 

guidelines in future field campaigns. In contrast, sampling biases at the individual level are 1042 

insufficiently constrained, especially when the goal is to represent full stem or tree-level 1043 

growth. This is in part because the heterogeneity and dynamics of resource allocation to stem 1044 

growth are not well understood. This could for example be tackled through intense sampling 1045 

along trees that were commercially felled or uprooted after a storm. If combined with wood 1046 

anatomical measurements (von Arx et al., 2016), such data could additionally serve as an 1047 
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improved test bed for mechanistic models of xylogenesis (Section 4). These models are 1048 

becoming increasingly important tools to assess, reconstruct, and forecast tree growth 1049 

responses to a changing environment because – even with the most representative sampling – 1050 

statistical scaling is challenged by feedbacks in ecosystem processes (Scholes, 2017). Finally, 1051 

uncertainties in tree-ring data will be the most challenging to assess at large spatial scales 1052 

where individual- and site-level uncertainties cumulate and where the number of existing 1053 

records may not suffice to counteract uncertainty from spatial heterogeneity. Yet, as new 1054 

tree-ring and NFI data with well-quantified uncertainty are made accessible and interoperable 1055 

across national boundaries, a global network of annually resolved forest biomass 1056 

reconstructions can emerge. An important application of these data will then be to evaluate 1057 

the ITRDB and ensure that this legacy of decades of tree-ring research can continue to 1058 

support earth system science (Babst et al., 2017). 1059 

 1060 

When tree rings go global – as is the theme of this review – the goal is to generate knowledge 1061 

and data that can inform adaptation and mitigation strategies in the face of climate change. 1062 

The primary strength of tree-ring records has so far been seen in their temporal depth that 1063 

allows placing the current climatic variability and ongoing trends in a millennium-length 1064 

context. Indeed, it is both important and disturbing to learn that the Earth is warming at an 1065 

unprecedented rate (Esper et al., 2018; Wilson et al., 2016), that man-made influences on 1066 

atmospheric circulation patterns can promote more frequent extreme events (e.g. through 1067 

Arctic warming; (Trouet et al., 2018), and that these events are directly linked to forest 1068 

mortality, disturbances, and changes in the terrestrial carbon cycle (Schwalm et al., 2017; 1069 

Schwalm et al., 2012; Williams et al., 2013). However, anthropogenic climate change is now 1070 

considered indisputable and there is a need to transition towards tree-ring research that 1071 

assesses, reconstructs and projects the responses and feedbacks of forest ecosystems to 1072 
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climate change. Dendrochronology can make important contributions at every step of 1073 

successful scaling (Sections 2 and 3) and refined process understanding (Section 4). How and 1074 

how quickly can we expect tree growth and its climate sensitivity to change with continued 1075 

warming? Will thinning forests mitigate drought stress? How much carbon will be 1076 

sequestered by forests under various management scenarios? By answering these and other 1077 

relevant questions, tree-ring research can directly support the development and assessment of 1078 

climate change adaptation strategies.  1079 
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Appendix A: Supplementary figure 1637 
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 1639 

 1640 
 1641 
Figure S1: Gridded tree-ring width anomalies (increment) between 2006-2010 for the six 1642 
tree genera that occur most frequently in the International Tree Ring Data Bank. The maps 1643 
were produced using the random decision forest approach presented in Figure 2 of the main 1644 
manuscript. 1645 


