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Abstract

Cause-effect analysis is crucial to understand the
underlying mechanism of a system. We propose
to exploit model invariance through interventions
on the predictors to infer causality in nonlinear
multivariate systems of time series. We model
nonlinear interactions in time series using
DeepAR and then expose the model to different
environments using Knockoffs-based interven-
tions to test model invariance. Knockoff samples
are pairwise exchangeable, in-distribution and
statistically null variables generated without
knowing the response. We test model invariance
where we show that the distribution of the
response residual does not change significantly
upon interventions on non-causal predictors. We
evaluate our method on real and synthetically
generated time series. Overall our method
outperforms other widely used causality methods,
i.e, VAR Granger causality, VARLiINGAM and
PCMCI*. The code and data can be found at:
https://github.com/wasimahmadpk/deepCausality

1. Introduction

Discovering causal graph in a system is vital to understand
system's dynamics and its response to changes in environ-
ment. The methods which extract causal information from
observational data are crucial for the broad field of artificial
intelligence. In this work we use deep networks to learn
nonlinear interactions in multivariate time series and test
model invariance through Knockoffs (Barber & Candes,
2015; Candes et al., 2017) based interventions for causal
inference. We build our work on the assumption that the
causal mechanism in a real-world system does not change
across diverse environments (Peters et al., 2016; Heinze-
Deml et al., 2018; Pfister et al., 2019). More specifically, the
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conditional distribution of the response given its causal pre-
dictors remains invariant for all observations over different
settings. A model is regarded as invariant if the distribution
of the residuals of model's response does not change when
intervened on its non-causal predictors.

Deep networks best suit to learn nonlinear interactions in
a multivariate system. We use DeepAR (Salinas et al.,
2020) to model nonlinear relations in multivariate time se-
ries, which is based on recurrent neural networks (RNNs)
and generate probabilistic forecast. It characterizes condi-
tioning on observed variables and estimate latent features
i.e. trends and seasonality from time series that might help
in the identification of spurious associations. To expose
trained models to unseen settings for causal inference, we
can either omit or replace model predictors with a different
representation. Since, deep networks cannot handle missing
input or out-of-distribution (OOD) data, we propose to use
the theoretically well-established Knockoffs framework to
generate interventional environments.

Knockoffs are statistically null-variables, in-distribution and
as uncorrelated as possible with the originals. Moreover,
Knockoffs possess the pairwise exchangeability property
when means that replacing any variable with their knockoff
copy in a multivariate setup will not change the underlying
joint distribution of the set of variables. We highlight the
effectiveness of Knockoffs as interventional variables by
comparing it with other intervention methods such as OOD,
mean and uniform distribution. We discover full causal
graph assuming causal sufficiency and stationarity in syn-
thetic and real data and show that our method outperforms
widely used causality methods, i.e., VAR Granger causal-
ity (VAR-GC) (Granger, 1969), VARLINGAM (Hyvirinen
et al., 2010), PCMCI™ (Runge, 2020) as well as other ap-
plied intervention methods.

The remaining of this paper is organized as follows. In
Section 2, we cover the related work. We provide method-
ological background in Section 3. In Section 4, we describe
our proposed method. Results are presented and discussed
in Section 5. In Section 6 we conclude our work.
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2. Related Work

The methods in (Peters et al., 2016; Heinze-Deml et al.,
2018; Pfister et al., 2019; Gamella & Heinze-Deml, 2020;
Martinet et al., 2021) use invariant causal prediction (ICP)
for causal inference assuming that data samples are drawn
from heterogeneous environments and can identify the an-
cestors of the response. These methods are limited in a
sense that they estimate causal relationship of the candidate
variable with the target only rather than discovering full
causal graph as done in our work through multivariate target
modelling. Moreover, they search for subset of predictors
which remains unchanged throughout environments while
we estimate a consistent causal set using model invariance
across interventional environments over multiple forecast
windows. ICP outputs the intersection of all subsets of in-
variant predictor which forms a strict subset of all direct
causes or may even be empty. This is because disjoint sets
of predictors can be invariant, yielding an empty intersec-
tion. In (Mogensen et al., 2022), the authors introduce and
characterize minimally invariant sets of predictors, that is,
invariant sets .S for which no proper subset is invariant. They
propose to consider the union Syas of all minimally invariant
sets, where IAS stands for invariant ancestry search.

The method in (Peters et al., 2016) works with non-
stationary data assuming that the environments are known
in order to exploit the invariance. It is argued that with-
out knowledge of the environments, the causal inference
becomes difficult. Moreover, estimating the environments
from data in naive manner e.g., clustering, change point de-
tection, etc., and subsequently applying the existing method-
ology may lead to a loss of the methods coverage, guarantee
or yield less powerful results. The authors of (Pfister et al.,
2019) do not estimate the environments but instead utilizes
the existing non-invariances in observations. In our method,
we generate knockoff representation of the predictors to
represent different environments and test model invariance
for causal inference in nonlinear systems. Previously we
used deep networks with Knockoffs-based interventions to
estimate Granger causality in nonlinear multivariate time
series (Ahmad et al., 2021).

The authors of (Tank et al., 2021; Romano et al., 2020) uti-
lize deep networks combined with sparsity-inducing penal-
ties on the weights to estimate causal significance of the
predictors. However, it is difficult to retrieve clear informa-
tion from weights of the deep networks that can be used for
interpretability (Luo et al., 2020). The widely used PCMCI
(Runge et al., 2019) method applies linear and nonlinear
conditional independent (CI) tests to infer causality in mul-
tivariate time series. The extended version of cause-effect
variational autoencoders (CEVAE) (Louizos et al., 2017) in-
tegrates the domain-specific knowledge for nonlinear causal
inference in ecological time series (Trifunov et al., 2019).

Time-frequency analysis has been done to handle spurious
associations in time series (Shadaydeh et al., 2019) how-
ever, they use spectral representation of linear VAR-GC and
might struggle in case of nonlinearity.

3. Methodological Background

In this section we introduce the necessary background on
DeepAR and the Knockoffs framework.

3.1. DeepAR

DeepAR is a powerful method suitable for probabilistic fore-
casting of high dimensional nonlinear non-stationary time
series (Salinas et al., 2020). It uses LSTM-based autoregres-
sive RNNs (Graves, 2013) and learns nonlinear interactions
from the history of all the related time-series. Few key at-
tributes of DeepAR are: It extracts hidden features in the
form of trends and seasonality in data, and characterizes
conditioning on the entire set of variables during inference
which can be helpful in identifying spurious relations. More-
over, lesser hand-crafted feature engineering is needed in
DeepAR to capture complex, group-dependent behavior.

3.2. Knockoffs

The Knockoff framework is developed to estimate feature
importance using CI testing with controllable false discov-
ery rate (Barber & Candes, 2015). Given a set of observed
variables Z = (Z1, ..., Z,) in an environment with known
distribution Pz, and a predictive model, the knockoff copies
of the observed variables, defined as Z = (Zy,...,Zy,),
represent interventional environments while maintaining
the in-distribution and decorrelation property of the obser-
vational environment. Knockoff samples are statistically
null-variables, generated without knowing model response.
Moreover, knockoffs should satisfy the pairwise exchange-
ability condition (Barber & Candes, 2015)

(Za Z) i (Za Z)Swap(A) (1)

for any subset A C 1,...,n, here 4 represents equal dis-
tributions. The (Z, Z)swap(a) is obtained from (Z, Z) by

swapping the entries Z; and Z; for each j € A.

The knockoff mechanism can be thought of as generating a
probability distribution Py (.]z) which is the conditional

distribution of Z given Z = z chosen such that the obtained
joint distribution of (Z, Z) being equal to

PZ(z)PZ‘Z(ﬂz),
is pairwise (z;, z;) symmetric and satisfy the exchangeabil-

ity condition in (1). For variables with Gaussian distribution
Pz = N,(0,,%), (Candes et al., 2017) shows that knock-
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offs Z* can be drawn from the conditional distribution

Py 4(|Zis) = No((I = SE71Z; 1,28 — SE715) (2)

for any fixed diagonal matrix S satisfying 0 < S < 2%.
This leads to joint distribution of (Z; ., Z; ) being equal to

NQn (02717 |:E§S Z£S:|>v

which satisfies the pairwise exchangeablity (1). Here S is to
be maximized which represents the difference between the
original variables and their knockoff version. As a result the
off-diagonal term ¥ — .S is minimized making the covariance
of the original variable with its corresponding knockoff
version as low as possible.

4. Causality using Model Invariance through
Knockoffs

Let z;,7 = 1,..., N be the N—variate time series. Each
time series z; ¢,t = 1,..., 7 is a realization of length r real-
valued discrete stochastic process Z;,2 = 1,..., N. Our
goal is to estimate the causal relations among all variables
and retrieve a full causal graph. Throughout our work, we
assume stationarity and causal sufficiency which implies
Zi,i = 1,..., N is a stationary stochastic process, and
the set of observed variables Z;,¢ = 1,..., N includes
all of the common causes of pairs in Z. An extension of
the current work to deal with non-stationary settings is in
progress.

We exploit the idea of model invariance for causal discov-
ery in nonlinear time series where we determine that the
underlying causal structure of a system remains invariant
over interventional environments. We model nonlinear time
series with DeepAR and generate knockoff copies of the
original data to test model invariance. A model is regarded
invariant if the distribution, i.e., p and o2, of the response
residuals given its causal predictors do not change against
interventional environments. The predictors are considered
as non-causal if the residual distribution of the model re-
sponse does not significantly change by exposing it to their
knockoff representations. We retrieve causal graph with
a consistent set of variables using hypothesis testing over
residual distribution from multiple forecast windows.

To generate knockoff variables, we implement DeepKnock-
offs (Romano et al., 2020), a framework for sampling ap-
proximate knockoffs. We use mixture of Gaussian models
as implemented in (Gimenez et al., 2019) to obtain knockoff
samples. The procedure consists of first sampling the mix-
ture assignment variable from the posterior distribution. The
knockoff variables are then sampled from the conditional
distribution of the Knockoffs given the original variables

and the sampled mixture assignment such that the neces-
sary conditions for Knockoffs are satisfied. Swapping any
knockoff variable with their original version must leave
the underlying joint data distribution invariant as in (1).
Given observed variable Z ~ AN (u, 3), we aim to build its
knockoff copy Z in such a way that the joint distribution of
(Z,7) ~ N (%, %) is Gaussian and

SARNEAS
w|’ -8 DI

where S is a diagonal matrix such that sx > 0. S represents
the discrepancy between originals and knockoffs. We have
the same p for both original and knockoff version. The
Knockoff framework maintain the same covariance among
variables in set of generated Knockoffs as in originals which
is represented by the diagonal entries in given covariance
matrix. However, the covariance > — S of the original
variable with its corresponding knockoff copy in the off-
diagonals is kept as low as possible by maximizing S. We

obtain Knockoffs Z;,j7 C 1,--- ,n, for all variables in the
multivariate time series and substitute one variable Z; at a
time with Z; foreach j C 1,--- , n to test model invariance

and estimate cause-effect relationships.

To estimate causal effect of z;,4 = 1,..., N on the re-
sponse z;, we test model invariance using its forecast resid-
uals by feeding a knockoff representation z; of the orig-
inal variable z;. We obtain residuals e, es,...,e, ~ R
and €1,€1,...,6, ~ R over forecast windows w in range
[20 — 30] with a step size of [5 — 10] for each realization
zj¢ of the stochastic process Z;,7 = 1,..., N with and
without intervention on z;, ¢ # j. R represents distribution
of model residuals for actual outcome and R shows residual
distribution after intervention. We compare these two dis-
tributions using Kolmogorov—Smirnov (KS) test (Smirnov,
1939) for causal inference. The test statistic uses the supre-
mum distance D,, ,,, between R and R. Here n, m are the
number of samples in the these two distributions.

nm

Dnm:

)

sup|R,, — Rm| 3)

n-—+m

The null hypothesis Hy: z; does not cause z;, is accepted if

the distribution of the residuals is approximately identical
. ~ d . .

across environments B ~ R; with a significant level o

in range [5 — 10]% . In case the residual distribution is

. d
significantly different R # R;, the alternate hypothesis H;:
z; causes z; is accepted. D,, ,,, tends to have significantly
larger value in alternate case.

5. Experimental data and Results

We conducted experiments on real and synthetically gen-
erated time series data. The synthetic data model has the



Causal Discovery using Model Invariance through Knockoff Interventions

Actual
Counterfactual

2.04

1.5

Z1l > Z4

0.5+

0.0-

1.0 2.0 25 3.0

(a) Causal case

Actual
Counterfactual

2.5

0.6 0.8 1.0 12 1.4 1.6

(b) Non-causal case

Figure 1. (a) Model residual distribution for causal scenario where Z; causes Z4 in our generated causal graph. (b) Model residual
distribution for non-causal scenario where Z4 is not causal for Z; based on ground truth topology.

generic form:
Zl = a;Z]_ + Sicifi(Zi_,) + ] (4)

for j € 1,...,N. The correlation coefficients a; are se-
lected from range [0.2 — 1.0]. Besides autodependency in
the model, there exist linear and exponential functional de-
pendencies f;(z). We included noise 7], which represents
data from uncorrelated, normally distributed noise with zero
mean and variances in the range [0.30 — 0.9]. The cou-
pling coefficients c¢; and lags 7; between variables are set to
[0.2 — 1.0] and [0 — 10] respectively. To test our method,
we generate multiple causal graphs with N = 5 nodes by
changing functional dependencies, causal edges, time de-
lays, dynamic noise and correlation coefficients throughout
our experiments. To quantify the performance of applied
methods, we calculate false positive rate (FPR) and F-score
metrics in a variety of generated causal graphs.

To show the effectiveness of proposed approach where we
utilize Knockoffs-based intervention variables, we compare
its performance against other widely used causal inference
methods. Besides that, to highlight the power of using
Knockoffs as intervention variables, we test the proposed
approach with the following methods for generating inter-
vention variables.

Distribution mean: The predictor z; is replaced with Zz;,
that is comprised of the mean of the original variable and
Gaussian noise. z; = £ Y7, 2, + N(0, X).

Uniform distribution: The original variable z; is replaced
by a variable z; having a uniform distribution ranging from
minimum to maximum values of the original variables z; as
suggested in (Jiwoong Im et al., 2021).

Out-of-distribution: The variable z; having a distribution
D, is replaced with another variable sampled from OOD

— _d
D such that D # D;, different p and 2. Moreover, it is
generated to be uncorrelated with the original variables.

As a real-world application, we conducted experiments on
average daily discharges of rivers in the upper Danube basin,
provided by the Bavarian Environmental Agency !. We use
measurements from 2017 to 2019 from the Iller at Kempten
K, the Danube at Dillingen Dy, and the Isar at Lenggries
L;. The Iller flows into the Danube within a day, which
implies an instantaneous causal link K; — D; and no direct
causal links between the pairs K;, L; and D;, L;. More-
over all variables may be confounded by rainfall or other
weather conditions (Gerhardus & Runge, 2020), which test
the ability of the applied methods to distinguish between
spurious associations and true causal relationships.

Results: We generate multiple causal graphs using syn-
thetic data model and demonstrate the results in terms of
FPR and F-score for VAR-GC, VARLINGAM, PCMCI*
and DeepAR with all four types of intervention variables
represented as DeepAR-K for Knockoffs, DeepAR-O for
OOD, DeepAR-M for mean and DeepAR-U for uniform dis-
tribution. We infer causality among nodes of the graph using
model invariance through knockoff interventions where we
use the KS test (3) to compare the distribution of model
residuals with and without interventions. In Fig 1, we il-
lustrate the causal decision by our method between pair of
nodes Z; and Z4. Based on the ground truth from our gener-
ated causal graph, Z; causes Z4 while the reverse in not true.
Our method accurately identifies Z; — Z4, a true positive
and Z, -+ Zj, a true negative. Overall DeepAR-K per-
forms better than others in accurate causal discovery. Since
the Knockoffs-framework is originally developed to control
false discoveries, we can see low FPR for Knockoffs-based

"https://www.gkd.bayern.de
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Figure 2. (a) False positive rate (FPR) of used methods for causal inference in synthetic multivariate nonlinear time series, lower is better.
(b) F-score of all applied methods for estimating causality in synthetic multivariate nonlinear time series, higher is better.

Table 1. Causality in river discharges time series data by VAR-GC, VARLiINGAM, PCMCI™ and DeepAR with applied interventions
types. The detection of a causal link between variables is represented by v* and absence of causality is shown by x.

Pairs Expected VAR-GC  VAR- PCMCIT  DeepAR- DeepAR-  DeepAR-  DeepAR-
links LiNGAM Knockoffs OOD Mean Uniform

Kt — Dt v v v v v X v

Ky — Ly X X v X X X

Dy — K X X X X X v X X

Dy — Ly X v X X X X v v

Ly — K X v v v X X v X

Ly — Dy X v X X X X v X

interventions as shown in Fig 2 (a) compared to other meth-
ods and intervention types. At the same time, the power of
DeepAR-K to identify true causal links is high as illustrated
in Fig 2 (b), which could be attributed to the uncorrelated
property of the Knockoffs with their originals. The closest
to our proposed DeepAR-K in terms of achieving high F-
score and low FPR is DeepAR-U. PCMCI also achieves
relatively better FPR but shows low power for true causal
detection along with VAR-GC and VARLiINGAM. The low
detection power of these methods might be because of non-
linearity in the generated causal graphs.

For river discharges data, we have one contemporaneous link
K; — Dy as per description in the dataset, and we expect
the applied methods to identify it. Our proposed method
along with all other methods except DeepAR-Mean accu-
rately detected K; — D, as shown in Table 1. Moreover,
our method does not report any false causal link. However,
the rest of the methods show spurious associations between
various pairs of river discharges time series. DeepAR-OOD
incorrectly detected the reversed causal link D; — K; too.
VAR-GC and DeepAR-M identified a bidirectional link be-
tween D, and L; which may be because of the weather act-
ing as a confounder since there is no expected direct causal
relationship. DeepAR-U, DeepAR-OOD and PCMCI* have
one false link detection each in different pairs.

6. Conclusion

We proposed to test model invariance across interventional
environments over multiple forecast windows to discover
full causal graph in multivariate nonlinear systems. DeepAR
is used to learn nonlinear relationship in multivariate time
series. The model invariance is tested via Knockoffs-based
interventions for causal inference. We used synthetic and
real time series data to evaluate applied methods. The re-
sults indicate that the estimation of the environments using
Knockoff framework to test model invariance for causal
inference yield better results in comparison to other inter-
vention types. Results also show that the proposed method
outperforms VAR-GC, VARLINGAM and PCMCI™, how-
ever having a higher computation time. Further we aim to
extend the current work for non-stationary settings and test
our method on other real-world time series.
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