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Fill in the Gap! Combining Self-supervised
Representation Learning with Neural Audio

Synthesis for Speech Inpainting
Ihab Asaad, Maxime Jacquelin, Olivier Perrotin, Laurent Girin, Thomas Hueber

Abstract—Most speech self-supervised learning (SSL) models
are trained with a pretext task which consists in predicting
missing parts of the input signal, either future segments (causal
prediction) or segments masked anywhere within the input (non-
causal prediction). Learned speech representations can then be ef-
ficiently transferred to downstream tasks (e.g., automatic speech
or speaker recognition). In the present study, we investigate
the use of a speech SSL model for speech inpainting, that is
reconstructing a missing portion of a speech signal from its
surrounding context, i.e., fulfilling a downstream task that is
very similar to the pretext task. To that purpose, we combine an
SSL encoder, namely HuBERT, with a neural vocoder, namely
HiFiGAN, playing the role of a decoder. In particular, we
propose two solutions to match the HuBERT output with the
HiFiGAN input, by freezing one and fine-tuning the other, and
vice versa. Performance of both approaches was assessed in
single- and multi-speaker settings, for both informed and blind
inpainting configurations (i.e., the position of the mask is known
or unknown, respectively), with different objective metrics and a
perceptual evaluation. Performances show that if both solutions
allow to correctly reconstruct signal portions up to the size of
200ms (and even 400ms in some cases), fine-tuning the SSL
encoder provides a more accurate signal reconstruction in the
single-speaker setting case, while freezing it (and training the
neural vocoder instead) is a better strategy when dealing with
multi-speaker data.

Index Terms—Speech inpainting, self supervised model, speech
synthesis, speech enhancement, neural vocoder.

I. INTRODUCTION

SPEECH and/or audio inpainting aims at enhancing speech
and/or audio signals that are “locally” degraded. Focusing

initially on short gaps (i.e., a few milliseconds), the first
targeted applications were packet loss recovery in telecom-
munications and streaming audio [1] or signal declicking [2].
More recent studies addressed longer gaps between 50ms and
up to 400ms, e.g. [3], [4], [5], [6]. Early works were based
on signal processing techniques, such as linear predictive
coding [7], sinusoidal modelling [3], or graphs [8]. Recently,
speech/audio inpainting has been tackled with deep neural
networks (DNNs), mostly with fully-supervised learning and
encoder-decoder architectures, the encoder being fed with the
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English corpus. We isolated 0 h from chapter 0 as the test set.
The rest is randomly divided in train/validation split with a
0/0 ratio. VCTK includes 109 English speakers for a total of
0 h, balanced in gender and with various accents. Our test
includes 0 speakers that are not in the train set, for a total of
0 h. The rest is randomly divided in train/validation split with
a 0/0 ratio. Similarly, speakers in the validation set are not
seen during training.

For both experiments, we started with pre-trained HuBERT
models on the XXX dataset, including 0 h of speech data from
0 speakers. We carefully checked that none of the LJ Speech
and VCTK dataset are included, even partially, in the HuBERT
pre-training datasets.

B. Implementation details

a) Model IDA: We followed the [24] implementation of
HuBERT2 and used their pre-trained model XXX that we kept
frozen. The latter was trained on the XXX dataset, including
0 h of speech data from 0 speakers. In this model, the speech
input is sampled at 16 kHz, and the prenet window size and
hop size are 0 and 0 samples, respectively. The output size Z
has dimension 0. Dedicated codebooks C(DA) were computed
for the LJ Speech and VCTK datasets. We used 100 (resp. 500)
clusters and 0 h (resp. 0 h) of the LJ speech (resp. VCTK)
training set for this sake. Recall that for this model g

(DA)
2

is not trained, i.e., for any representation Z of a masked
input sequence X�[t1,t2], g

(DA)
2 retrieves the closest sequence

of vectors Ĉ = {ĉ1, . . . , ĉL} from C(DA).
We also used the [24] implementation of the HiFiGAN

decoder. In the multi-speaker configuration, we first pre-
trained the speaker embedding module implemented from [26]
on 0 h of the VCTK training set, with the Adam optimiser over
0 epochs, with a batch size of 0 and a learning rate of 10�4.
Then, the full decoder was trained independently on our two
datasets. We used the Adam optimiser over 0 epochs, with a
batch size of 0 and a learning rate of 10�4. The generated
waveform is at 16 kHz.

b) Model IEA: We followed the Hugging Face imple-
mentation3 and started from their pre-trained model XXX.
The latter was trained on the XXX dataset, including 0 h
of speech data from 0 speakers. In this model, the speech
input is sampled at 22.05 kHz, and the prenet window size
and hop size are 0 and 0 samples, respectively. The output
size Z has dimension 0. Again, dedicated codebooks C(DA)

were computed for the LJ Speech and VCTK datasets. We
used 0 (resp. 0) clusters to compute the codebook C(EA) with
a k-means applied on Mel-spectrograms calculated on 0 h
(resp. 0 h) of the LJ speech (resp. VCTK) training set. Mel-
spectrograms are obtained using a window size and hop size
of 0 and 0 samples, respectively, and are 80-dimensional.

f1, f2 are fine-tuned from the pre-trained model and g2,
defined in equation 10, is trained from scratch. We performed
two independent training on our two datasets, both using the
Adam optimiser over 0 epochs, with a batch size of 0 and a
learning rate of 10�4.

2https://github.com/facebookresearch/speech-resynthesis
3

We used the vanilla HiFiGAN4 as the decoder with the
UNIVERSAL_V1 pre-trained model, taking 80-dimensional
Mel-spectrogram as input, and generating a waveform at
22.05 kHz. We fine-tuned the vocoder providing quantised
Mel-spectrogram inputs using the LJ speech (resp. VCTK)
training datasets, using the Adam optimiser over 0 epochs,
with a batch size of 0 and a learning rate of 10�4.

c) Baseline: To compare our models, we implemented
a linear interpolation baseline. For a given masked signal, it
consists in calculating its Mel-spectrogram with window size
and hop size of 0 and 0 samples at 16 kHz, respectively, and
in replacing the masked frames with a linear interpolation
between the last frame before the mask and the first after
the mask. The interpolated Mel-spectrogram is then fed to the
pre-trained vanilla HiFiGAN introduced above.

d) Post-processing: For both experiments and the base-
line, blind inpainting used the full HiFiGAN output as the
reconstructed signal. Regarding informed inpainting, only the
masked part is reconstructed by HiFiGAN. We placed the
reconstructed part within the original masked signal using a
cross-fade of 0 ms on both sides. Finally, the inpainted signals
by model IEAwere resampled to 16 kHz for fair comparisons
between models.

C. Objective measures

We evaluated speech quality using PESQ [29], speech
intelligibility using STOI [30], and character error rate (CER).
For the latter, we used a pre-trained Whisper model [31] to
transcribe the inpainted speech, due to its suitability for speech
recognition tasks. Whisper demonstrate a strong ability to
generalise to many datasets and domains without the need
for fine-tuning. The latter was trained on the XXX dataset,
including 0 h of speech data from 0 speakers. None of the LJ
Speech and VCTK dataset are included in the Whisper training
dataset.

IV. RESULTS

A. Stimuli

B. Informed speech inpainting

C. Blind speech inpainting

V. CONCLUSION

A conclusion section is not required. Although a conclusion
may review the main points of the paper, do not replicate the
abstract as the conclusion. A conclusion might elaborate on the
importance of the work or suggest applications and extensions.

[Ouverture sur le predictive coding et les joies du cerveau
ici]
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Fig. 1. Inpainting with HuBERT and HiFiGAN.

More specifically, HuBERT considers low-resolution Mel-
spectrograms, and we must find a way to reconstruct the time-
domain signal waveform. Neural vocoders such as WaveNet
[21] or HiFiGAN [22] have shown to be more efficient
than phase reconstruction algorithms, at least for speech,
in particular when manipulating low-dimensional Mel-scaled
spectrograms [23]. We thus propose to combine HuBERT
with a neural vocoder, in the present case HiFiGAN, for
audio/speech inpainting. We propose two ways to do that,
either by fine-tuning the neural vocoder on the pre-trained
SSL output, or by fine-tuning the pre-trained SSL on the
neural vocoder input. The first approach is inspired by the
low-bitrate neural speech coding approach proposed in [24].
The second one involves to fine-tune HuBERT to predict
directly a Mel-scaled magnitude spectrogram for the masked
part, which is then converted to a time-domain signal by
HiFiGAN. We assess the performance of these two methods
in both single-speaker and more challenging multi-speaker
settings. Our experimental results shows that the proposed
SSL-based approach to speech inpainting yields comparable,
if not superior, results compared to supervised methods. We
provide complete source code and pre-trained models for both
proposed architectures.

II. METHOD

A. Problem formulation

Following the notations used in [13], let us denote X =
{x1, . . . , xT } a sequence of speech samples of length T (i.e.,
a waveform), and X�[t1,t2] the sequence in which the segment
Xt2[t1,t2] = {xt1 , xt1+1, . . . , xt2} is masked, i.e. replaced
with zeros. In the following of this paper, we will address non-
causal inpainting, i.e. the inpainting function I has access to
past and future unmasked parts of the input signal. We will
consider both the informed inpainting paradigm, i.e. when the
mask position is known, and the blind one, i.e., when the
mask position is not known. The informed inpainting process
consists in predicting only the missing segment from the
masked signal, i.e. X̂t2[t1,t2] = I

�
X�[t1,t2]

�
while keeping

the original signal on the unmasked parts, i.e., X̂t/2[t1,t2] =
Xt/2[t1,t2]. For the blind paradigm, the entire input signal is
processed by the inpainting process with X̂ = I

�
X�[t1,t2]

�
.

B. Masking, the core pretext task of HuBERT

HuBERT is an encoder that converts an audio signal X to
a latent representation Z = {z1, . . . , zL} of size L1:

yl = f1

�
X[lH�u,lH+u[

�
, (1)

Z = f2 (Y ) , with Y = {y1, . . . , yL} (2)

where f1, sometimes referred to as the prenet, is a stack
of CNNs of span 2u samples and hop size H , and f2 is a
stack of transformer encoder blocks. During training, part of
the CNN-encoded sequence Y is randomly masked to predict
the fully-encoded sequence Z, i.e. Y is replaced by Y�[l1,l2]

in (2), which amounts to masking the corresponding samples
in X . The training objective of HuBERT is the prediction of
a quantised representation of the speech signal, with the help
of two auxiliary modules, g1 and g2, which act as teacher
and student models, respectively. The teacher module g1 maps
the audio signal to a given representation (e.g., MFCC in the
first vanilla HuBERT training iteration). Before training, a
codebook C is obtained by passing part of the training set
through g1 and applying a k-means algorithm on the output.
During training, the teacher module g1 extracts a quantised
sequence C = {c1, . . . , cL} from each waveform input, with
a span of 2w samples and window shift H:

cl = VQC
�
g1

�
X[lH�w,lH+w[

��
(3)

where VQC stands for the quantisation of the g1 output on the
codebook C. The student module g2 aims at predicting this
quantised sequence from the encoder output Z. This writes:

ĉl = g2 (zl) = g2 � f2 � f1

�
X[lH�u,lH+u[

�
, (4)

and Ĉ = {ĉ1, . . . , ĉL} is expected to be as close as possible
to C. In practice, g2 is implemented with a softmax function
involving a (learned) linear projection of zl over ĉl. During
HuBERT training, g1 is fixed, and f1, f2 and g2 are updated
to minimise the distance between Ĉ and C while part of the
Y sequence is randomly masked across batches.

To the best of our knowledge, in the many different uses of
HuBERT reported in the literature, the masking is only used
for training and is never kept during inference. In other words,
when using the speech representation Z in downstream tasks
(mostly classification tasks), the input signal X is generally
not masked. In addition, g1 and g2 are discarded, and a newly
trained module dedicated to the downstream task is often
appended to f2. However, we hypothesise that at inference,
HuBERT should be able to encode a masked input X�[t1,t2],
since this is equivalent to masking part of the Y sequence in
the pretext training task. In other words, HuBERT is implicitly
an inpainting encoder, even if, to our knowledge, it has not
been considered as such in the literature.

Starting from the above consideration and formulations, by
keeping g1 and g2 that are dedicated to the mask-based training

1In the following equations, when chaining several functions, we do not
differentiate if a function applies to a vector of a sequence (at frame l) or
to the complete sequence. This abuse of notation is to notably simplify the
presentation, without affecting the principle of the proposed methodology.
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ĉl = g2 (zl) = g2 � f2 � f1

�
X[lH�u,lH+u[

�
, (4)
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HuBERT should be able to encode a masked input X�[t1,t2],
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Frozen models

g1 Clustering

Train set

Fig. 1. Proposed inpainting frameworks combining a self-supervised learning
model and a neural vocoder. Top: The SSL encoder is fine-tuned while the
neural vocoder is kept frozen. Bottom: The SSL encoder is kept frozen while
the neural vocoder is trained. In the present study we use HuBERT as the SSL
and HiFiGAN as the vocoder (subfigure in the middle). The inpainting process
and adaptation mechanism between the SSL output and neural vocoder input
are detailed in Sec. II).

signal surrounding the gap and the decoder being in charge of
generating the signal within the gap. Music signals with gaps
above 64ms were processed in [9] with an encoder based on a
convolutional neural network (CNN), and in [4] with one based
on a generative adversarial network (GAN). In [5], a U-net
architecture was trained to inpaint the magnitude spectrogram
of speech signals with gaps in both the time or frequency
dimensions. Moreover, a VGG-like feature extractor [10], pre-
trained on a word classification task, was used based on the
assumption that it would improve the linguistic content of the
inpainted spectrogram. This work was recently extended in [6]
by adding an additional adversarial loss. A few studies also
investigated the use of a visual input such as the speaker’s
lips for guiding the speech inpainting process, implemented
with an LSTM- or Transformer-based context encoder [4],
[11]. It can be noted that all these studies work in the time-
frequency (TF) domain, inpainting the magnitude spectrogram
of speech/audio signals. The inpainted magnitude spectrogram
must then be combined with a phase reconstruction algorithm,
e.g. [12], [13], before applying inverse TF transform to obtain
the inpainted time-domain waveform.

All the above-mentioned deep-learning-based inpainting
studies are based on supervised learning, basically a mapping
between the incomplete signal and the complete one. Interest-
ingly, speech inpainting is implicitly at the core of (speech)

ar
X

iv
:2

40
5.

20
10

1v
1 

 [
cs

.S
D

] 
 3

0 
M

ay
 2

02
4



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

self-supervised (representation) learning (SSL) [14], in which
deep neural networks are trained to learn an efficient speech
signal representation via the prediction of signal parts that are
artificially made missing –a process referred to as masking in
this framework. The prediction can be causal (exploiting past
and present context to predict the future signal) as in, e.g.,
autoregressive predictive coding (APC) [15] and contrastive
predictive coding (CPC) [16], or non-causal (exploiting both
past and future contexts to predict a missing part anywhere
in the signal), as in Transformer-based SSL models such as
HuBERT [17], wav2vec [18], or WavLM [19]. By exploiting
regularities at multiple time scales, and therefore multiple
linguistic levels (i.e., from phonetics to semantics) [20], such
models encode rich representations of the speech signal that
can be efficiently transferred to a variety of downstream tasks,
including automatic speech, speaker, or emotion recognition
[21]. In fact, the SSL models have been used and evaluated
exclusively on these downstream tasks, which happen to be
classification tasks, and have become very popular because
of the impressive performance they have shown there. To
the best of our knowledge –and quite surprisingly– SSL
models have not been used for inpainting nor evaluated on
this task, even though, as already mentioned, “unmasking” is
the central pretext task of SSL models training. In this study,
we investigate the ability of a non-causal SSL model, in the
present case HuBERT, to “fill in the gap” by reconstructing the
missing part of a speech signal from its surrounding context.

Since HuBERT does not directly predict the missing time-
domain signal samples but rather high-dimensional embed-
dings, a specific algorithm is needed to go back to the time-
domain signal. Neural vocoders such as WaveNet [22] or
HiFiGAN [23] have shown to be more efficient than phase
reconstruction algorithms, at least for speech. We thus propose
to combine an SSL encoder (here HuBERT) with a neural
vocoder (in the present case HiFiGAN) for speech inpainting.
We propose two ways to do that, either by training the neural
vocoder on the pre-trained SSL output, or by fine-tuning the
pre-trained SSL on the neural vocoder input. The first approach
is inspired by the low-bitrate neural speech coding approach
proposed in [24]. The second one involves to fine-tune Hu-
BERT to predict directly a Mel-scaled magnitude spectrogram
for the masked part, which is the standard input of a vanilla
HiFiGAN. The two proposed frameworks are illustrated in Fig.
1. We assess the performance of these two methods in both
single-speaker and more challenging multi-speaker settings,
with both objective metrics and perceptual tests. Importantly,
we provide the complete source code, pre-trained models and
demo pages, for the two proposed inpainting frameworks. 1

II. METHOD

A. Problem formulation

Following the notations used in [14], let us denote X “

tx1, . . . , xT u a sequence of speech samples of length T (i.e.,
a waveform), and X´rt1,t2s the sequence in which the segment
XtPrt1,t2s “ txt1 , xt1`1, . . . , xt2u is masked, i.e. replaced

1https://gricad-gitlab.univ-grenoble-alpes.fr/huebert/speech-inpainting

with zeros. In the following of this paper, we will address
non-causal inpainting, i.e., the inpainting function I has
access to past and future unmasked parts of the input signal.
We will consider both the informed inpainting paradigm,
i.e. when the mask position is known, and the blind one,
i.e. when the mask position is not known. The informed
inpainting process consists in predicting the missing segment
from its surrounding context while keeping the original signal
on the unmasked parts, i.e. X̂tPrt1,t2s “ I

`

X´rt1,t2s

˘

and
X̂tRrt1,t2s “ XtRrt1,t2s. In blind inpainting, the entire output
signal is generated without differentiating the masked and
unmasked parts, i.e. X̂ “ I

`

X´rt1,t2s

˘

.

B. Masking, the core pretext task of HuBERT

HuBERT is an encoder that converts an audio signal X to
a latent representation Z “ tz1, . . . , zLu of size L [17]:2

yl “ f1
`

XrlH´u,lH`ur

˘

, (1)
Z “ f2 pY q , with Y “ ty1, . . . , yLu , (2)

where f1, sometimes referred to as the prenet, is a stack of
CNNs of span 2u samples and hop size H , and f2 is a stack of
Transformer encoder blocks. During training, part of the CNN-
encoded sequence Y is randomly masked to predict the fully-
encoded sequence Z, i.e., Y is replaced by Y´rl1,l2s in (2),
which amounts to masking the corresponding samples in X .
HuBERT is iteratively trained to predict a vector-quantised
representation of the speech signal, denoted C (e.g., vector-
quantised Mel-frequency cepstral coefficient (MFCC) vectors
in the first vanilla HuBERT training iteration). This is done
with the help of two auxiliary modules, g1 and g2, which
act as teacher and student models, respectively. The teacher
module g1 maps the audio signal to the new representation
(unquantised MFCC vectors in the above example), with a
span of 2w samples and window shift H . Before training,
a codebook C of quantised prototype vectors is obtained by
passing part of the training set through g1 and applying a k-
means algorithm on the output. During training, g1 and vector
quantisation (VQ) are applied to extract a ‘reference’ quantised
sequence C “ tc1, . . . , cLu from each waveform of the train
dataset:

cl “ VQC
`

g1pXrlH´w,lH`wrq
˘

, (3)

where VQC stands for VQ using the codebook C. The student
module g2 aims at predicting this quantised sequence from the
encoder output Z:

ĉl “ g2 pzlq “ g2 ˝ f2 ˝ f1
`

XrlH´u,lH`ur

˘

. (4)

The predicted sequence Ĉ “ tĉ1, . . . , ĉLu is expected to be as
close as possible to the reference sequence C. In practice, g2
is implemented with a softmax function involving a (learned)
linear projection of zl over ĉl. During HuBERT training, g1 is
fixed, and f1, f2 and g2 are updated to minimise the distance
between Ĉ and C while part of the Y sequence is randomly

2In the following equations, when chaining several functions, we do not
differentiate if a function applies to a vector of a sequence (at frame l) or
to the complete sequence. This abuse of notation is to notably simplify the
presentation, without affecting the principle of the proposed methodology.

https://gricad-gitlab.univ-grenoble-alpes.fr/huebert/speech-inpainting
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masked across batches. Note that g1 and g2 are only used for
HuBERT pre-training, and are generally discarded at inference
time when using HuBERT in a downstream task. The pre-
trained HuBERT is thus composed of f2˝f1 only, and a newly
trained module dedicated to the downstream task is generally
appended to f2.

To the best of our knowledge, in the many different uses
of HuBERT reported in the literature, the masking is only
used for training and is never kept during inference. In other
words, when using the speech representation Z in downstream
tasks, the input signal X is generally not masked. However,
we hypothesise that at inference, HuBERT should be able to
encode a masked input X´rt1,t2s, since this is equivalent to
masking part of the Y sequence in the pretext training task.
In other words, HuBERT is implicitly an inpainting encoder,
even if, to our knowledge, it has not been considered as such
in the literature.

We showed that during training on masked signals, HuBERT
performs inpainting with a quantised representation of the
input signal (see (4)). Therefore, to carefully match the pretext
training task when performing inpainting in inference, we keep
the auxiliary module g2 responsible for the quantisation of
Z. We then obtain a complete inpainting framework by first
encoding a masked waveform:

Ĉ “ g2 ˝ f2 ˝ f1
`

X´rt1,t2s

˘

(5)

and, with the addition of a decoder d, then convert the
inpainted quantised sequence Ĉ to a waveform X̂ . In the
informed case, this writes:

#

X̂tPrt1,t2s “ dpĈlPrl1,l2sq

X̂tRrt1,t2s “ XtRrt1,t2s,
(6)

where rl1, l2s is the frame interval corresponding to the masked
sample interval rt1, t2s. For the blind case, we simply have:

X̂ “ dpĈq. (7)

In the following, we detail how to adapt g2 for interfacing
HuBERT (f2˝f1) and the decoder (d), and how to accordingly
set up g1 and the codebook C to train g2.

C. Combining HuBERT encoder with HiFiGAN decoder

In this work, we choose HiFiGAN [23] as the decoder, as
it showed one of the highest performance in the most recent
text-to-speech synthesis benchmark [25] and for its versatility
to various input formats [24]. The latter point is crucial in our
study since we need to make the encoder output and decoder
input compatible. We propose two frameworks for this sake:
(i) decoder adaptation (DA), in which the HiFiGAN decoder is
trained to fit a frozen pre-trained HuBERT, and (ii) encoder
adaptation (EA), in which we fine-tune the HuBERT encoder
output to fit the standard frozen HiFiGAN decoder. These
methods are illustrated in Fig. 1 and detailed below.

1) Decoder adaptation: In this first approach, we use a
pre-trained HuBERT model and keep it frozen. To adapt the
HiFiGAN decoder to the frozen pre-trained HuBERT, we
follow the two-step adaptation process used in the GSLM
framework [24]. In the first step, we directly use Z as the new

signal representation (i.e., gpDAq

1 is identical to the frozen pre-
trained HuBERT f2˝f1). A new codebook CpDAq is obtained by
running the k-means algorithm on the Z sequences obtained
on part of the pre-training dataset. g

pDAq

2 is then simply the
quantisation on CpDAq of the encoding Z of any masked input
sequence X´rt1,t2s:

Ĉ “ g
pDAq

2 pZq “ VQCpDAq

`

f2 ˝ f1pX´rt1,t2sq
˘

. (8)

In the second step, we learn from scratch an adapted version
of HiFiGAN dpDAq, similar to the one used in [24]. More specif-
ically, the decoder takes the index of each ĉL in the codebook
CpDAq as input, and learns a look-up table of embedding vectors
that feed the vanilla HiFiGAN architecture. By noting with ˚

the modules that are trained, the full inpainting pipeline IDA is
therefore:

X̂ “ IDA
`

X´rt1,t2s

˘

“ dpDAq˚ ˝g
pDAq

2 ˝f2˝f1
`

X´rt1,t2s

˘

. (9)

2) Encoder adaptation: In this second approach, we use
the vanilla HiFiGAN decoder, which uses a Mel-spectrogram
as input, and keep it frozen, whereas we adapt HuBERT. To
understand well our adaptation of HuBERT and the motivation
behind it, we first need to come back to the conventional
HuBERT training, which principle was given in Section II-B.

As described in details in [17], after pre-training HuBERT
on the masking pretext task with the help of g1 and g2,
the model is fine-tuned on an Automatic Speech Recognition
(ASR) task. In that case, g1 and g2 are discarded, and f2 is
appended with a softmax layer for phoneme class prediction
(the ground truth being obtained from a labelled dataset).
When fine-tuning f2 for this task, this ASR-oriented super-
vised training may encourage the encoder to extract linguistic
information, however at the expense of supra-segmental infor-
mation, such as intonation, which is yet essential to recover
in an inpainting task. In our EA solution to inpainting, we aim
at benefiting from the powerful pre-trained HuBERT while
somehow “cancelling” its fine-tuning on the ASR task, and
at the same time at adapting the HuBERT output to the Mel-
spectrogram HiFiGAN input representation. This is done by
reintroducing g1 and g2, and performing a new iteration of
training on a reasonable amount of training data with the
masking pretext task, and by using the Mel-spectrum (MS) as
the speech representation (hence our adaptation process can
be seen as some kind of fine-tuning).

In a few more details, we define g
pEAq

1 as the extraction of
MS vectors from (frames of 2w samples of) the waveforms X .
The codebook CpEAq is obtained with the k-means algorithm
applied on the output of g

pEAq

1 for a train set. Given an input
sequence X , the teacher module g

pEAq

1 computes an MS vector
for each frame, which is assigned to its closest centroid in CpEAq

(as in (3)). The student softmax-based g
pEAq

2 module of [17] is
also re-introduced, to predict a sequence Ĉ of quantised MS
vectors in CpEAq:

ĉl “ g
pEAq

2 pzlq “ argmaxc

¨

˝

exp

´

sim
`

Azl,e
pEAq
c

˘

{τ

¯

řCardpCpEAqq

c1“1
exp

´

sim
`

Azl,e
pEAq

c1

˘

{τ
¯

˛

‚,

(10)
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where A is a linear projection, simpa, bq is the cosine similarity
between a and b, e

pEAq
c is a learnt embedding of codeword

c P CpEAq, and τ is the logit scale factor [17], set to 0.1.
Following HuBERT training described in Section II-B, gpEAq

1

and f1 are fixed, and f2 and g
pEAq

2 are updated to minimise
the cross-entropy loss between the predicted MS vectors ĉl
and the quantised MS vectors cl P CpEAq, while part of the Y
sequence is randomly masked across batches. At inference, the
sequence Ĉ of quantised MS vectors is directly fed to a pre-
trained vanilla HiFiGAN. By noting again by ˚ the modules
that are trained, the full IEA framework is therefore:

X̂ “ IEA
`

X´rt1,t2s

˘

“ d ˝ g
pEAq˚

2 ˝ f˚
2 ˝ f1

`

X´rt1,t2s

˘

. (11)

III. EXPERIMENTAL SET-UP

A. Datasets

We conducted experiments on both LJ Speech [26] and
VCTK [27] datasets. LJ Speech is an English corpus con-
taining 13 100 short audio clips recorded by a single female
speaker for a total length of approximately 24 h. We isolated
12 950 clips as the training/validation set, the remaining 150
clips being used for test. VCTK includes a set of 43 859 audio
clips recorded by 109 English speakers balanced in gender and
with various accents, for a total of approximately 44 h. We
used 41 747 clips from 105 speakers for training and 389 clips
from 4 speakers for test. Importantly, we carefully designed the
partitioning of the VCTK dataset to have no overlap between
the training and test sets in terms of sentences and speakers. In
other words, the proposed models have to generalise to both
new speakers and new linguistic content.

B. Implementation details

a) SSL encoder HuBERT: For the two proposed inpaint-
ing frameworks IDA and IEA, we used the HuBERT-large model
hubert-large-ls960-ft, publicly available on HugginFace (see
our repository). This model is a fine-tuned version of hubert-
large-ll60k, the latter being initially trained on the Libri-Light
dataset [28], including 60 000 h of speech data from over 7000
speakers. The fine-tuning was done on the LibriSpeech dataset,
containing 960 h of speech data from over 2484 speakers. To
the best of our knowledge, the LJ Speech and VCTK datasets
used in the present study are not included in LibriSpeech.
However, since LJ Speech is extracted from the LibriVox3

dataset , there might be a slight overlap with the very large
Libri-Light dataset (also based on LibriVox). However, this
overlap is approximately 0.0004% (24 vs. 60 000 hours) and
thus remains very limited.

In the HuBERT model used in this study, the speech input is
expected to be sampled at 16 kHz. The prenet window size and
hop size are 8960 and 320 samples, respectively. The output
Z has dimension 768.

3https://librivox.org

b) Adapting the neural vocoder (IDA): For this approach,
we used the implementation of the speech encoder-decoder
framework proposed by [24]. Dedicated codebooks CpDAq were
computed using the LJ Speech (resp. VCTK) dataset, con-
sidering a training subset of 21 h (resp. 36 h) and 100 (resp.
500) clusters. Recall that for this model gpDAq

2 is not trained,
i.e. for any representation Z of a masked input sequence
X´rt1,t2s, g

pDAq

2 retrieves the closest sequence of vectors Ĉ “

tĉ1, . . . , ĉLu from CpDAq. HiFiGAN is then trained from scratch
to generate X̂ from Ĉ. For the multi-speaker configuration (i.e.
model trained and evaluated on the VCTK dataset), a speaker
embedding extracted using the speaker identification model
proposed in [29] was used as an additional conditioning vector.
Here, we trained this model on the same VCTK training subset
than for the codebook computation (36 h). Both the HiFiGAN
vocoder and the speaker identification model were trained with
the Adam optimiser [30] over 200 epochs, with a batch size
of 32 and a learning rate of 2 ˆ 10´4.

c) Adapting the SSL encoder (IEA): In this second ap-
proach, the HuBERT encoder is fine-tuned to directly predict
a quantised Mel-spectrogram representation, which is con-
verted back to a time-domain audio signal with HiFiGAN.
More precisely, gpEAq

2 is an additional linear layer designed to
adapt the HuBERT output Z to a quantised Mel-spectrogram
domain, as defined in equation 10). The Transformer blocks
f2 are fine-tuned while g

pEAq

2 is trained from scratch. For this
sake, the teacher g

pEAq

1 computes 80-dimensional MS vectors
from the input speech, with a window size of 46ms and a
hop size of 20ms. Dedicated codebooks CpEAq were computed
on the LJ Speech (resp. VCTK) training subset. As for the
IDA framework, we used 100 (resp. 500) clusters, but with the
k-means applied on MS vectors obtained from g

pEAq

1 . For each
training set (LJ speech or VCTK), fine-tuning f2 and training
g

pEAq

2 was done using the Adam optimiser over 100 epochs,
with a batch size of 8 and a learning rate of 10´4.

For the audio synthesis, we used a pretrained HiFiGAN
model, 4 taking an 80-dimensional Mel-spectrogram as input,
and generating a waveform at 22.05 kHz.5 While being op-
tional, a slight fine-tuning of HiFiGAN on quantised ground-
truth Mel-spectrograms was found to be beneficial for the
overall audio quality. This was done using Adam over 50
epochs, with a batch size of 8 and a learning rate of 10´4.

d) Post-processing: For the blind inpainting case, the
reconstructed signal was generated entirely by the neural
vocoder. For the informed case, we kept only the generated
signal corresponding to the masked part and we placed it
within the original (masked) signal using a cross-fade of 5ms
on both sides. Finally, the inpainted signals obtained with the
IEA framework were resampled to 16 kHz for a fair comparison
with the other framework and baseline.

4More specifically, we used the UNIVERSAL_V1 model (see our reposi-
tory).

5An upsampling of HuBERT’s codebook, initially computed considering
16 kHz speech input, was therefore necessary.

https://librivox.org
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C. Baselines

As a baseline, we implemented a simple inpainting method
based on linear interpolation (ILI). For a given masked signal,
it consists in calculating its Mel-spectrogram (as done in
Section III-B) and replacing the masked frames with a linear
interpolation between the last frame before the mask and the
first frame after the mask. The interpolated Mel-spectrogram
was then fed to the pre-trained HiFiGAN vocoder to generate a
22.05 kHz waveform, which was then downsampled to 16 kHz.

We also wanted to compare the proposed speech inpainting
frameworks with other recently published methods such as [5]
and [6]. Unfortunately, no source code is publicly available
for these studies (confirmed by the contacted authors) and we
could not perform experiments with these methods with the
exact same configurations as the ones used in the proposed
frameworks. Nevertheless, since we use common metrics
(detailed below), in Sec. IV we compare our results with the
ones reported in [5] and [6], at least in terms of order of
magnitude.

D. Objective metrics

We evaluated the inpainted speech quality using PESQ [31]
and its intelligibility using STOI [32] on both LJ Speech
and VCTK test sets, comprising 150 and 389 utterances,
respectively. Each utterance was masked three times using
mask lengths of 100 , 200 and 400ms, and whose position
was randomly chosen in each utterance, resulting in 539 ˆ 3
masked utterances to inpaint with our three frameworks (ILI,
IDA, IEA). PESQ and STOI were computed by considering
segments of one second of speech, centred on the mask
(therefore, the inpainted speech corresponds to 10, 20, or
40% of the original speech when measuring the score). As
a complementary objective evaluation, we also performed
automatic speech recognition (ASR) on the inpainted speech.
We used a pre-trained Whisper model [33] and report the
character error rate (CER).6 For all metrics, average scores
on each test set and each mask length are reported for all
systems, with the binomial proportion confidence interval.

E. Perceptual evaluation

To further investigate the performance of the proposed
inpainting system, we conducted an online MUSHRA-based
listening test using the Web Audio Evaluation Tool [34]. This
was done only for the informed case. First, we randomly sam-
pled 15 sentences from the LJ Speech test set (mono-speaker
condition), and 15 sentences from the VCTK test set (multi-
speaker condition). For each sentence, we randomly masked a
200ms-long segment and inpainted it with IEA, IDA, and with
the ILI baseline. Finally, we asked 72 native English speakers
(self-reported as British or American, recruited via the Prolific
platform7) to evaluate the quality of the inpainted speech using
a MUSHRA-based protocol [35]. For each sentence, presented

6This metric provides useful information about the phonetic content of the
inpainted speech but may be biased by the linguistic prior on which the ASR
may rely to transcribe it.

7https://www.prolific.co

in random order, participants had to rate comparatively the
three inpainted signals as well as a high-anchor signal (natural
speech). The type of each signal (natural or inpainted) was not
given to participants. As a reference, participants also received
both the original sound file and its textual transcription. To
rate the four stimuli, participants were instructed to focus on
the inpainted speech segment which was highlighted using
square brackets around the corresponding textual transcription.
Following the post-screening procedure described in [35], we
excluded 28 participants who ranked the hidden natural speech
less than 90 out of 100, for more than 15% of the stimuli
(resulting in a final set of 44 participants who were considered
as performing the test correctly).

F. Statistical analysis

In the following, we assess the effect of the mask length,
framework, dataset (mono- vs. multi-speaker) and type of
inpainting (informed vs. blind) factors, when relevant, on the
objective and subjective metrics. We each time use a beta
regression model (using the R function glmmTMB), followed
by post-hoc pairwise comparisons between factor levels (R
function glht). Details of factors involved in each statistical
analysis are given in the next Section. Significance level is
systematically set to p ă 0.01.

IV. RESULTS

A. Qualitative results

Examples of inpainted speech signals obtained with the two
proposed frameworks (IEA and IDA) and with the baseline ILI,
in the informed case, and for a mask length of 200ms, are
presented in Fig. 2. Other examples, for other mask lengths,
are available on our demo webpage8. We first examine the
spectral pattern observed for the linear baseline ILI. Recall
that the Mel-spectrogram is computed from the audio output
of the HiFIGAN vocoder, the latter being fed with a linearly
interpolated mel-spectrogram between the beginning and the
end of the mask. Interestingly, despite this “linear input”, the
inpainted speech is almost –but not entirely– stationary. In
fact, for the mono-speaker case (left column), we can observe
a transient a few milliseconds after the start of the mask.
Consequently, the neural vocoder has “shaped” the linear input
(likely not seen in its training corpus), probably by exploiting
contextual information. However, as our quantitative evalua-
tion confirms (see Sec. IV-B1), this minimal sound shaping
is not precise enough to recover the phonetic content of the
masked part and the speech inpainted by the ILI framework
is most often not intelligible.

We now qualitatively compare the two proposed inpainting
frameworks IEA and IDA. For the mono-speaker case (left
column), the signal to be reconstructed corresponds to ap-
proximately 2 phones: a post-alveolar affricate /Ã/ followed
by a vowel /E/ (in the word suggestion). The complex spec-
tral pattern associated with this phonetic sequence is better
reconstructed by the IEA framework than with IDA, with a
sharper vowel-consonant transition (IDA wrongly maintains a

8http://www.ultraspeech.com/demo/ieee taslp2024 inpainting/

https://www.prolific.co
http://www.ultraspeech.com/demo/ieee_taslp2024_inpainting/
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Fig. 2. Examples of inpainted speech signals (80-dimensional Mel-spectrograms, informed case). Left: Mono-speaker for the sentence “no su[ggest]ion was
made”, Right: Multi-speaker for the sentence “(...) has do[ne a goo]d job”. The green rectangles illustrate the position and length of the mask (200ms).

strong formants structure during the consonant). For the multi-
speaker case (right column), the signal to inpaint corresponds
to the phonetic sequence [n @ g U]. Here, IEA is less efficient. It
correctly reconstructs the initial nasal n as well as the plosive
g and the final vowel U but surprisingly replaces the middle
schwa @ with an unvoiced and high energy sound, creating
a kind of audio artefact. This is not the case with the IDA
framework, with which the signal is very well reconstructed.
These initial qualitative results are confirmed by the quantita-
tive evaluation presented in the following sections.

B. Informed inpainting

1) Objective evaluation: The results of the objective
evaluation of informed inpainting in terms of PESQ, STOI
and CER scores are presented in Table I. We assessed here the
significance of mask length (100 , 200 , 400ms), framework
(ILI, IDA, IEA) and dataset (mono- and multi-speaker) with
the test utterances as a random factor for each objective
metric. Statistical analysis showed that all factors and all their
interactions have a significant effect on each objective metric.
Non-significant pairs of distributions shown by post-hoc
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TABLE I
INFORMED SPEECH INPAINTING RESULTS. FOR ALL METRICS, AVERAGE SCORES WITH CONFIDENCE INTERVALS FOR EACH TEST SET, EACH MASK

LENGTH, AND EACH FRAMEWORK, FOR BOTH THE MONO- AND MULTI-SPEAKER CONFIGURATIONS. THE BEST SCORES PER FRAMEWORK ARE DENOTED
IN BOLD. PAIRS OF SYMBOLS INDICATE PAIRS OF DISTRIBUTIONS THAT ARE NOT SIGNIFICANTLY DIFFERENT.

Mono-speaker (LJ Speech) Multi-speaker (VCTK)
Models Mask (ms) PESQ r´0.5; 4.5s Ò STOI r0; 1s Ò CER (%) Ó PESQ r´0.5; 4.5s Ò STOI r0; 1s Ò CER (%) Ó

Unmasked 0 4.25 ˘ 0.04 0.97 ˘ 0.01 6 ˘ 1 4.05 ˘ 0.06 0.94 ˘ 0.01 4 ˘ 2

100 2.92 ˘ 0.16 0.92 ˘ 0.04 13 ˘ 9 2.40 ˘ 0.15 0.87 ˘ 0.06 17 ˘ 7
Baseline ILI 200 2.25 ˘ 0.17 0.83 ˘ 0.06 16 ˘ 7 1.97 ˘ 0.18 0.77 ˘ 0.04 13 ˘ 4

400 1.95 ˘ 0.13 0.71 ˘ 0.05 19 ˘ 5 1.57 ˘ 0.16 0.60 ˘ 0.05 22 ˘ 6

100 3.06 ˘ 0.17 0.94 ˘ 0.04 15 ˘ 6 ‚ 3.13 ˘ 0.08 0.93 ˘ 0.01 8 ˘ 5
IDA 200 2.85 ˘ 0.18 0.89 ˘ 0.05 § 13 ˘ 9 ‚ ˛ Ĳ 2.93 ˘ 0.11 0.88 ˘ 0.03 § 15 ˘ 7 Ĳ

400 2.78 ˘ 0.16 0.86 ˘ 0.05 ‹ 24 ˘ 14 2.66 ˘ 0.11 0.83 ˘ 0.03 18 ˘ 7 ‚

100 3.28 ˘ 0.07 0.96 ˘ 0.03 7 ˘ 3 3.06 ˘ 0.10 0.90 ˘ 0.07 10 ˘ 6
IEA 200 3.09 ˘ 0.08 0.93 ˘ 0.04 12 ˘ 5 ˛İ 2.70 ˘ 0.15 0.85 ˘ 0.09 12 ˘ 5 İ

400 2.93 ˘ 0.13 0.86 ˘ 0.06 ‹ 14 ˘ 4 2.39 ˘ 0.17 0.79 ˘ 0.11 19 ˘ 8 ‚

TABLE II
BLIND SPEECH INPAINTING RESULTS. FOR ALL METRICS, AVERAGE SCORES WITH CONFIDENCE INTERVALS FOR EACH TEST SET, EACH MASK LENGTH,

AND EACH FRAMEWORK, FOR BOTH THE MONO- AND MULTI-SPEAKER CONFIGURATIONS. THE BEST SCORES PER FRAMEWORK ARE DENOTED IN BOLD.
PAIRS OF SYMBOLS INDICATE PAIRS OF DISTRIBUTIONS THAT ARE NOT SIGNIFICANTLY DIFFERENT.

Mono-speaker (LJ Speech) Multi-speaker (VCTK)
Models Mask (ms) PESQ r´0.5; 4.5s Ò STOI r0; 1s Ò CER (%) Ó PESQ r´0.5; 4.5s Ò STOI r0; 1s Ò CER (%) Ó

0 2.87 ˘ 0.08 0.89 ˘ 0.01 19 ˘ 7 3.11 ˘ 0.04 0.93 ˘ 0.01 13 ˘ 5
100 2.77 ˘ 0.17 0.88 ˘ 0.03 Ĳ 40 ˘ 11 2.93 ˘ 0.09 0.89 ˘ 0.02 Ĳ 26 ˘ 7

IDA 200 2.33 ˘ 0.17 đ 0.75 ˘ 0.05 57 ˘ 14 2.31 ˘ 0.11 đ 0.71 ˘ 0.03 31 ˘ 10
400 1.72 ˘ 0.15 0.54 ˘ 0.05 § 81 ˘ 17 1.53 ˘ 0.11 0.52 ˘ 0.03 ˛ § 51 ˘ 9

0 3.46 ˘ 0.03 0.95 ˘ 0.01 15 ˘ 6 2.78 ˘ 0.02 0.89 ˘ 0.01 16 ˘ 4
100 2.81 ˘ 0.15 0.90 ˘ 0.05 17 ˘ 9 2.57 ˘ 0.16 0.81 ˘ 0.08 20 ˘ 8

IEA 200 2.55 ˘ 0.17 0.84 ˘ 0.06 24 ˘ 14 2.23 ˘ 0.13 0.69 ˘ 0.10 41 ˘ 19
400 1.97 ˘ 0.16 0.79 ˘ 0.06 39 ˘ 8 1.39 ˘ 0.19 0.51 ˘ 0.10 ˛ 56 ˘ 21

analyses are indicated by pairs of symbols in Table I and
reported accordingly in the text.

a) Influence of mask length: Pairwise comparisons show
significant differences between the three mask length levels,
on all metrics, for each framework and each dataset, except
in terms of CER between mask lengths of 100ms and 200ms
in the IDA ˆ mono-speaker condition (‚). As expected, as the
mask length increases from 100 to 400ms, the performance
across all evaluated metrics decreases. For example, for the
IEA framework, the PESQ score is 3.28 for a mask length of
100ms and it drops to 2.93 for a mask length of 400ms.

b) Comparison with the baseline: Pairwise differences
between the three inpainting frameworks metric distributions
are significant for all mask length and datasets, except
between the IDA and IEA frameworks in terms of STOI in
the 400ms ˆ Mono-speaker (‹) condition ; and in terms of
CER in the 200ms ˆ mono-speaker (˛) and in the 400ms
ˆ multi-speaker (‚) conditions. In particular, both proposed
inpainting frameworks (IEA and IDA) obtain scores that are
systematically greater (and often much greater) than those
obtained by the ILI baseline, for both the mono-speaker and
multi-speaker cases. This confirms the expected need for a
non-linear modelling to fill gaps that include more than a
diphone transition. This also demonstrates the interest of

using a powerful encoder like HuBERT, which is able to
exploit the contextual information to access the high-level
linguistic information needed for inpainting long gaps.

c) Mono-speaker vs. multi-speaker: All metrics distribu-
tions between datasets are also significant for each framework
and mask length, except between the mono- and multi-speaker
datasets in terms of STOI in the IDA ˆ 200ms (§) condition ;
and in terms of CER in the IDA ˆ 200ms (Ĳ) and in the IEA ˆ

200ms (İ) conditions. Interestingly, results display a strong
interaction between the dataset and the framework factors. In
the mono-speaker case, the IEA framework (fine-tuned SSL
encoder) consistently outperforms the IDA framework (frozen
SSL encoder) across all evaluated metrics. For example, for
a mask length of 100ms, IEA achieves a PESQ score of
3.28, a STOI score of 0.96, and a CER of 7%, whereas
IDA obtains 3.06, 0.94, and 15%, respectively. Conversely, in
the multi-speaker setting (VCTK dataset), best performances
are systematically obtained with IDA. For example, with a mask
length of 400ms, IEA gets a PESQ score of 2.39, a STOI score
of 0.79, and a CER of 19%, whereas IDA yields scores of 2.66,
0.83, and 18% respectively. The difference probably stems
from the difficulty for IEA to compress in a single codebook all
the inter-speaker variability. The use of a speaker embedding
as done in IDA appears to be a much more efficient strategy.
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Fig. 3. Boxplots illustrating the distribution of the MUSHRA scores for the
two models IEA and IDA, and for the ILI baseline (informed inpainting with
a 200ms-length mask). *** indicates that the differences between each pairs
of inpainting frameworks were found very significant (i.e. p ď 0.001).

2) Perceptual evaluation: Results of the perceptual
evaluation, conducted in the informed case with masks
of 200ms, are presented in Fig. 3. We assessed here the
significance of the framework (ILI, IDA, IEA) factor with the
participants as a random effect, and pairwise comparison
displays significant differences between all frameworks.
These results confirm all the trends revealed by the objective
scores. Both proposed frameworks clearly outperform the
baseline. The IEA framework provides better results than the
IDA framework in the mono-speaker case, and the opposite is
observed in the multi-speaker case (with an even more marked
difference between the two frameworks). It is interesting
to note that the performance levels obtained for the two
proposed frameworks exceed 80%, and even 90% for the
IDA framework in the multi-speaker case, for which the
reconstructed signal is very close to the original signal.

C. Blind inpainting

The results of the objective evaluation of blind inpainting
in terms of PESQ, STOI and CER scores are presented
in Table II. To compare informed vs. blind inpainting, we
assessed the significance of mask length (100, 200, 400ms),
framework (IDA, IEA), dataset (mono- and multi-speaker) and
type of inpainting (informed vs. blind) with the test utterances
as a random factor for each objective metric. Note that
compared to Section IV-B1, the ILI level is removed from the
framework factor, as it is not evaluated in the blind inpainting
case. Statistical analysis shows that all factors and all their
interactions have a significant effect on each objective metric.

a) Informed vs. blind: Pairwise comparisons show
significant differences between the informed and blind
metrics distributions, for each framework, dataset, and mask
length. Compared to the informed inpainting configuration,
the blind configuration is more challenging (the position
of the mask is unknown and the full signal hence is
reconstructed). As expected, it leads to lower performance,
and this is observed for both IEA and IDA, for both datasets,
all mask lengths, and all metrics. For example, for blind

inpainting with a 200ms mask length in the mono-speaker
case, IEA gets a STOI score of 0.84, compared to 0.93 in the
corresponding informed case. Moreover, informed inpainting
methods consistently exhibit lower CER, reflecting higher
accuracy in reconstructing corrupted segments.

b) Effect of mask length, framework, and dataset: All
pairs of distributions across the three factors are significant,
except in terms of PESQ between mono- and multi-speaker
datasets in the IDA ˆ 200ms (đ) condition ; in terms of
STOI between the IDA and IEA frameworks in the 400ms ˆ

multi-speaker (˛) condition and between mono- and multi-
speaker in the IDA ˆ 100ms (Ĳ) and IDA ˆ 400ms (§)
conditions. Interestingly, the interactions between the type of
inpainting and each of these three factors are weak, as all
the trends observed in the informed inpainting case remain in
the blind inpainting case. Similarly to informed inpainting,
performances of all metrics drop as mask length increase.
Above all, the interaction between framework and dataset is
still present, as the IEA framework provides better results than
the IDA framework in the mono-speaker case, and the opposite
is observed in the multi-speaker case.

D. Comparison with other studies

As announced in Section III-C, we compare the overall
performance of the proposed frameworks with that of two
recently published methods based on supervised deep learning
[5], [6]. We recall that, since no source code was available for
these techniques, we use the scores reported in the papers,
and we compare the performances only in terms of order of
magnitudes.

In [5], with a training and test on a multi-speaker dataset
(LibriSpeech) and in the informed inpainting case, the authors
reported a PESQ (resp. STOI) score of 3.24, 2.81, and 2.18
(resp. 0.94, 0.89, and 0.73) for mask lengths of 100, 200,
and 400ms, respectively. In [6], the authors reported PESQ
(resp. STOI) scores of 3.30, 2.61, and 1.76 (resp. 0.96, 0.89,
and 0.73) for similar masks and dataset. In our study, the best
scores on the same settings for IDA (resp. IEA), were 3.13, 2.93,
and 2.66 (resp. 3.06, 2.70, and 2.39) for PESQ, and 0.93, 0.88,
and 0.83 (resp. 0.90, 0.85, and 0.79) for STOI (see Table I,
multi-speaker).

For the blind case, we can only compare our results to
those reported in [5] (Table 3, condition “FC-gaps”) since it
is not treated in [6] (to the best of our understanding). In this
case, our performances are significantly lower, both in terms
of STOI and PESQ. For example, for a mask length of 400ms
[5] reported a quite high STOI score of 0.71 when we obtained
only 0.52 with the (best) framework IDA. The differences
between the two techniques are smaller when the mask length
is shorter (e.g. a PESQ score of 2.72 in [5] for a mask length
of 200ms vs. 2.31 with IDA). Further experiments could be
useful to better understand the origin of these differences in
the case of blind inpainting. We would need to check that this
is not simply due to the nature of the training/test datasets, to
the analysis-synthesis ability of the methods, or to a different
method of calculating the PESQ and STOI scores.
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To conclude, this “meta-comparison” shows that the two
proposed frameworks IEA and IDA seem to outperform other
approaches based on supervised learning, at least in the
informed case, and in particular for long masks (i.e., 400ms).
Here again, this can be explained by the ability of a pow-
erful SSL model, pre-trained on a huge amount of data, to
extract the high-level linguistic information (e.g., syntactic and
semantic) of the sentence to be reconstructed, based on the
contextual non-missing information.

V. CONCLUSION

This study evaluates the extent to which the pretext task of
an unsupervised SSL model can be leveraged in an inpainting
task. In particular, we investigate the ability of a non-causal
SSL to “fill in the gap” by reconstructing a missing part of
a speech signal from its surrounding context, and when com-
bined with a neural vocoder (used as a decoder), to reconstruct
the speech waveform. Two ways of combining non-causal
prediction using a Transformer-based encoder and a neural
vocoder were compared. Objective and perceptual evaluations
showed that fine-tuning the SSL encoder for inpainting is the
best strategy when dealing with mono-speaker data, while
adapting the decoder performed better in the multi-speaker
case. Further work will focus (i) on a fine-grained analysis
of the inpainted speech at different linguistic scales (phonetic,
syllabic, morphologic), and (ii) on the relationship between
the context actually used by the SSL encoder on one hand,
and the length and linguistic complexity of the signal to
be reconstructed, on the other. Finally, in addition to their
technological applications, the proposed speech inpainting
systems, and SSL models in general, provide a means of
finely quantifying the amount of predictable information in
the speech signal. Therefore, they can be potentially useful
for studying, through computational modelling and simulation,
some of the predictive processes underlying speech perception
[36], [37]. The proposed framework based on non-causal
prediction could complement other studies conducted in the
context of the predictive coding framework and focusing on
causal predictions (e.g. [38], [39], [40]).
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