Detection of Object Interactions in Video Sequences
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Abstract—In this paper, we propose a novel framework for
unsupervised detection of object interactions in video sequences
based on dynamic features. The goal of our system is to process
videos in an unsupervised manner using Hierarchical Bayesian
Topic Models, specifically the Hierarchical Dirichlet Processes
(HDP). We investigate how low-level features such as optical flow
combined with Hierarchical Dirichlet Process (HDP) can help to
recognize meaningful interactions between objects in the scene,
for example, in videos of animal interaction recordings, kicking
ball, standing, moving around etc. The underlying hypothesis
that we validate is that interactions in such scenarios are heavily
characterized by their 2D spatio-temporal features. Various
experiments have been performed on the challenging JAR-AIBO
dataset and first promising results are reported.

I. INTRODUCTION

Application fields such as video-based surveillance sys-
tems, animal monitoring systems etc., often require us to
distinguish the interactions between objects or the interactions
between objects and their surroundings. Figure 1 shows an ex-
ample scenario where various objects in a scene are interacting
with each other. The meaningful interactions in a scene are
characterized by the spatio-temporal dynamics of the objects
within the scene.

Detecting interactions between objects in scenes is a
challenging problem in computer vision. The challenge is
compounded by various aspects such as occlusions, variations
in objects sizes, illumination variations, noisy recordings etc.
It is important that any system tackling the problem is robust
with respect to such factors.

Further, in many of these application scenarios, the inter-
actions are not well-known beforehand, and preparation of
a well-labeled data-set covering all possible interactions for
the purpose of training a machine learning algorithm may not
be possible. For example, in the scenario where we observe
interactions between animals, all the interactions the animals
might be involved in can not be determined beforehand, and
sometimes, even the exact number of possible interactions is
impossible to predict. In such situations, use of unsupervised
methods becomes imperative.

For unsupervised scenarios, as the kind of interactions are
not known beforehand, interactions are defined as co-occurring
actions from multiple actors or actors performing actions using
some inanimate objects in the scene.

In the literature, Hierarchical Dirichlet Processes (HDP)
and their derivatives have been used for unsupervised activ-
ity perception and analysis [1]-[3]. While they have been
demonstrated for activity perception and detection for crowded

scenes or individual actors, it is not clear whether HDP can
be extended to analyze specific interaction between actors, or
between actors and objects, in a scene. Further, determining
the correct representation schemes for the current task remains
a challenge.

According to our knowledge, most of the current object
interactions modeling systems rely on supervised learning
methods and some features such as histogram of oriented
gradients (HOG), scale-invariant feature transform (SIFT),
shape/appearance feature matching etc. [4]-[12]. These frame-
works typically start with the localization of an object in the
frames and then determining the relevant action. Some of
these works done on learning the interactions applied on static
images [8], [9], [13], [14]. However, object segmentation and
localization are often error prone steps, leading to performance
deterioration. They suffer from problems such as camouflage,
noisy recording process, occlusions, or poor visibility.

Another interesting line of approaches are based on rec-
ognizing objects, actions and human poses [6], [13], and then
detecting/recognizing interactions from static images of single
object without using feature matching and motion analysis.

Also, in [11], the authors used network graphs framework
to analyze the interaction between parts of an object. The body
parts and objects are represented as nodes of social network
graphs, the parts are tracked to extract the temporal features
and the social network analysis features provide the spatial
features. They then, used SVM and a Hidden Markov Model
to classify the interactions of the object’s parts. However, an
approach free from object localization requirement and using
features that better characterize the interactions in the scene is
called for. As a solution, some methods focus on background
subtraction [4], [8].

In contrast, to tackle the task of interaction detection in
an unsupervised manner and without object localization/pose
estimation, we combine the HDP model presented in [15], and
low level features such as optical flow using [16]. Since, to
the best of our knowledge, no such work has been done in
the past, we evaluate the advantages and drawbacks of our
HDP-based algorithm on the challenging JAR-AIBO dataset
[17] and present the results.

II. OpTICAL FLOW AND HDP

Due to their wide applicability, clustering techniques are
applied commonly in many areas of computer vision. Unlike
supervised classification methods, in clustering, class labels are
not supplied. There are two categories of clustering algorithms:
partitioning and hierarchical. Most of the partitioning based



(b) Playing with the ball

Fig. 1: Examples of interactions between objects. In (a), in successive frames, the dogs are coming together from the corners of
the marked area. (b) shows the four dogs playing with the ball in the middle. Images are from the JAR-AIBO dataset [17].
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Fig. 2: HDP Model.

clustering techniques such as k-means and Latent Dirichlet
Analysis (LDA), require a set of parameters, such as the num-
ber of clusters to be provided, which limits their applicability
in many situations where such information is not available. In
HDP, the number of clusters is deduced automatically from
the data and hyper-parameters. As will be formally shown
later (cf. 3), the number of resulting clusters in HDP can be
controlled by the hyper-parameters «, v and 7. The hyper-
parameters, especially 7, determine the number of extracted
clusters, in our case interactions.

HDP has been originally designed for clustering words
in documents based on word co-occurrences. Figure 2 shows
the basic HDP model. Suppose we are given an input data
corpus, which is divided into M documents and each document
consists of a set of words y, ,,, where n € [1, Ny,]. The goal
of the HDP model is to cluster these words into meaningful
latent structures, or topics.

In our case, given an input video, optical flow features
are extracted from each pair of successive frames using TV-
L! algorithm [16]. The resulting optical flow is threshlolded to
remove noise such as changing illumination or camera motion,
and only significant motion is used for feature extraction.
Subsequently, the optical flow vectors are quantized into eight
directions. The optical flow features can be defined as X=(z,
y, u, v), where (x, y) is the location of a particular pixel
in the image, and (u, v) are the flow values which represent
the vector of optical flow. Based on the flow values, the
magnitude and direction of the optical flow can be represented
as P = vu®+v? and 6 = tan~! (£) respectively. Figure 3
illustrates the complete procedure.

Then a dictionary or codebook is built with all possible
flow words (flow words are four-tuples, x-y co-ordinates and
associated flow values). The video is divided into small equally
sized clips (e.g. 10 sec) without overlapping, and each clip
is represented by a bag-of-words based on the dictionary. In
our framework, clips and optical flow words correspond to
documents and words, respectively.

The HDP model generates the global list of interactions
using a top level Dirichlet Process (DP) Gg. Then, Dp gener-
ates specific interactions GG,,, which are drawn from the global
list Gy for each clip. Formally, we write the generative HDP
formulation as shown in 1:

Go |7, H ~ DP(v,H)

Gm | OL,GO ~ DP(O(,GO) (l)

for m € [0, M]

where the hyper-parameters « and  are called the con-
centration parameters and the parameter H is called the base
distribution (Dirichlet distribution). Therefore, the observed
words z,, , are seen as being sampled from the mixture priors
®m,n» Which in turn are seen as being drawn from a Dirichlet
Process Gy The values of mixture components drawn from 6y,
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Fig. 3: Illustration of the process of extracting optical flow features and arranging them according to a bags-of-words representation

scheme.

Thus, the formulation of this construction can be written as,
Op ~ P(n) for k € [1,00)
Gmm | @, Gy ~ Gy, for m e [i, M],n € [1,N,] (2
Tman | POk ~ F(b4,, )

where M is the number of clips in sequences, N,, is
the number of words in clip m, P(:) and F(-) are the prior
distribution over topics and the prior word distribution given
the topic respectively.

In our problem, we perform the Bayesian inference, where
given the observed words, we infer the latent interactions.
As a closed form solution for the inference process is not
available for our case, we use the Markov Chain Monte
Carlo (MCMC) approximation, specifically Gibbs sampling,
using the Chinese Restaurant Franchise-based formulation.
Following the formulation of [2], the conditional probability
of the topic-word association for each iteration step evaluates
to:

p(d)mﬂ = k’ Ck, 77773 03 H) S8
-m,n
-m,n Nkt iy n (3)
n i + Ckg "V/I';L’"i
( m,k k) ny ”—|—V.7]

where n,, 1; ny,¢; and ny represent count statistics of the
word-topic, topic-document and the topic-wise word counts,
respectively.

The superscript —m,n means that the current word z,,
must be eliminated from these statistics. V' is the size of the
dictionary. The first part of the equation 3 reveals that the prob-
ability of assigning the current word to a topic is proportional
to the number of words already assigned to that topic. This
forms the basis of the clustering property of the HDP model.
The second part (the probability of creating a new topic) shows
that the hyper-parameters «,~ and especially n can be used
to determine the number of extracted topics We also perform
hyper-parameter sampling to make our framework completely
data-driven. For further details on the sampling procedure, we
refer to [15].

III. EXPERIMENTS
A. Data-set

We use the challenging JAR-AIBO dataset [17] to evaluate
our system (cf. Fig. 1). JAR-AIBO dataset enables us to test
our system in the face of many issues such as changing
illumination, changing object view and occlusions. It contains
5 sequences taken of four SonyAIBO robot dogs performing
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Fig. 4: Some qualitative results with various extracted interactions, coded by different colors. Note the impact of varying the
value of the HDP’s hyper-parameters « and 7 on the number of extracted interactions.

actions autonomously, which are captured by six cameras at 17
fps with a resolution of 640 x 480 pixel. The camera feeds are
synchronized to a frame level. In our experiments, we utilized
the sequences of two cameras.

In all, we have approximately 15 interactions involving
four dogs. Interactions include the dogs “converging” from all
corners of the frame to the center, “playing with the ball”, one
or more dogs “leaving the group”, one dog “walking around”
the others, one dog “kicking the ball” as other dogs walk
around, etc. Figure 1 shows some example frames of “coming
together” and “playing with the ball” interactions. In all these,
more than one dog is involved and the challenge is to detect
these interactions without any prior knowledge about them.

B. Experimental setup

The optical flow extraction is performed as follows. As
we mentioned above, optical flow is computed using [16].
Each frame is divided into grid cells of size 8 x 8 pixels,
and quantized into eight directions. Hence, the size of the
dictionary is 80 x 60 x 8. In our experiments, in order to
study the effects of clip lengths on performance, the video
is divided into clips of various sizes ranging from 100 to 400
frames each — corresponding to approximately 5 to 23 seconds
in the videos — and constructed bags-of-words representations
for them.

Though the HDP model provides possibility of assigning
multiple topics per word based on its context. In this paper,
we also study the effect of changing the hyper-parameters «, 1
where their values ranging from 0.1 to 1.5. Further, as it gets
re-sampled depending on the data and the initial value does

not significantly affect performance, we initialize y=1 in all
experiments.

For quantitative performance evaluation, we use the true
positive rate (TPR) and the false positive rate (FPR), defined
as follows:

TP FP
= = R= “
TP +FN FP+TN
where TP, FP, FN, and TN stand for True Positives, False
Positives, False Negatives, and True Negatives respectively.

TPR

As the data-set does not contain ground truth in terms of
object interactions, the video sequences were marked with clip-
wise annotations regarding the interactions contained within
them!. Then, following the procedure similar to [1], [3], the
output of our system is manually mapped to the ground truth
labels and the performance measures are calculated.

C. Results and Discussion

We can see some quantitative results in Fig. 4, for a video
containing four dogs, where the dogs start from different
corners of the frame, converge at the center, play with the
ball, and finally one dog leaves the group to the bottom right
corner of the frame. In Fig. 4a, interactions 1-4 and 7 represent
the “converging” interaction, interactions 5 and 6 represent
“playing with the ball” interaction, and interactions 8 and
9 represent the “dog leaving the group” interaction. Similar
parallels can be seen in Fig. 4b.

The impact of varying the values of the HDP’s hyper-
parameters on the number of extracted interactions can be

IThe ground truth will be made available as a part of the data-set



interaction 3 interaction 4 interaction 5

interaction 8

interaction 1 interaction 2

interaction 6 interaction 7 interaction 9 interaction 10

(a) Viewl

interaction 4 interaction 5

interaction 9

interaction 1 interaction 2 interaction 3

interaction 6 interaction 7 interaction 8

e W Ea

(b) View2

Fig. 5: Interactions extracted for multiple views. Note that
despite the change of views, the interactions are still detected
meaningfully.

clearly seen. The number of topics grows with increasing
hyper-parameters values. Figures 4(a),(b) show that high values
of hyper-parameters in situations with smaller number of
interactions result in the creation of duplicate interactions. For
example, in Fig. 4(a) interaction 4 is a duplicate of interaction
3, with only a few noisy flow vectors being the difference.
In Fig. 4(b), this is more pronounced, where interaction 3,
for example, is repeated four more times in interactions 5 to
8. Sometimes, due to high hyper-parameter values, a single
interaction, such as interaction 5 in Fig. 4(a), is split into
multiple smaller interactions, such as interactions 11 to 16 in
Fig 4(b). This increase in the number of inferred interactions
follows from the HDP inference process, where higher values
of hyper-parameters imply a higher probability of drawing new
interactions, and the presence of noisy features compounds the
effect.

Quantitatively, Fig. 6 and 7 show the variations in number
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Fig. 6: Number of interactions extracted for each of the five
videos as a function of the hyper-parameter «. 1 was held
constant at 0.5.
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Fig. 7: Number of interactions extracted for each of the five
videos as a function of the hyper-parameter 1. o was held
constant at 0.5.

of interactions extracted as a function of the two hyper-
parameters « and 7 respectively. Clearly, the number of in-
teractions extracted increases with the hyper-parameter values.
However, it is interesting to note that the range of the number
of interactions is larger in the case of hyper-parameter 7). This
is due to the fact that, being the parameter controlling the
probability of generation of new interaction directly, it has
larger effect on the resulting number of interactions. Therefore,
a user can provide prior knowledge about the number of
interactions through setting the hyper-parameters accordingly.

Figure 5 shows the extracted interactions for two different
views. It can be clearly observed that despite a change in view-
point, the extracted interactions are stable.

Table I shows the quantitative evaluation of our experi-
ments. As can be observed, View 1 with frame size 400 has



TABLE I: Results of the HDP algorithms for two views.
The effects of clip-sizes on the performance can be clearly
observed.

View View 1 View 2

Clip Size (Frames) 100 250 400 100 250 400
True Positive Rate% 77.14 | 78.60 | 8235 | 77.14 | 78.57 | 7647
False Positive Rate % 3295 | 41.70 | 32.00 | 52.13 | 51.16 | 31.81

achieved the high value of TPR 82.35 % also lowest value
of FPR 31.81 %, whereas the lower frames per clip values
result in worse performance. This is likely due to the fact
that, smaller clip sizes split the interactions into many sub-
interactions, and consequently, performance suffers.

IV. CONCLUSIONS AND FUTURE WORK

The aim of this paper was to show how low-level optical
flow features combined with a Hierarchical Dirichlet Process
can be used to extract meaningful interactions in video se-
quences in an unsupervised manner. We compared the effect of
several values of HDP’s hyper-parameters, and the qualitative
results obtained from the various experiments performed on
the challenging JAR-AIBO dataset were promising.

Future research topic will be a comparison of different
features combined with Hierarchical Dirichlet Processes and
other similar topic models. Furthermore, in order to reduce
testing time during deployment, we can use a step-wise com-
bination of generative and discriminative methods, following
the approach of [3]. Use of other clustering schemes, such as
DP-means of [18] also seems interesting.
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