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Abstract

Causal inference in a nonlinear system of multivariate time
series is instrumental in disentangling the intricate web of re-
lationships among variables, enabling us to make more accu-
rate predictions and gain deeper insights into real-world com-
plex systems. Causality methods typically identify the causal
structure of a multivariate system by considering the cause-
effect relationship of each pair of variables while ignoring the
collective effect of a group of variables or interactions involv-
ing more than two-time series variables. In this work, we test
model invariance by group-level interventions on the trained
deep networks to infer causal direction in groups of variables,
such as climate and ecosystem, brain networks, etc. Extensive
testing with synthetic and real-world time series data shows
a significant improvement of our method over other applied
group causality methods and provides us insights into real-
world time series. The code for our method can be found at:
https://github.com/wasimahmadpk/gCause.

Introduction
Group-based causal inference investigates causal relation-
ships within specific groups of individuals, entities, or units.
It is particularly relevant when studying complex systems
with interconnected components such as in climate (Molo-
toks et al. 2020) and brain networks (Faes et al. 2022), al-
lowing researchers to investigate how variables within dis-
tinct groups contribute to observed outcomes or behaviors.
In this paper, we explore the fundamental concept behind
group-based causal inference in multivariate time series and
its growing significance in diverse disciplines. To this end,
we present our approach to testing the causal link in groups
of time series, see Figure 1, which provides a comprehen-
sive understanding of how these groups interact. The pro-
posed method allows the testing of bi-directional causal
links. Our method builds on our previous work (Ahmad,
Shadaydeh, and Denzler 2022), which exploits the model
invariance property through Knockoffs (Barber and Candès
2015, 2019; Barber, Candès, and Samworth 2020) interven-
tions for pairs of variables in deep networks for causal es-
timation. However, here we emphasises the identification of
causal interaction in groups of variables and is the first group
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Figure 1: Interactions among groups of multivariate time se-
ries data of various dimensions.

causality method to the best of our knowledge which uti-
lize deep learning to learn complex nonlinear relation. The
model invariance property refers to the invariant behavior
of the model in different settings when its causal predictors
are observed (Peters, Bühlmann, and Meinshausen 2016).
We use DeepAR (Salinas et al. 2020) to model multivariate
time series which has the potential to learn complex interac-
tions in nonlinear data. Since deep networks cannot handle
missing variables or adjust to out-of-distribution data, we
use Knockoff variables for interventions on the trained deep
networks. Knockoffs are in-distribution, uncorrelated copies
of the original data with similar covariance structure.

To demonstrate the robustness and practical utility of our
approach, we evaluate its performance on synthetically gen-
erated time series and real-world datasets. We compare our
method with other group causality methods, i.e., Vanilla-
PC (Janzing, Hoyer, and Schölkopf 2009), Trace method
(Zscheischler, Janzing, and Zhang 2012) and 2GVecCI
(Wahl, Ninad, and Runge 2023). As a real-world applica-
tion, we mainly focus on the climate system and assess-
ing the direction of connections in brain networks. This in-
volves considering the internal processes over a period of
time involving interactions within and between different cli-
mate subsystems, i.e., ocean, land, ecosystem, atmosphere,
etc. (Latif and Keenlyside 2009). For example, how cli-
mate and ecosystem interact (Malhi et al. 2020; Sefidmazgi
and Sefidmazgi 2020; Korell et al. 2020), or how major
climate phenomena such as the El Niño Southern Oscilla-
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tion (ENSO) affect different global regions (Nowack et al.
2020). These highly complex interactions provide the ba-
sis for understanding the profound impacts of environmen-
tal change. We conducted experiments on the FLUXNET
data (Pastorello et al. 2020), which contains measurements
from different sites that capture climate-ecosystem dynam-
ics, where we aim to uncover the causal pathways between
climate and ecosystem. We have also tested our method on
a climate science dataset (ENSO 3.4), where we aim to es-
timate the impact of temperature patterns in the tropical Pa-
cific on British Columbia. Moreover, we apply our method
to simulated fMRI time series to identify connections in the
brain network and indicate their directionality.

Related Work
There are many methods for time series causal inference
with applications in various fields that rely on certain as-
sumptions that limit their applicability (Yao et al. 2020).
These approaches treat each system variable separately and
estimate its causal relation to other variables, overlooking
the group or collective influence, e.g., causal relation in
brain regions (Siddiqi et al. 2022), ecosystem and climate
subsystems, etc. The work of (Besserve et al. 2018) presents
a group theoretical framework to assess the relationship be-
tween cause and mechanism using group transformations.
Vanilla-PC (Janzing, Hoyer, and Schölkopf 2009) estimates
the direction of a causal link in two groups of time series;
however, the method suffers from high dimensionality in
terms of accuracy and computation time because it runs a
higher number of conditional independence tests. The Trace
method is introduced by (Zscheischler, Janzing, and Zhang
2012) to infer causal direction in two linearly interacting
groups which works faster, however, its performance de-
grades in case of high nonlinear relationships in groups. The
authors of (Wahl, Ninad, and Runge 2023) present 2GVecCI
for uni-directional causality between two groups where they
combine the constraint-based approach for causal discovery
with sparsity measures of the internal causal structure of the
groups. The 2GVecCI method is based on two principles for
causal relations between groups of time series. First, condi-
tioning on the cause group does not lead to new conditional
dependencies within the effect group. Second, conditioning
on the effect group does not delete conditional dependencies
within the cause group.

The authors of (Faes et al. 2022) assess higher-order in-
teractions in networks of processes through time and fre-
quency domain analysis. The work of (Sato et al. 2010) uses
Granger causality for a set of time series to analyze the con-
nectivity between brain regions, assuming that sets are lin-
early related to each other while real-world data are highly
nonlinear. Approaches that depend on the non-Gaussian na-
ture of noise for drawing conclusions about causal direc-
tion, for example, LinGaM (Shimizu et al. 2006), become
less effective due to the influence of averaging caused by
the central limit theorem, which tends to make the aver-
aged noise distribution more Gaussian. Furthermore, meth-
ods for group causality aim to transform data by aggregation
or dimensionality reduction, where a significant amount of
information may be lost and, more importantly, the exist-

ing causal structure (Spirtes, Glymour, and Scheines 2000)
is disrupted. However, our work utilizing deep networks
has the potential to learn complex relationships in high-
dimensional data. For brain data, the detection of networks
and their directions using fMRI time series is of high inter-
est. The work of (Smith et al. 2011) presents various corre-
lation and causality-based method to identify the association
between brain network nodes and assign a direction to them.
They generate realistic simulated fMRI data for a wide range
of underlying networks and experimental protocols to com-
pare different connectivity estimation approaches.

Method
In this section, we present the formulation of our method
for group causal discovery assessing the causal relation-
ships within sets of N -variate system of time series de-
noted as ZN = {Z1, . . . , ZN}. These variables are orga-
nized into G groups or subsets of variables, represented as
XG = {X1, . . . , XG}, which can be considered as indica-
tive of the behavior of a network comprising G distinct dy-
namic subsystems. Referring to the real-world applications,
the groups Xi, i = 1, . . . , G may represent subsets of the cli-
mate system, brain networks, etc., where each group process
Zt,t=1,...,n, may represent the intra-atmospheric interaction
or neural activity of a brain region. Each of these groups
Xi : Z ⊂ ZN has a certain dimension Gi, such that the total
number of variables N can be expressed as N =

∑G
i=1 Gi.

The method allows the assessment of uni- and bi-directional
causal links in any number of groups. For two causally re-
lated groups Xi, Xj , i, j = 1, . . . , G where i ̸= j, the possi-
ble links can be Xi

causes−→ Xj , or Xj
causes−→ Xi or Xi

causes←→ Xj .

Assumptions We infer causal relationships in groups of
nonlinear multivariate time series by making the following
assumptions:

- Stationarity: The variables ZN represent a stochastic sta-
tionary process.

- Causal Sufficiency: The set of observed variables ZN =
{Z1, . . . , ZN} contain all common causes in ZN , i.e., no
hidden confounders.

- Model Invariance: The causal structure in the stochastic
processes ZN remains consistent across different inter-
ventional enviroments.

The presented method for group causality in time series
builds on our previous work (Ahmad, Shadaydeh, and Den-
zler 2022) where we model the complex interactions in
N -variate time series by training deep networks and ap-
ply model invariance testing through group-level interven-
tions for inferring causal direction in groups. A model is
invariant if, in the presence of its causal predictors, the
distribution of its output residuals does not change across
interventional environments (Peters, Bühlmann, and Mein-
shausen 2016). The schematic diagram for our method
is shown in Figure 2, where we apply invariance test-
ing to deep networks trained on sets of time series in
order to infer causality in groups. Through deep autore-
gressive models (Salinas et al. 2020) which takes ZN =



Figure 2: Schematic diagram of group causal discovery method where we model the complex relation among all variables in the
system with deep learning approximator. For group-level causal inference, we implement model invariance testing by applying
intervention to a group of interest and estimate its influence on the target group.

Figure 3: Distribution shift of a. ecosystem group GE = {GPP,Reco} in response to intervention on climate group GC =
{T,Rg}. b. British Columbia temperature in response to intervention on ENSO temperature data. c. Brain network N2 in fMRI
time series after group-level intervention on network N1.

{Z1, . . . , ZN} as input, we model the conditional distribu-
tion P (Zi,t0:T |Zi,1:t0−1, Z−i,1:t0−1), i = 1, . . . , N of the
future of all system variables given their past values. Here
Zi represents node of the target group and Z−i refers to the
nodes in the rest of the groups in XG. It utilizes recurrent
neural networks (RNNs) to generate probabilistic output in
terms of µ and σ2 at each time point where the mean rep-
resents the central estimate, and the variance represents the
uncertainty of the system. For all variables, we obtain dis-
tribution R of their residuals en = e1, . . . , en for n forecast
windows where e = 1

T

∑T
t=1 |

Zt−Zpred

Zt
| and T represents

forecast horizon. Pertaining to the invariance property, the
model response Zi, which is the target group of variables,
does not change in different settings as long as we don’t per-
turb the cause group.

Knockoff Intervention The effectiveness of our previ-
ously proposed Knockoff intervention (Barber and Candès
2015, 2019; Barber, Candès, and Samworth 2020) compared
to other intervention methods is demonstrated on node-to-
node causal relationship in multivariate time series (Ahmad,
Shadaydeh, and Denzler 2021, 2022). Let’s say Xj represent
the group of output variables of the trained deep network,
and Xi denotes the input group where i ̸= j. The causal
effect of group Xi on the network output group Xj under
intervention is denoted as:

E(Xj |do(Xi = X̃i) (1)

where X̃i is a knockoff representation or configuration
to which the group of variables Xi is set. Note that group
Xi contains internal process or nodes Zt, t = 1, . . . , n.
Each node within a group is replaced with the generated
knockoff copies. Applying the do-operator on trained deep



Figure 4: a. Illustration of exchangeability property (Z1, Z2)
d
= (Z1, Z̃2) of knockoff variables b. Shows the correlation matrix

ΣZZ̃ of the original variables Z and knockoffs Z̃ where the sub-matrix for the correlation within the generated knockoffs
ΣZ̃1Z̃2

is similar to that of correlation in original variables ΣZ1Z2 , enclosed in red squares. While the variable-wise correlation
is minimized with their respective knockoff copies, i.e., σZ1Z̃1

, σZ2Z̃2
≈ 0, shown in white squares.

networks involves specifying interventions or changes to
the input group of time series to observe the correspond-
ing effects on the target group. This implies that, instead
of observing the natural variation in Xi, we are setting it
to knockoff version X̃i in order to assess the collective
causal impact on the network’s output. We choose to use
multivariate Gaussian model within the Knockoff frame-
work which implements semidefinite programming (SDP)
to estimate knockoff parameters given the mean µZ and co-
variance matrix ΣZ of the original variables Z. We gener-
ate knockoff copies Z̃1, . . . , Z̃N as an interventional rep-
resentation of Z1, . . . , ZN , which are used to replace vari-
ables during an intervention. The generated knockoff vari-
ables are in-distribution and uncorrelated with the original
variables. Moreover, it fulfills the exchangeability condition
(Zi, Z̃j)

d
= (Z̃i, Zj), i, j = 1, . . . , N, i ̸= j (Barber and

Candès 2019) by maintaining same covariance structure as
the original time series, which means that the underlying
joint distribution of the data does not change by replacing
a variable with its knockoff copy. The properties of knock-
offs are demonstrated in Figure 4.

Group Causal Inference In order to infer causal direc-
tion in two groups of variables, i.e., Xi → Xj , we apply
Kolmogorov–Smirnov (KS) test (Smirnov 1939)

Cij =

√
qr

q + r
sup|R− R̃| (2)

to evaluate model invariance property by estimating the
maximum absolute difference in the marginal residual dis-
tribution R and R̃ of variables in Xj before and after group-
level intervention on Xi. Here R̃ represents the distribu-
tion of the residuals ẽn = ẽ1, . . . , ẽn, obtained while esti-

mating the counterfactuals P (Zi,t0:T |Zi,1:t0−1, Z̃−i,1:t0−1).
The KS test uses a significance level α and other parameters
like q, r which represents the number of samples in marginal
residual distributions R and R̃. The test statistic C is used to
calculate p value for deciding whether a causal link exists or
not. If pij > α, the null hypothesis H0: Xi does not cause
Xj is accepted, which means that the residual distributions
of group of variables before and after intervention are ap-
proximately identical across various interventional settings,
i.e., the group invariance property is fulfilled. In the alternate
case, the null hypothesis is rejected, i.e. H1: Xi causes Xj .
We test for both causal links Xi → Xj and Xj → Xi for all
possible values of i, j where i ̸= j. It is important to men-
tion that if a single node within the group is influenced by its
causal group, it establishes a causal connection between the
groups and it doesn’t necessarily imply that the entire target
group is uniformly affected by its cause.

Experiments
Synthetic Data To evaluate the performance of our
method, we use synthetic data model Zj

t = Σifi(Z
i
t−k)+ηjt ,

i, j = 1, ..., N, 0 < k < t. The system variables Zj have
auto and cross-functional dependencies with a time delay of
k. The data model incorporates linear and nonlinear depen-
dencies f , i.e., exponential, polynomial with varying edge
densities, and adds uncorrelated, normally distributed noise
ηjt . We incorporate inter- and intra-group causal links in
the generated causal graphs. The decision of the methods
for each edge in the groups is either correct, wrong or no
inference. Our method (gCDMI) achieves better identifica-
tion of the correct causal links with fewer wrong detections
in subsystems for all edge densities, i.e., sparse to dense
causal graphs, as compared to other group causality meth-



Table 1: Performance of the applied methods on synthetic data for varying interaction densities. The presented values are the
ratio of the method output and the total number of tests where the Correct inference represents the true causal direction, Wrong
is the opposite of the true causal direction, and No inference is reporting the absence of a causal link.

Interaction density
Method Inference 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

gCDMI Correct 1.00 0.67 1.00 1.00 1.00 0.67 0.67 1.00 1.00
Wrong 0.00 0.33 0.00 0.00 0.00 0.33 0.33 0.00 0.00
No inference 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Trace Correct 0.67 1.00 0.67 0.67 0.67 0.67 0.67 1.00 0.67
Wrong 0.33 0.00 0.33 0.33 0.33 0.33 0.33 0.00 0.33
No inference 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2GVecCI Correct 0.67 0.00 1.00 0.33 0.67 0.33 1.00 0.67 0.00
Wrong 0.33 0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.33
No inference 0.00 0.67 0.00 0.33 0.33 0.67 0.00 0.33 0.67

Vanilla-PC Correct 0.67 0.67 0.67 0.33 0.67 0.67 0.33 0.33 0.00
Wrong 0.00 0.00 0.33 0.33 0.00 0.33 0.67 0.67 1.00
No inference 0.33 0.33 0.00 0.33 0.33 0.00 0.00 0.00 0.00

Table 2: Performance of different group causality methods
in identifying causal direction in climate-ecosystem data for
various sites. Here ✓ indicates the presence of the link,
while × indicates the absence of the link and→ represents
the direction of causal relation between groups. We test a bi-
directional causal link only for our method.

Methods
Sites Inference gCDMI Trace V-PC 2GVCI

DE-Hai GC → GE × × × ×
GC ← GE × ✓ × ×
GC ↔ GE ✓ − − −
GC ↮ GE × × ✓ ✓

IT-MBo GC → GE ✓ ✓ ✓ ×
GC ← GE × × × ×
GC ↔ GE × − − −
GC ↮ GE × × × ✓

FR-Pue GC → GE ✓ × × ×
GC ← GE × ✓ × ×
GC ↔ GE × − − −
GC ↮ GE × × ✓ ✓

US-Ton GC → GE ✓ × × ×
GC ← GE × ✓ × ✓
GC ↔ GE × − − −
GC ↮ GE × × ✓ ×

ods as shown in Table 1. The given values are the ratio of the
method decision and the total number of experiments. It can
be noticed that our method reported only fewer wrong in-
ferences and zero no inference along with the Trace method
for all experiments, while other methods reported no infer-
ence in a number of tests because they are uni-directional
and sometimes it is hard to distinguish cause from effect
when the interaction in both directions is not significantly
different. We also found that increasing edge density does
not have a clear impact on the outcome except for Vanilla-
PC, where the performance is degraded. We used multiple
group dimensions for each edge density in our experiments,

where we vary the architecture of the deep networks based
on group dimension. All experiments in this paper were con-
ducted on an NVIDIA GeForce RTX 3060 Ti graphics card,
providing reliable performance capabilities for complex syn-
thetic and real-world data causal analysis. The improved per-
formance of our method comes at the cost of high compu-
tation time due to its dependence on deep networks to learn
complex causal structures in data.

FLUXNET Data Here, we aim to perform a causal anal-
ysis of environmental time series with our method by es-
tablishing the causal structure in groups or subsystems. We
carry out experiments with FLUXNET2015 dataset (Pas-
torello et al. 2020), which is acquired using the eddy co-
variance technique to measure the cycling of carbon, water,
and energy between the biosphere and atmosphere through
collaborations among many regional networks, with data
preparation efforts happening at site and network levels.
For our experiments, we considered various measurement
sites, i.e., Hainich (DE-Hai: Deciduous Broadleaf Forests),
Monte Bondone (IT-MBo: Grasslands), Puechabon (FR-
Pue: Evergreen Broadleaf Forests), and Tonzi Ranch (US-
Ton: Woody Savannas) site. The dataset includes climatic
and ecological time series, i.e., global radiation (Rg), tem-
perature (T ), gross primary production (GPP ), ecosystem
respiration (Reco) for various time scales i.e., half-hourly,
hourly, daily, weekly and so on. We categorized these vari-
ables into two groups: climate group GC which contains
T and Rg and ecosystem group GE, which consists of the
ecosystem variables GPP and Reco. We considered daily
sampling which is advantageous for mitigating the effects of
daily patterns that usually undermine the underlying causal
relation in data. The results for all applied causality methods
from various sites are given in Table 2. Our method identi-
fied the presence of a causal link GC → GE for all sites
except for the DE-Hai site where we obtain a bidirectional
link GC ↔ GE which is an overall better performance com-
pared to other methods. The bidirectional link at the DE-Hai



site, which is a deciduous broadleaf forest, could be due to
climate-ecosystem strong feedback mechanism or other in-
fluential factors that need further investigation. For DE-Hai,
Vanilla-PC and 2GVecCI could not infer any causal direc-
tion while the Trace method detected GE → GC. For IT-
MBo, all methods correctly identified the expected causal
directions except 2GVecCI. As an illustration, we show cli-
matic influence on the ecosystem for the IT-MBo site from
one of our experiments in Figure 3 (a).

ENSO Data Moreover, we performed experiments on the
ENSO dataset where we consider surface temperatures over
the ENSO region and British Columbia (BCT) from 1948
to 2021, as a causal effect of temperatures in the tropical
Pacific on those in North America is recognized in climate
(Taylor 1998). During an El Niño event, which is one phase
of ENSO, the tropical Pacific Ocean warms up significantly,
disrupt normal weather patterns and influence the climate in
other parts of the world, including the British Columbia re-
gion. For experiments, we adapted data preprocessing, i.e.,
deseasonalizing, smoothing, and aggregation from the work
of (Runge et al. 2019; Wahl, Ninad, and Runge 2023). We
show results for applied group causality methods in Table 3.
Both our method and 2GVecCI identified significant influ-
ence of ENSO on BCT for various grid scales with a fraction
of 0.66 correct inferences and 0.34 as no inferences. While
Trace method detected the causal link ENSO → BCT with
a fraction of 0.50 correct inferences and 0.50 wrong infer-
ences. Vanilla-PC could not inferred any causal direction for
all grid scales that is probably because of difficultly in dis-
tinguishing data patterns at both regions. Illustration of the
causal influence of ENSO on BCT for one of the performed
tests by our method is given in Figure 3 (b). Which shows
the comparison of the BCT distribution with and without
group-level intervention on the ENSO time series variables.
The shift in the counterfactual distribution for BCT is in-
dicative of the influence of ENSO.

Table 3: Effect of surface temperature at Tropical Pacific
ocean (ENSO region) on British Columbia region, computed
at various grid scales. The given values represent the deci-
sion of the applied methods (in percentage).

Inference gCDMI Trace 2GVCI V-PC
ENSO→ BCT 0.66 0.50 0.66 0.00
ENSO← BCT 0.00 0.50 0.00 0.00
ENSO ↮ BCT 0.34 0.00 0.34 1.00

fMRI Data We analyzed simulated fMRI time series data
(Smith et al. 2011) to identify connections in brain network
nodes and assign direction to them. These fMRI time se-
ries simulations were based on dynamic causal modelling
(DCM) (Friston, Harrison, and Penny 2003) fMRI forward
model. The generated dataset provides ground truth connec-
tivity graph for variety of network topologies which we use
to evaluate our methods. Here we conducted experiments
on a number of simulated subjects from S2 topology in the
dataset which contains 10 nodes clustered into 2 groups. It
has 10 min fMRI sessions for each subject with 3 sec sam-

pling rate, final added noise of 1%, and haemodynamic re-
sponse function (HRF) variability of ±0.5 which provides
time series of 200 data points. The percentage of methods
outcome in terms of correct, wrong and no inference is given
in Table 4. Since our method is data demanding as it relies
on deep networks, the provided size of time series was not
long enough for our method to learn the complex relation-
ship properly. Determining the correct directionality of con-
nections in fMRI time series is challenging because of the
complex interactions among brain networks. However, our
approach inferred correct direction 56% of the times in brain
networks with 21% bidirectional links which is overall bet-
ter performance compared to other applied group causality
methods. Results from Trace method were somehow com-
parable to that of gCDMI. While 2GVecCI and Vanilla-PC
yielded high percentage of no inference probably because of
difficulty in separating cause from effect in a mutual interac-
tion scenario between groups. The causal influence of brain
network N1 on network N2 for one subject in S2 topology
from simulated fMRI time series is demonstrated in Figure
3 (c).

Table 4: Identification of the direction of brain network con-
nections using simulated fMRI time series by the applied
group causality methods: Ground truth network connection:
N1 → N2. The given values represent the decision of the
applied methods (in percentage).

Inference gCDMI Trace 2GVCI Vanilla-PC
N1 → N2 0.56 0.50 0.33 0.06
N1 ← N2 0.17 0.39 0.17 0.16
N1 ↔ N2 0.21 - - -
N1 ↮ N2 0.06 0.11 0.50 0.78

Conclusion
In this work, we have introduced a deep learning-based
method to uncover the causal interactions in groups or sub-
sets of time series. We model complex relationships in an
N -variable system of time series using deep learning mod-
els, and apply invariance testing via group-level interven-
tion to infer causal direction in groups of variables. Our ap-
proach also tests for bi-directional causal links which signify
a mutual influence, suggesting that the variables have a re-
ciprocal cause-and-effect relationship. While our approach
demonstrated improved performance on both synthetic and
real-word time series data compared to other causality meth-
ods, it is worth noting that the high computational time is a
trade-off inherent to its reliance on deep learning. As future
work, we consider estimating the causal interactions in more
than two groups of time series. Moreover, we aim to address
the issue of non-stationarity and hidden confounding (Tri-
funov, Shadaydeh, and Denzler 2022) to further improve our
method.
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