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Abstract

We present an algorithm for optimal view point selection
for 3-D reconstruction of an object using 2-D image points.
Since the image points are noisy, a Kalman filter is used
to obtain the best estimate of the object’s geometry. This
Kalman filter allows us to efficiently predict the effect of
any given camera position on the uncertainty, and therefore
quality, of the estimate. By choosing a suitable optimization
criterion, we are able to determine the camera positions
which minimize our reconstruction error.

We verify our results using two experiments with real im-
ages: one experiment uses a calibration pattern for compar-
ison to a ground-truth state, the other reconstructs a real
world object.

1. Introduction

We study the problem of finding the next best view in
3-D reconstruction. Unlike other works, which use geomet-
rical approaches [8, 9] and range scanners [2, 12, 14], we
extract 2-D points from camera images using feature point
tracking and combine them to a probabilistic representation
of 3-D object points, using the Kalman filter.

Approaches using the Kalman filter for 3-D reconstruc-
tion have already been published [7, 10, 16], as have been
works aiming to obtain the best views by minimizing the
entropy in state estimation problems [1, 4, 5]. In this pa-
per we will show how these approaches can be combined
to improve the 3-D reconstruction by planning the next best
view.

We evaluate our proposed method with two scenarios
with mobile cameras. The first uses a camera mounted on

∗This work was partly funded by the German Research Foundation
(DFG) under grant SFB 603, TP B2. Only the authors are responsible
for the content.

Figure 1. SCORBOT (left) and turn table
(right)

a robot arm with multiple degrees of freedom (SCORBOT,
fig. 1, left), the second uses a camera on a turntable with a
tilting arm (fig. 1, right).

This paper is organized as follows: Section 2 gives an
overview of 3-D reconstruction with the Kalman filter. Sec-
tion 3 applies the methods of uncertainty reduction to this
reconstruction, and lists several constraints. This applica-
tion is evaluated in section 4 in two separate experiments
with real cameras. Finally, section 5 concludes this work
and describes opportunities for future research.

2. 3-D Reconstruction with the Kalman Filter

This section describes the task of 3-D reconstruction as a
state estimation problem. The 3-D reconstruction is repre-
sented by a list of 3-D points, concatenated to the state vec-
tor x ∈ IRn. The camera makes an observation ot ∈ IRm

consisting of 2-D projections of the state points at each time
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step t. The dimensions n and m are constant in time, since
we consider only feature points which can be tracked all
the time. Since camera images are noisy, this observation is
assumed to contain normally distributed noise. The obser-
vation equation is therefore

ot = g(x, ct) + w, (1)

where g(·, ·) is the observation function, ct is the camera’s
view point at time t, and w is a zero-mean additive Gaus-
sian noise process with covariance matrix W .

The Kalman filter uses these observations to maintain
an estimate of the state vector as a Gaussian distribution
N (x̂

t
, P

t
). A starting distribution N (x̂

0
, P

0
) is typically

obtained by an initial triangulation. The information of each
new image is used to update the state estimate:

x̂
t

= x̂
t−1

+ Kt

(
ot − g(x̂

t−1
, ct)

)
(2)

P
t

= (I − KtGt(ct)) P
t−1

, (3)

where Gt(ct) is the Jacobian of g(x̂
t−1

, ct) , I is the iden-
tity matrix, Kt is the Kalman gain matrix, defined as

Kt = P
t−1

GT
t
(ct)

(
Gt(ct)P t−1

GT
t
(ct)+W

)−1

. (4)

The Jacobian is necessary because g(·, ·) is not linear, as
the classical Kalman filter requires; a Kalman filter with
this linearization is called an extended Kalman filter [6] 1.

These steps allow both the current best estimate x̂
t

and
the uncertainty of this estimate, in the form of the covari-
ance matrix P

t
, to be maintained.

3. Next Best View Point Selection

3.1. View Point Evaluation

The goal of next best view selection is to find the opti-
mal next view point c∗

t
to improve the reconstruction ac-

curacy. One optimality criterion is to reduce the uncer-
tainty in the state estimation, which is measured in infor-
mation theory by its entropy Hct

(x). This entropy, how-
ever, has to be calculated a priori to optimize the view
before obtaining a new image. Therefore, we need to de-
termine the expected entropy Hct

(x|ot), also called con-
ditional entropy [11]. Let p(x|Ot, Ct) be the probability
density function of the state x after acquiring images from
the view points Ct = c0, c1, . . . ct and obtaining observa-
tions Ot = o0, o1, . . .ot. The expected entropy is the mean
of the entropy of x over all observations:

Hct
(x|ot) =

∫
p(ot|ct)Hct

(x)dot (5)

Hct
(x) = −

∫
p(x|Ot, Ct) log p(x|Ot, Ct)dx (6)

1Another difference to the classical Kalman filter is that x is time-
invariant, and so no prediction step is performed.

The optimality criterion is to determine the view point c∗

t

which minimizes the conditional entropy:

c∗
t

= argmin
ct

Hct
(xt|ot) (7)

Since the state estimate is in the form of a normal distribu-
tion, x ∼ N (x̂

t
, P

t
), its entropy has the closed form

Hct
(x) =

n

2
+

1

2
log(2πn|P

t
|), (8)

where | · | denotes the determinant of a matrix. Since the
covariance matrix P

t
as calculated in eq. (3) depends on ct

but not on ot, we can simplify eq. (5) by pulling Hct
(x)

out of the integral. The remaining integral now integrates a
probability density function and is therefore 1. If we further
consider the monotony of the logarithm, and disregard con-
stant terms and factors, the optimality criterion (7) becomes

c∗
t

= argmin
ct
|P

t
|. (9)

3.2. Constraints For The Next Best View

Some constraints on ct must be considered. Not every
optimal view point, in the sense of (9), results in a usable
image. Some examples of effects that can make a view point
completely or partly unusable are:

• Visibility: The observed 3-D points must be visible in
the image. This may fail because points lie outside
the field of view of the camera, or because they are
occluded by parts of the object or by the robot arm. We
consider only the constraint resulting from the limited
field of view. Self occlusions which appear in non-
planar objects will be considered in future work (cf.
section 5).

• Reachability: The view point must be reachable by
the robot. To ensure this, we use the 4 by 4 Denavit-
Hartenberg matrix [3], which depends on the angles of
the rotation axes and the distances between the joints,
to calculate the transformation to a fixed world coor-
dinate system. Since the lengths are fixed, only the
angles are relevant.

We now search for the optimal view point c∗

t
with an ex-

hausitve search over the discretely sampled action space.For
each sample, we calculate both |P

t
| and the expected obser-

vation. If the expected observation contains image points
outside the field of view, we discard this sample. The best-
rated undiscarded sample is the next best view.

4. Experimental Results

We verify our approach for next best view planning
with real world experiments. We use a Sony DFW-VL500

2
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(a) calibration pattern (b) mouse pad

Figure 2. Images taken during the experi-
ments (2(a) from first and 2(b) from second)

firewire camera, whose intrinsic parameters were calibrated
by Tsai’s algorithm [15]. The camera is moved by the
SCORBOT in the first experiment and by the turn table with
tilting arm in the second one (cf. Fig. 1). The extrinsic
parameters are calculated by the Denavit-Hartenberg ma-
trix and the hand-eye transformation, which is acquired by
the algorithm of Schmidt [13]. The first experiment recon-
structs a calibration pattern, the second a mouse pad.

In both experiments, we start with an initial estimation,
obtained by triangulating from an image pair from two view
points. This gives us an initial estimate of x. The initial co-
variance matrix P

0
is set to a diagonal matrix, as we assume

that the uncertainty is equal in each direction.
To evaluate the expected uncertainty, we calculate the

determinant of P
t

(eq. (3)). The Jacobian Gt(ct) of the
observation function depends on the axis values of the robot
and must be calculated for each candidate view point. The
computation time for the next best view for the SCORBOT
(5 degrees of freedom, due to its 5 axes, 384000 view points
analyzed, 49 3-D points) is about 9 minutes on a system
with an Pentium IV processor with 3 GHz, and 1 GB RAM,
and about 45 seconds for the turntable (2 degrees of free-
dom, 2000 view points analyzed, 50 3-D points). The com-
putation time is linear in the number of points.

4.1. Reconstructing a Calibration Pattern

A calibration pattern (cf. Fig. 2) is viewed from the top of
the SCORBOT. The pattern simplifies the acquisition of 2-
D points, and allows us to compare our results with ground
truth data. After the initialization, we start the optimization
process to take new images from the optimal view point.

Table 4.1 shows the results for the first 5 iterations in
the optimized case and a non-optimized one. The images

Figure 3. View points for reconstruction of
the calibration pattern

for the non-optimized view points were taken by alternating
between the two initial positions.

By construction, the determinant of P
t

is reduced faster
in the optimized case than in the non-optimized case. Addi-
tionally, the mean of the errors of all points decreases after
each time step, except for some outliers. This rise in error is
not a contradiction to the decrease in uncertainty, since the
Kalman filter cannot judge the quality of an observation.

The view points are shown in Fig. 3. After the initial-
ization steps (middle top) the optimized view points lie as
expected: the cameras are opposite each other and the angle
between each line of sight is approx. 90 degrees.

Table 1. First experiment: µt is the mean of
the difference between reconstructed points
and the ground truth data in mm, σt is the
standard deviation of this error, |P

t
| is the de-

terminant of the covariance matrix. We dis-
play the values for the optimized and a non-
optimized view point sequence.

optimized non-optimized
t µt σt |P

t
| µt σt |P

t
|

1 0.132 0.080 7.281 0.132 0.080 7.281
2 0.128 0.079 1.762 0.125 0.072 3.338
3 0.115 0.062 0.705 0.128 0.073 1.468
4 0.108 0.062 0.385 0.129 0.074 0.905
5 0.107 0.061 0.244 0.127 0.074 0.531

4.2. Reconstructing a Mouse Pad

In this experiment we use a mouse pad (cf. Fig. 2), re-
quiring us to track feature points during movement, using
the algorithm of Zinsser [17]. However, only the tracked
points from the optimal positions are used to update the

3
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state estimation. Integration of the points tracked en route
to the optimal positions is possible, but this would prevent a
comparison of two view point sequences due to a diverging
number of integrated observations.

Table 4.2 shows the root mean square error between the
reconstructed 3-D points and their regression plane, as well
as the trend of the covariance matrix P

t
, for the first 5 iter-

ations. We compare the values from the optimized view
points to an experiment with view points uniformly dis-
tributed on a circle perpendicular to the rotation axis of the
turn table, and to one completely random view point se-
quence on the half sphere. The error decreases fastest in the
optimized case, signifying a measurable benefit from view
point optimization.

Table 2. Second experiment: µt is the mean
of the root mean square error of the points to
their regression plane in mm, |P

t
| the deter-

minant of the covariance matrix after each it-
eration. The optimized, one uniform and one
random view point sequence are shown.

optimized circle random
t µt |P

t
| µt |P

t
| µt |P

t
|

1 0.073 8.62 0.073 8.62 0.073 8.65
2 0.050 1.75 0.041 1.98 0.054 2.76
3 0.033 0.636 0.038 0.845 0.043 1.20
4 0.030 0.315 0.038 0.428 0.041 0.479
5 0.026 0.175 0.041 0.235 0.041 0.329

5. Conclusion And Future Work

We have presented an approach for planning the next
best view for 3-D reconstruction. To evaluate view points,
we reshape the problem of 3-D reconstruction to the prob-
lem of estimating a partially observable system with an ex-
tended Kalman filter.

The Kalman filter allows us to predict the expected un-
certainty of the state estimate, measured by the entropy, for
any view point. By selecting the next view with the least
expected entropy, we can minimize the uncertainty, and
thereby the state estimation error, of our reconstruction. The
approach was tested in experiments with real images, which
show the error decreasing faster than with non-optimized
view points.

In the future, we will expand this approach to the prob-
lem of self-occlusions. Without handling this constraint,
our approach cannot reconstruct complex objects in an op-
timal way. This requires an object surface to be estimated,
in order to determine where tracked points may be occluded
by other surface parts.
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