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Abstract

Automatic visual surface inspection is a challenging task, which has become important for quality assurance in the
last years. Wire rope inspection is a special problem within this field. Usually, the huge and heavy ropes cannot be
detached. Thus, an inspection of the ropes must be conducted, while the ropes are in use. The rope surface exhibits
various appearance characteristics so that the existing, purely appearance-based approaches tend to fail.

We explicitly integrate information about the object geometry, which we obtain by aligning a sequence of 2d rope
images with a perfectly regular 3d model of the rope. The rendering equation is used to link object geometry to the
observed rope appearance. Based on the connection between geometry and surface appearance we build a probabilistic
appearance model which serves as representation for normal surface variations. A robust localization of rope surface
defects is achieved by means of anomaly detection. The presented approach has no need for knowledge about the
illumination setting or the reflectance properties of the material.

An evaluation on real-world data from ropeways leads to an accuracy comparable to that of a human expert. With
an accuracy of 95% and a false-alarm-rate of 1.5% the approach outperforms all other existing approaches.

Keywords: anomaly detection, image-based analysis, surface inspection

1. Introduction

During the past years, automatic approaches for vi-
sual surface inspection have become more and more im-
portant. In the majority of cases, texture analysis tech-
niques are used to locate conspicuous or defective re-
gions. The automatic visual inspection (AVI) of wire
ropes is an important and even more challenging task.
Damaged ropes pose a risk for the human life (e.g ropes
used for elevators or ropeways). A manual inspection
is often dangerous and very time-consuming. Usually,
the huge and heavy ropes cannot be detached for inspec-
tion. Thus, camera systems were developed, which al-
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low a digital acquisition of the whole rope circumfer-
ence (Moll, 2003).

1.1. Challenges arising from an AVI of wire ropes

Anyhow, the acquisition with optical sensors leads
to noisy images. Reasons for this are the highly re-
flective material of the ropes and contamination of the
rope surface by e.g mud, oil or water. In both cases,
this leads to image artifacts. In contrast, surface de-
fects within the rope are usually small and inconspic-
uous. On this account, defects are hardly distinguish-
able from the natural variations. These circumstances
turn the automatic detection of rope surface defects into
a challenging problem, as one has to cope with a high
intra-class variability and a poor inter-class separability.
Two examples for typical rope defects are given in Fig-
ure 1. Figure 1(a) depicts the particular characteristics
of broken wires. In the upper example, the gap between
the wire ends is very small and the underlying layer of
wires becomes visible. In such a case, the breaking edge
is the most striking anomaly. The lower example shows
a broken wire, which is missing almost within the com-
plete, visible part of the strand. The two images in Fig-
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(a) broken wires (b) corrosion

Figure 1: Typical defects on the rope surface.

ure 1(b) illustrate the effect of surface corrosion. Due
to mechanical forces, the surface material is damaged.
Usually, such surface damages can be recognized best
by their changed reflection behavior.

Additionally, a rope which oscillates during the ac-
quisition procedure, leads to deformations in the images
of the 2d rope sequence. This is due to the nature of the
acquisition setup, where line cameras are used to record
the rope. If the rope moves between two consecutive
time steps, this results in a different spatial relation be-
tween rope and sensor. Hence, a combination of the
individual 1d measurements into a 2d projection of the
rope appears deformed.

However, the most striking challenge is the absence
of defective training examples. Only few examples are
available in advance. Due to the huge variety of defect
characteristics it is nearly impossible to obtain a repre-
sentative training set. In contrast, the number of exam-
ples for intact rope is exhaustless. Therefore, supervised
classification approaches are not applicable to this prob-
lem domain. A solution for this problem is provided
by the concept of anomaly detection (Chandola et al.,
2009) which is strongly related to one-class classifica-
tion (Tax, 2001). Anyhow, the performance of purely
appearance-based approaches seems to be limited.

Last but not least, an automatic measurement of the
rope would be of great interest for the purpose of rope
inspection. To the best of our knowledge, such a moni-
toring of important rope parameters is not possible until
today. Such parameters are e.g the lay lengths of wires
and strands or the rope diameter. Usually, they under-
lie creeping changes and if the deviation from normality
becomes to big, this is in general an evidence for prob-
lems within the rope formation which frequently are the
cause for more severe rope defects.

1.2. Proposed Method

We present a model-based approach for visual surface
inspection of wire ropes which is based on the princi-
ple of analysis-by-synthesis. The basic idea is to adapt
a parametric 3d model towards reality by computing a

Figure 2: General framework used for the detection of surface defects
in wire ropes.

2d projection of this model, which can be compared
with the input image. We use this proceeding to com-
pute a prediction of the intact rope surface in order to
evaluate the discrepancy between the respective obser-
vation (real rope image) and the model-based forecast.
Two different aspects contribute to the visual appear-
ance of the rope: rope geometry (structure) and visual
texture (appearance). Thereby, the term visual texture
embraces all characteristic patterns of the rope surface
(Tuceryan and Jain, 1998). Whereas the regular rope
geometry forms the deterministic part, the visual texture
with all its usual variations (reflections, mud, shadow-
ing) is non-deterministic to a certain extent. Hence, it
can be considered as random part more or less. Any-
how, there exists a dependence between visual texture
and rope geometry, which we aim to learn from intact
rope data.

Figure 2 gives an overview of our framework. The
deterministic geometry of the rope can be modeled by
a parametric 3d centerline model and we are able to
compute artificial 2d projections of this model. The
alignment of artificial rope model projections and real
rope images results in a nonlinear optimization problem
which leads to estimates for the free model parameters,
which are the lay lengths of strands and wires. Based
on the optimal parameters, the 2d wire course is pre-
dictable. This geometrical representation provides the
possibility to infer the hidden relation between visual
appearance and position within the rope. Thus, the im-
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plicit relation between rope texture and rope geometry
can be learned from a set of intact rope images. We use
our knowledge about the rope geometry to sample the
rendering equation (RE), which gives a physical expla-
nation for the relation between object geometry and ob-
served appearance. The periodic structure of the rope al-
lows us to obtain several gray level measurements from
the 2d rope sequence which correspond to the same 3d
point in the rope model. By utilizing a probabilistically
formulated appearance model, it becomes possible to
cover all the usual appearance variations within the rope
surface. Beyond that, the probabilistic treatment per-
mits the direct derivation of an anomaly score on the
pixel-level.

1.3. Contributions of this work

The advantages of our proceeding are obvious. Com-
pared to purely appearance-based approaches, a com-
bination of structure and appearance leads to a more
sophisticated and accurate recognition of anomalies
within the rope surface. Furthermore, the proposed
approach allows for a continuous monitoring of the
lay lengths of strands and wires along the whole rope
course. Finally, the model-based proceeding allows for
an easy correction of rope deformations in the images of
the 2d rope sequence, which often hinder the recogni-
tion of defects within the rope. This oscillation correc-
tion, which we present in this work, clearly improves
our previously published approach for rope geometry
estimation (Wacker and Denzler, 2010). Once, the rela-
tion between structure and appearance is learned, every
arbitrary deviation from normality should become rec-
ognizable. Our method is data-driven and purely image-
based. Moreover, we have no need for calibration infor-
mation with respect to camera positions or the illumina-
tion setting.

The remainder of this paper is structured as follows:
in Section 2 we summarize previous and relevant work.
Our proposed method for rope geometry estimation is
introduced in Section 3. In Section 4, we focus on the
hidden relation between rope geometry and visual tex-
ture. The defect detection methodology which makes
use of the proposed statistical appearance model is de-
scribed in Section 5. A comprehensive experimental
evaluation, which leads to detection results comparable
to those of a human expert, is presented in Section 6.
A summary of our work and a discussion about further
work conclude the paper.

2. Related Work

2.1. Automatic Visual Inspection
There exists a lot of work in the field of automatic

visual inspection and defect detection in material sur-
faces. Good overviews over existing techniques are
provided by Xie (2008) and Kumar (2008). Due to
the wide field of application areas (fabric defect detec-
tion, surface analysis, rail inspection, crack detection
etc.) most work focuses very specifically on the relevant
problem domain. Among the statistical approaches,
gray level statistics (Iivarinen, 2000; Chetverikov, 2000;
Chetverikov and Hanbury, 2002), co-occurrence matri-
ces (Rautkorpi and Iivarinen, 2005) and local binary
patterns (Niskanen et al., 2001; Mäenpää et al., 2003;
Tajeripour et al., 2008) are the most frequently used
ones. Unser and Ade (1984) and Monadjemi et al.
(2004) make use of an Eigenfilter approach. Common
spectral methods are Gabor filters (Mandriota et al.,
2001; Kumar and Pang, 2002), Fourier analysis (Chan
and Pang, 2000) and wavelet-based approaches (Ser-
daroglu et al., 2006). Model-based approaches often
model the stochastic variations of a surface with help
of Markov random fields (Cohen et al., 1991). Due to
the lack of defective training samples anomaly detection
(Chandola et al., 2009; Markou and Singh, 2003a,b),
one-class classification (Tax, 2001) and outlier detec-
tion (Hodge and Austin, 2004) are relevant concepts
(Tajeripour et al., 2008; Xie, 2008).

2.2. Rope Inspection
There exists a lot of work in the field of automatic

rope inspection by magnetic measurement techniques
Zhang et al. (2006) but only few previous work cop-
ing with automatic approaches for visual rope inspec-
tion. Platzer et al. (2010) compared the performance of
different textural features for the problem of defect de-
tection in wire rope surfaces. In Platzer et al. (2009),
they focused on contextual anomaly detection by mod-
eling the intact class with help of Hidden Markov Mod-
els. Haase et al. (2010) analyzed contextual anomalies
in the rope surface with help of an autoregressive model
which predicts the intact surface appearance given its
neighborhood. Rodner et al. (2011) used Gaussian pro-
cesses in a one-class classification framework to detect
anomalies in wire ropes. Nevertheless, none of these
purely appearance-based approaches achieves the accu-
racy of a human inspector.

2.3. Analysis-by-Synthesis and Material Appearance
Estimation

Analysis-by-synthesis (Koch, 1993) is a well-known
approach for the problem of estimating time-variant
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(dynamic) 3d scene parameters in an image-based man-
ner. A parametric 3d model is adapted towards the
real scene by synthesizing 2d model projections. The
measurable differences between model and real image
guide the model adaption within a feedback loop. Free
model parameters correspond to the scene characteris-
tics of interest such as e.g shape, position and surface re-
flectance. Where appropriate, the initial model estima-
tion by computer vision algorithms comprises a fourth
element (Koch, 1993). Typical application examples for
analysis-by-synthesis include camera calibration (Eis-
ert, 2002; Koeser et al., 2007; Wuest et al., 2007), hu-
man motion analysis (Moeslund et al., 2006) and (ob-
ject) tracking applications (Hasler et al., 2007). A simi-
lar concept is used in medical applications for 2d-3d im-
age registration with digitally reconstructed radiographs
(DRR) (Penney et al., 1998).

If not only the scene geometry but also the surface ap-
pearance is of interest, image-based rendering (Shirley,
2002) aims to estimate the reflectance properties of ma-
terial surfaces by optimizing the free parameters of the
bidirectional reflectance distribution function (BRDF)
in an image-based manner (Dana et al., 1999; Dana,
2001; Marschner et al., 2000). However, the estima-
tion of the free model parameters requires a calibrated
setup in which not only the object geometry but also all
positions of the cameras and the light sources must be
known.

In contrast, in this work we propose to neglect the
term for reflectance in the parametric model description.
Instead, a density model for the visual texture is directly
learned from the image data based on the relation be-
tween rope geometry and observed surface appearance.
Thus, it is possible to obtain an appearance model which
also captures natural appearance variations which can-
not be modeled with a parametric reflectance model due
to their non-deterministic character.

3. Rope Geometry Estimation

To estimate the rope geometry from a 2d sequence
of rope images, we follow the principle of analysis-by-
synthesis. Instead of estimating the initial model from
image data, we use our expert knowledge about rope
construction to provide a mathematical formulation of
the wire centerlines. This formulation serves as para-
metric rope model. The synthesis step comprises the
computation of a 2d model projection according to the
special projection geometry of the acquisition system.
The model adaption is performed in hierarchical man-
ner. First, the strands are aligned and deformations

within the 2d rope images are corrected. Finally, the
individual wires are aligned.

3.1. Parametric 3d Rope Model

A description of the general rope geometry can be
found in Feyrer (2007). In order to keep the model
simple, a wire centerline model is used instead of a
volumetric one. A stranded rope consists of strands
which are composed of wires. In the top left of Fig-
ure 3(a) the fundamental construction of a wire rope is
shown: N strands (big circles) are grouped around the
rope core (gray shaded) and each strand consists of M
wires (small circles). A wire centerline wi, j of the i-th
wire in the j-th strand can be mathematically described
by two intertwined helices (rotated around the y-axis to
be aligned with the x-axis of the line camera coordinate
system) dependent on the two parameter vectors ps and
pw j

.

wi, j(ps, pw j
, t) = (1) t

rs sin(ϕs (ps, t))
−rs cos(ϕs (ps, t))

︸                  ︷︷                  ︸
s j

+


0

rw sin(ϕw (pw j
, t))

−rw cos(ϕw (pw j
, t))

︸                     ︷︷                     ︸
wi

.

rs and rw are the radii of the strand and wire space
curves. In detail, the phase angles can be formulated
as a function of the parameter vectors ps =

(
Ls , os

)
and

pw j
=

(
Lw j , ow j

)
:

ϕs (ps, t) = t
2π
Ls

+ jks + os (2)

ϕw (pw j
, t) = t

2π
Lw j

+ ikw + ow j . (3)

jks = j 2π
N and ikw = i 2π

M denote the phase displacements
for the j-th strand and the i-th wire respectively. Ls is the
lay length of the individual strands whereas Lw j denotes
the wire lay length of the wires in strand j. os and ow j

are the phase offsets and t is the current time step.
Note, that we refrain from using an additional index

to indicate the strand and wire number on the phase
functions ϕs and ϕw to increase the readability. The
radii of the wire and strand space curves can be com-
puted from the rope specification which contains the di-
ameters of the strands and wires ∅s and ∅w. Figure 3(a)
shows that the wire space curve radius can be computed
as rw =

sin(β)∅w
sin(α) . The calculation of the strand curve

radius is analog.
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Figure 3: General rope and wire geometry (a) and geometry for the computation of the model contour of a volumetric rope projection (b).

3.2. Image Synthesis

For the image synthesis, the specific projection geom-
etry of the camera system (Moll, 2003) must be taken
into account. Four line cameras are placed equally
around the rope and move with constant and linear mo-
tion along the rope axis during acquisition. The pro-
jection matrix for a so called pushbroom camera was
derived by Gupta and Hartley (1997). We have to cope
with a perspective projection along the sensor array and
an orthographic projection along the time axis. Accord-
ing to Gupta and Hartley (1997) the pushbroom projec-
tion of a 3d rope point wi, j(ps, pw j

, t) to a 2d point (u, v)
can be written as:(

u
v

)
←

 u
wv
w

 = K · V

wi, j(ps, pw j
, t) +

0
0
d


 . (4)

The camera-to-scene distance d is unknown. The intrin-
sic camera parameters K are also unknown but fixed.
However, the 3d rope diameter ∅r as well as the rope di-
ameter in pixels in the real 2d projection ∅2d

r are known.
Hence, we set the focal length f = 1 and the projection
center pv = 0 and rescale the resulting projection to the
known rope diameter in pixels. An optimization of d
conjointly with the other free parameters leads to an es-
timation of the ratio between f and d. Matrix V includes
the camera movement and degenerates to an identity
matrix in our special case of constant camera move-
ment along the x-axis. The projection of a 3d rope point
wi, j(ps, pw j

, t) in Cartesian coordinates results from (1)
and (4):(

u, v
)T

=

(
t,

rs sin(ϕs (ps,t))+rw sin(ϕw j (pw j
,t))

−(rs cos(ϕs (ps,t))+rw cos(ϕw j (pw j
,t)))+d

)T
. (5)

As a centerline model is used, the volumetric wire ap-
pearance must be approximated to simplify the align-
ment procedure. For this purpose, a 1d Gaussian is

centered around each projected wire centerline pixel
with a mask width corresponding to the projected wire
diameter in pixel. Although only heuristically moti-
vated, a Gaussian approximates the illumination prop-
erties around the wires sufficiently.

3.3. Rope Parameter Optimization
The alignment of the artificial projections with the

real rope images results in estimates for the free rope pa-
rameters. The image registration is performed within a
non-linear optimization framework. Free model param-
eters are the lay lengths of strands and wires as well as
the strand and wire positions. Furthermore, the camera-
to-scene distance must be estimated for the first view
of a sequence, in order to obtain a correct scaling of
the artificial projections. As the distance between cam-
era and rope remains more or less equal during the ac-
quisition process, all further processing can be based
on this estimate. The alignment of periodic structures
always results in an ambiguous registration problem.
This problem is exacerbated by the fact that the wire
parameters are highly dependent on the strand parame-
ters. We take advantage of the hierarchical design of a
stranded rope to simplify this problem. At first, solely
the strands are aligned. For this purpose, we provide
an analytic description of the rope contours. The ana-
lytic treatment allows for the usage of efficient similar-
ity measures. Apart from this, the image deformations
which arise from an oscillating rope during acquisition
can be simultaneously corrected by estimating the dis-
placement of real rope contour and model contour. Fi-
nally, the wires of each individual strand can be aligned
separately in image-based manner. The wire alignment
closes the analysis-by-synthesis loop.

3.3.1. Strand Alignment and Deformation Correction
The alignment of the real rope contours and the pro-

jected model contours results also in an alignment of the
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strands. Therefore, the upper and lower rope contours
rcu(t) and rcl(t) can be extracted automatically from the
real rope images. The iterative optimization strategy
is composed of the following steps, which will be de-
scribed in detail afterwards:

(1) Derive analytic description of upper and lower
model contours mcu(ps, t) and mcl(ps, t) for current
parameter setting ps

(2) Computation of the displacement vector ŷps of real
and synthetic contours (pixel coordinates)

(3) Correction of the real contour by ŷps

(4) Computation of the normalized 1d cross correlation
coefficient NCC1d

T [·, ·] of both contours

(1) Model Contours. The analytic description of the
projected model contours is based on the geometric re-
lations between a point on the strand center line and a
point on the strand surface which is a part of the model
rope contour, which are illustrated in Figure 3(b). The
strand center which results in a contour point in the 2d
centerline projection can be described by the angle ϕs

and the radius of the strand space curve rs (both marked
in red). However, to describe the 3d point psurf, which
results in a contour point of the volumetric 2d rope pro-
jection, a new angle ϕ̃s and a new distance r̃s (marked
in blue) can be computed with help of trigonometric op-
erations. Thus, the contour of the volumetric 2d model
projection of a strand s̃2d

j can be described by:

s̃2d
j (ps, t) =

 t
r̃s sin(ϕ̃s (ps,t))

−(r̃s cos(ϕ̃s (ps,t)))+d

 . (6)

Consequently, the contour of the whole rope in the vol-
umetric 2d rope projection in image coordinates can be
simply derived by a minimum/maximum operation on
the v-coordinates s̃v2d

j of (6) for all strands in one time
frame T = [t1, tn]:

mcl(ps, t) = min
j

s̃v2d
j (ps, t), ∀t ∈ T (7)

mcu(ps, t) = max
j

s̃v2d
j (ps, t), ∀t ∈ T. (8)

(2) Displacement Vector. It is possible to rescale the
model contour to pixel coordinates with help of the pixel
ranges obtained from the real contour. Afterwards, the
correction vector yps = (yps

t1 , . . . , y
ps
tn ) for the given time

frame T = [t1, tn] and the current parameter set ps can
be computed by the concept of least squares:

ŷps = arg min
yps

tn∑
t=t1

((
rcu(t) + yps

t

)
− mcu(ps, t)

)2
(9)

+
((

rcl(t) + yps
t

)
− mcl(ps, t)

)2
.

Solving for ŷps
t for all t ∈ T leads to:

ŷps
t = 0.5 (mcu(ps, t)− rcu(t) + mcl(ps, t)− rcl(t)). (10)

Although least squares is known to be prone to outliers,
this is not a problem for the following step. The corre-
lation coefficient which is maximized for the alignment
of the model contours and the real contours (step 4) is
computed with respect to a whole time frame which pro-
vides the necessary context to cope with outliers.

(3) Contour Correction. The original rope contours are
corrected by the estimated deformation vector ŷps as fol-
lows

rcu(t)′ = rcu(t) + ŷps
t , (11)

rcl(t)′ = rcl(t) + ŷps
t (12)

for all t ∈ T . Furthermore, the deformation vector,
which is estimated for the final strand parameters in the
last optimization iteration, must be applied to the whole
rope projection, in order to ensure a robust wire align-
ment.

(4) Correlation Coefficient. For the optimization of ps
the 1d cross correlation coefficient NCC1d

T [·, ·] of the
model contours and the corrected real rope contours is
maximized:

p̂s = arg max
ps

(NCC1d
T

[
rcu(t)′,mcu(ps, t)

]
(13)

+ NCC1d
T

[
rcl(t)′,mcl(ps, t)

]
).

3.3.2. Wire Alignment
Based on the strand alignment the alignment of wires

is done separately for each individual strand. Conse-
quently, the wires of different strands possess an in-
dividual parameter set (which is analog to the making
of a real rope). The alignment task turns out to be a
multimodal registration problem of the artificial projec-
tion with the real rope image. Hence, similarity mea-
sures like the (weighted) mutual information and the 2d
normalized correlation coefficient are perfectly suited
and work well for our problem formulation. For the
sake of simplicity, we formulate the alignment of the
synthetic projection Im with the real projection Ir and
time frame T using the normalized correlation coeffi-
cient NCC2d

T [·, ·] only:

p̂w j
= arg max

pw j

NCC2d
T

[
Ir,Im( p̂s, pw j

, t)
]
. (14)

For the optimization of both, strands and wires, we
use the Downhill Simplex optimization scheme (Press
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et al., 1992). Prior to the Downhill Simplex we further-
more perform a global grid search. This is done because
the wire alignment is highly periodic. Hence, this am-
biguous optimization problem requires a good initial-
ization.

4. Combination of Structure and Appearance

This section describes, how we can learn the implicit
relation between rope texture and rope geometry from
a set of intact rope images. As already mentioned,
our rope model representation neglects a parametric re-
flectance model. Nevertheless, there exists a physical
explanation for the relation between object geometry
and observed appearance, which is briefly introduced
in Section 4.1. We show that the periodically repeating
rope geometry and the special and fixed spatial relation-
ship between rope, light source and camera allow for
a sampling of this physical model which is known as
rendering equation (RE). This sampling results in our
probabilistic appearance model. In contrast to a para-
metric reflectance model this approach is able to capture
all normal variations within the surface characteristics
even if they are of non-determinstic nature.

4.1. Physical Model for Appearance
The rendering equation is an integral equation de-

scribing the propagation of light. It was first introduced
by Kajiya (1986) and gives a physical explanation for
the radiance, which can be observed at a surface point
X of an object dependent on the viewing direction ωo.

LO(X,ωo) = (15)

LE(X,ωo) +

∫
Ω

fr(X,ωi,ωo) LI(X,ωi) (ωi · n)dωi.

The outcome LO is influenced by the emitted amount of
light LE and the reflected amount of light. The reflected
radiance is the product of the incoming radiance LI , the
bidirectional reflectance distribution function fr of the
surface point and the inner product of surface normal
n and the inward direction ωi integrated over the hemi-
sphere Ω. For non-emitting surfaces, the self-emission
LE can be neglected.

Usually, an analytical solution of the rendering equa-
tion is not possible. Therefore, it is approximated with
help of simpler, but often not physically correct illumi-
nation models like e.g the Phong shading (Phong, 1975).
Or it is sampled with help of Monte Carlo techniques
like path tracing or photon mapping (Lafortune, 1996;
Jensen, 2001). Nevertheless, all of these approxima-
tions require knowledge about the position of the light
sources as well as the viewing angle.

Core

Strand

Wire

Camera

Light source

ϕS

ϕW

dc

X(ϕS , ϕW , dC )

xi xr

ϕW

dc

Optical center

Sensor
d′c

A B

y

x
z

Figure 4: Scenario sketch: given the point correspondence of a rope
pixel xr in the real rope image (B) and a rope pixel xi in the aligned
artificial model projection (A) a 3d surface point X of the rope can be
parametrized by the two phase angles ϕs , ϕw and the 2d distance d′c
of xi to its corresponding projected wire centerline. d′c results from a
1:1 mapping of the unknown 3d distance dc.

4.2. Geometry-dependent Appearance Sampling

As the visual inspection of wire ropes cannot be per-
formed within a controlled environment it is a hard task
to provide adequate calibration information with respect
to the acquisition setup in order to estimate the RE with
common techniques. This basically implies, thatωo and
ωi of (15) are unknown. However, the relation between
camera, object, and position of the light source(s) stays
fixed. The camera system used for the rope acquisition
is closed and therefore minimizes the influence of the
natural illumination (e.g sun light). For this case, it is
obvious that the viewing direction as well as the incident
angle of the incoming light depend only on the surface
point X. Figure 4 clarifies this circumstance. Given the
aligned real rope images and the artificial model pro-
jections we obtain a correspondence between a pixel xi

in the artificial projection and a pixel xr in the real im-
age. Thus, it is also possible to derive a parametric de-
scription of the surface point X which is fully described
by the two phase angles ϕs and ϕw and the appropriate
3d distance dc of this surface point X to the visual line
which crosses the corresponding wire centerline (time
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is neglected):

X(ϕs (ps), ϕw (pw j
), dc) = wi, j(ps, pw j

) (16)

+


0
dc

−
√

0.5∅2
w − d2

c

︸               ︷︷               ︸
n′

.

The vector n′ points into the direction of the surface
normal. Although dc is unknown due to the missing
volumetric information there exists a 1:1 mapping be-
tween dc and the measurable 2d distance d′c of an im-
age pixel xi to its corresponding projected wire center-
line. Thus, we replace the unknown distance dc by is
measurable counterpart d′c. Hence, each surface point
can be uniquely adressed by its parametric description
θ = (ϕs (ps), ϕw (pw j

), d′c).
Based on this description, we can re-parametrize (15)

L̃O(θ) = LO(X(θ)) = (17)∫
Ω

fr(X(θ),ωi) LI(X(θ),ωi)(ωi · n(X(θ)))dωi.

The emitting term LE can be neglected as the rope is a
non-emitting object. This re-parametrization allows for
a sampling of the rendering equation dependent on the
parametrization θ of a surface point X. Due to the peri-
odicity of the rope which results in repeated samples for
the same surface point, this allows us to estimate a den-
sity model for the relation between rope geometry and
observed appearance. The appearance representation is
formed by estimating the joint distribution p(gr, θ) for
any surface point parametrization θ and the correspond-
ing observed gray values gr in the rope image. The den-
sity is estimated in a non-parametric manner with help
of a 4d histogram and we obtain a dense representation
by applying a 4d Parzen estimator:

p(z = (gr, θ)) = (18)

1
n

b∑
i=1

1
√
|2πΣ|

exp
(
−

1
2

(z − zi)T Σ−1 (z − zi)
)

ni.

n denotes the total number of all available samples
whereas ni is the number of samples belonging to the
histogram bin i. b is the total number of bins in the mul-
tidimensional histogram. The covariance matrix

Σ =


σ2

1 0 0 0
0 σ2

2 0 0
0 0 σ2

3 0
0 0 0 σ2

4

 (19)

(a)

Rk

(b)

Figure 5: (a): Original rope image with defect (left) and correspond-
ing probability map (right). (b): Sketch of the rope regions.

defines the Gaussian window andσ1, . . . , σ4 where cho-
sen manually and are oriented towards the different vari-
ances along the histogram dimensions. As the real rope
images have a gray level range of 256 values while the
distances of the individual pixel xi to its corresponding
wire centerlines in synthesized model projections have
a much smaller range, also the quantization of the real
gray values was chosen to be coarser than that of the
model domain.

The estimated density combines rope structure and
observed surface appearance and results in a generative
model for the rope surface characteristics.

5. Rope Surface Analysis

Detecting defects in the rope surface means to dis-
cover anomalous regions in the image. Therefore, the
defect diagnosis can be treated as an anomaly detection
problem. The rope model is aligned with the query im-
age and this results in a parametrization θ for each sur-
face point corresponding to a rope pixel in the query
image. A probability map is computed with help of the
likelihood

p(gr | θ) =
p(gr, θ)

p(θ)
. (20)

(20) states how likely it is to observe the gray value gr

for a pixel xr given its corresponding parametrization
θ. This likelihood can be extracted from the appear-
ance representation p(gr, θ) introduced in Section 4.2.
In the left of Figure 5(a), a rope image including a typ-
ical defect is shown. The appropriate probability map
is depicted in the right of Figure 5(a). The darker the
color in the probability map, the smaller the obtained
likelihood.

Nevertheless, an alignment of a rigid rope model with
the flexible structure of a real rope leads to systematic
registration inaccuracies, which arise mainly in the bor-
der areas between two strands. In these regions, a robust
estimation of the appearance model is hindered and the
estimated density becomes broad. For this reason, the
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appearance model needs to be normalized with respect
to these registration inaccuracies.

With help of the two phase angles ϕs , ϕw the rope sur-
face can be divided into several clusters or regions. This
is sketched in Figure 5(b). The rope surface is separated
into K discrete region classes Rk and the expectation of
each individual rope region is normalized. This is done
by computing the average likelihood p(Rk) for each rope
region Rk and all Nk rope pixels belonging to Rk:

p(Rk) =
1

Nk

Nk∑
n=1

p(gn
r | θ

n) . (21)

This average is now used to obtain a normalized likeli-
hood according to (20):

p̃(gr | θ) = p(gr | θ)
1

ε + p(Rk)
. (22)

In this case, ε > 0 is a stabilization factor. The normal-
ization is data-independent and can be performed on the
training set, as it compensates for a systematic problem
caused by the rigid nature of the rope model. To localize
anomalies in the rope surface the normalized probabil-
ity map including all normalized likelihoods p̃(gr | θ)
is mean filtered along the wire course. By applying a
thresholding operation a hard assignment can be made,
which differentiates between normal surface character-
istics and suspicious changes in the rope surface. The
threshold will be evaluated in detail in Section 6.

6. Experimental Evaluation

The approach and all important intermediate steps are
evaluated thoroughly on real-world data which was ac-
quired by the system described in Moll (2003). This
line camera system delivers four individual views of
the rope. Thus, the amount of rope meters is quadru-
pled and the set of natural variations which occur dur-
ing the acquisition process is augmented. The camera
system provides a temporal resolution of 0.1 mm per
camera line. After a brief description of the different
data sets and our evaluation criteria, the alignment ac-
curacy is evaluated in Section 6.3. The most important
results are provided in Section 6.4 where our approach
is used to perform an automatic visual rope inspection
in order to detect defects on the rope surface. For the
sake of completeness we also prove that our genera-
tive model can be used to synthesize naturally appear-
ing rope. Finally, we compare the defect detection per-
formance with the results of another state-of-the art ap-
proach for automatic visual rope inspection. Note, that
this purely appearance-based approach does not allow

for an estimation of the rope geometry. As to the best of
our knowledge, the presented approach is the first one
which facilitates an automatic monitoring of the rope
structure, we are not able to compare our results to other
approaches with respect to the alignment accuracy.

6.1. Data sets
The anomaly detection accuracy is evaluated on real-

world data acquired from an rope during operation. This
data set, which we refer to with RealRope, comprises
in total 7.7 GB. Note, that this corresponds in total
to 4 × 400 m= 1600 m of rope. The rope diameter
is 32.0 mm and the expected average strand lay length
(which results from the construction type) is 220.0 mm.
Note, that a deviation of the lay length by a few mm is
normal due to manufacturing variations. The data was
carefully selected by a human expert to ensure, that a
maximum amount of appearance variations and surface
defects are contained. The reference labeling, which we
consider as the gold standard, is also provided by the hu-
man expert. Note, that the labeling results of different
experts differ not significantly. Thus, our labeling cor-
responds the results of a human inspector with respect
to one in-depth inspection run. Altogether, there are 37
different surface defects in the rope. Some of them are
visible in more than one camera view.

Anyhow, it is not possible to evaluate the alignment
accuracy on real-world rope data in quantitative manner.
This is due to the fact that it is not possible to measure
an attached rope manually during operation. To provide
a quantitative evaluation of the alignment accuracy we
use an artificial reference data set ArtificialRope. It
is worth noting, that although this reference data is com-
puted based on the 3d rope model, the extraction of the
rope contour from the real data is a critical part of the
analysis and forms the foundation for the parameter es-
timation task. The synthetic rope is composed of six
strands and nine wires. For each individual test run we
simulate 30 m rope. The temporal resolution is 0.1 mm
per camera line. The ground truth values of all free
parameters for every individual test run are randomly
chosen with strand lay lengths altering from 123 mm to
152 mm and wire lay lengths from 59 mm to 99 mm. To
evaluate the accuracy of the presented approach Gaus-
sian noise with different noise levels is added to the rope
contours and the gray values of the resulting artificial
rope projections.

To prove the general applicability of the approach on
real rope data, we acquired a very short rope (3.4 me-
ters) within a controlled environment. This facilitates a
manual measurement of the lay lengths of strands and
wires for small parts of this rope by a human expert.
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The acquired rope has a diameter of 20.46 mm, and an
expected strand lay length of 137.5 mm. We refer to
this data set with ShortRope. To prove, that our ap-
proach is able to capture changes with respect to the lay
lengths, we recorded three different sequences of the
rope. Seq.1 is the reference sequence. For Seq.3 the
rope was manually untwisted and for Seq.2 is was re-
twisted. These manipulations should primarily result in
an altered strand lay length. It is important to mention,
that this rope contains no defects at all. Thus, it is not
suitable for an evaluation of the defect detection perfor-
mance and was acquired explicitly for the evaluation of
the parameter monitoring accuracy.

6.2. Evaluation Criteria
The evaluation criteria which are applied to judge the

alignment accuracy, the deformation correction and the
anomaly detection performance are different. With re-
spect to the alignment accuracy, the quality of the esti-
mates for the strand lay length and the wire lay length
are of interest. These are the important rope variables,
as a strong variation with respect to these parameters
gives evidence of severe problems within the rope for-
mation. An evaluation on ArtificialRope allows for
the computation of metric errors for these parameter es-
timates. Furthermore, for ShortRope it is possible to
compare our parameter estimates to those resulting from
the manual measurement. Anyhow, for real-world rope
data it is only possible to provide a qualitative analysis
as no ground truth information for the rope parameters
is available. For this purpose, we display the real rope
and the projected model strands and wires for the opti-
mal parameter set in alternating fashion.

With respect to the deformation correction we face
a similar problem. As it is not possible to determine
the movement of the rope during acquisition, there ex-
ists no ground truth information. For this reason, we
first provide a qualitative analysis to show the benefit
for the overall alignment accuracy, which results from
this correction step. To provide also a quantitative eval-
uation as proof-of-concept, we first compute the correc-
tion vector ŷps for the images contained in RealRope.
Next, we additionally apply a known distortion to the
2d rope sequence and recompute the correction vector
for the individual frames. Now, given the two different
correction vectors we are able to compute the root mean
square error (rms) with respect to the artificial image
transformation.

The anomaly detection problem can be considered
as binary classification problem. According to Provost
et al. (1998) the evaluation of binary classification sys-
tems by accuracy or recognition rates can be misleading.

Thus we use receiver operating characteristic (ROC)
curves and the corresponding area under the curve
(AUC) measure to evaluate our approach. Note, that we
treat a defect as positive test outcome and thus the true
positive rate (TPR) determines the amount of recovered
defect area measured in camera lines. In consequence,
the false positive rate (FPR) measures the amount of
false-alarms. Anyhow, it is not sufficient to measure the
error just as a function of the total length of detected
anomalies. This is due to the reason, that it is crucial to
detect every single defect within the rope. Therefore, we
introduce the 50% recovery case and mark that point of
the ROC curve with a black square, which corresponds
to the recognition rates, which can be achieved if at least
50% of the defect area are recognized. It is important to
highlight, that these rates are bounded to the most chal-
lenging defects within the sequence. For the application
it is not important to recover exactly 100% of the defect
area but if significantly less then 50% of an anomaly
are recovered, it is not clear whether this detection is a
lucky shot.

6.3. Alignment Accuracy

The following experiments were designed to reveal
the alignment accuracy of the 3d rope model with the
2d real rope images.

6.3.1. Quantitative Evaluation on Simulated Data
The quantitative evaluation of the alignment accuracy

is performed on ArtificialRope. For both, the strand
lay length estimates as well as the wire lay length esti-
mates, we computed the metric estimation errors. The
resulting error distributions are visualized by means of
box plots (McGill et al., 1978). In Figure 6 the boxes
depict the 0.25 and 0.75 quantiles and the middle bar
marks the median error in millimeters obtained for all
time steps of 20 randomly initialized test runs per noise
level. Figure 6(a) shows the results for the strand pa-
rameter Ls and Figure 6(b) illustrates the error distribu-
tion for the wire lay length Lw j of an exemplary cho-
sen strand. The maximum position errors are around
1.3 mm and the camera-to-scene distance d can be mea-
sured with a mean accuracy of approximately 3.7 mm.
Although this high accuracy is obtained with respect to
a simulated test data set, these results prove the func-
tional capability of our approach.

In order to prove the capability of the approach to
track parameter variations, a randomly generated pa-
rameter progression is precomputed for every individual
lay length parameter. This progression is marked by the
gray area in Figure 6(c) and Figure 6(d). The estimates
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(a) Strand lay length estimate. (b) Wire lay length estimate.

(c) Parameter tracking of lay lengths for strands. (d) Parameter tracking of lay lengths for wires.

Figure 6: (a)-(b): Robustness of the lay length estimates to noise. (c)-(d): Parameter tracking results. The gray area represents the ground truth
parameter progression, the black curve corresponds to the estimates.

for every frame resulting from the analysis-by-synthesis
loop are represented by the solid, black curve. The high
accuracy is also reflected in the low mean errors ob-
tained in 100 randomly initialized test runs. These are
0.06 mm for the strand lay length and 0.23 mm for the
wire lay lengths.

6.3.2. Results on Real Rope Data within a Controlled
Environment

We performed a model alignment for all three se-
quences of ShortRope. The parameter tracking re-
sults for the strand lay length of the three different se-
quences are displayed in Figure 7. The manually mea-
sured strand reference lay length for some exemplary
frames of each sequence is given by the dashed line.
This value is 136.6 mm for Seq.1, 139.5 mm for Seq.2
and 133.0 mm for Seq.3. From Figure 7 it becomes
clear that our estimated lay length matches the measure-
ment of the human expert (dashed lines) for each of the
three sequences. The variation in the estimation results
varies over time around ± 1 mm which is less then one
percent of the measured value. These are good results
given the fact that the lay length is a time-variant, dy-
namic parameter and a reference is hardly to define by

Figure 7: Strand lay length estimation on the three different real data
sequences.

manual measurement. Furthermore, we would like to
draw the reader’s attention to the visible correlation in
the lay length course of the three different sequences.
Bearing in mind, that all sequences are acquired from
the same rope, this is a further indicator for the quality
of our estimation results. The variation coefficient (stan-
dard deviation/mean) for 10 different estimation runs is
0.0028% for the strand lay length and 3.3% for the wire
lay lengths.
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(a) Strand lay length estimation.
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(b) Wire lay length estimation with and without deforma-
tion correction.

(c) Alignment without deformation correction. (d) Alignment with deformation correction.

Figure 8: (a)-(b): Lay length estimation on a representative part of the real rope. (c)-(d): Influence of the deformation correction on the alignment
result with wire lay length estimates given in brackets. The first image (c) shows the result without deformation correction (107.15 mm). In the
top the strand back projection is shown. In the bottom, the wire alignment is displayed. The second image (d) shows the same result but with
deformation correction (95,32 mm)

6.3.3. Qualitative Evaluation on Real-World Rope
Data

Figure 8(a) shows the parameter tracking result
for the strand lay lengths obtained on the data set
RealRope. For a better readability of the plot, just the
results for a representative part of the rope are displayed.
The dotted lines mark the upper and lower tolerances
for the lay length, defined by the human expert given
the theoretic lay length for this rope construction type.
The parameter estimation results are robust and vary in
between 3% of the expected lay length. Obviously, this
rope seems not to suffer from creeping changes with re-
spect to its geometric structure.

Figure 8(b) shows the parameter tracking result for
the wire lay length of one exemplary chosen strand
of RealRope with deformation correction and with-
out deformation correction. The deformation correc-
tion clearly leads to more robust estimates of the wire
lay length. Note, that small imprecisions with respect
to the strand parameter estimates will change the out-
come of the wire parameter estimates. However, this
must not necessarily imply a wrong wire alignment, as

small inaccuracies with respect to the strand parameter
estimates can be balanced by lightly modified wire pa-
rameter estimates. The qualitative analysis of the wire
alignment and the deformation correction is given in
Figure 8(c) and Figure 8(d). The top row of both images
depicts the strand backprojection of the model strand
into the real rope image and the bottom row shows the
wire backprojection respectively. The images on the
left hand side (8(c)) show the alignment result without
an additional deformation correction and the right hand
size (8(d)) illustrates the results obtained with deforma-
tion correction. Obviously, the deformation correction
improves the alignment results significantly, especially
with regard to the marked regions of interest.

Finally, the mean rms with respect to 100 randomly
generated deformation vectors, which were additionally
applied to the image data from randomly chosen rope
regions results in 0.15 pixel. The resulting mean param-
eter deviations are 0.32 mm for the strand lay length and
0.84 mm for the wire lay lengths. These small errors can
be considered as a proof-of-concept for our deformation
correction.

12



T
ru

e 
p
o
si

ti
v
e 

ra
te

 

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.02  0.04  0.06  0.08  0.1

 

False positive rate 

View 1, AUC=0.974
View 2, AUC=0.979
View 3, AUC=0.996
View 4, AUC=0.998

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

(a) Model-based approach.
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(b) Comparison of model-based approach and HMM-approach.

Figure 9: Quantitative evaluation of the model-based approach. In the left the ROC curves of the four camera views are shown. The 50% recovery-
case is marked by the black squares. In the right the model-based approach is compared to the HMM-approach of Platzer et al. (2009) by means of
averaged ROC curves.

6.4. Defect Detection Accuracy

The evaluation of the defect detection accuracy is ex-
clusively performed on RealRope. We train the appear-
ance model described in Section 4.2 for each camera
view individually on 5 m of the rope, which the hu-
man expert considered to be defect free. The remain-
ing 395 m were used for testing. The resulting ROC
curves for each individual rope view can be seen in Fig-
ure 9(a). The AUC measure for each curve is given in
the legend. The black squares mark the 50% recovery
case. It becomes obvious, that the defection detection
accuracy of our approach is very good. The worst-case
FPR which must be tolerated to ensure that every defect
is recognized to at least 50% lies around 1.5%. In most
security relevant applications, the final decision must be
made by a human expert who needs an image context of
around 5 cm around each system alarm to judge weather
it is a critical anomaly or a false alarm. Having regard to
this circumstance, false alarm rate of 1.5% for the 50%
defect recovery case imply that a human expert would
have to re-inspect only 103 m of the rope instead of
395 m. The results illustrated in Figure 10 underline the
good quality of our appearance model. In Figure 10(a)–
10(d) some of our detection results are displayed. They
emphasize the high accuracy of the anomaly detection
as they almost perfectly match the defect region. Fig-
ure 10(e) and Figure 10(f) prove that the learned ap-
pearance representation is suitable for our purpose as
the synthesized rope contains all important properties
(reflections, shadowing etc.).

6.5. Comparison of the Defect Detection Accuracy with
other Approaches

We compare our results to those obtained with the
Hidden-Markov model (HMM) approach of Platzer
et al. (2009) which leads to the best published results so
far with regard to an individual analysis of each camera
view. Figure 9(b) shows the averaged ROC curves (av-
eraged over all four views) obtained on the same dataset
with the HMM approach and with the model-based ap-
proach. It is obvious that our approach clearly outper-
forms the HMM-based strategy.

7. Conclusion

We argue that analyzing the rope surface with a
model-based approach that incorporates the underly-
ing structure of the rope is a great benefit compared
to purely appearance-based approaches. By linking the
observed appearance to the corresponding rope region,
a much better representation of the normal surface char-
acteristics can be obtained. Furthermore, the alignment
of the 3d rope model with the 2d rope images allows the
estimation of the current rope parameters and therefore
a monitoring of the lay lengths within the rope. This is
an important technical innovation, as an automatic mea-
surement of these parameters was not possible before.
The detection of creeping changes in the rope structure
provides valuable information about the rope status. Fi-
nally, our experiments prove that the defect detection
accuracy is improved significantly compared to the ex-
isting automatic approaches. The overall performance
is comparable to the gold standard, which is up to now
the human inspector.
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(a) (b)

(c) (d)

(e) Original rope image. (f) Artificially generated rope.

Figure 10: Recovered defects: original rope image (upper image in each group) and result with recovered defect (blue) and ground truth labeling
(black box). (e) shows a part of real, intact rope and (f) shows an artificially generated rope projection, which was texturized with the learned
model.

8. Further Work

Our approach is one of the first model-based ap-
proaches in this research area that incorporates structure
and appearance. Thus, it would be interesting to apply
the approach to other inspection problems. For arbitrary
applications, the biggest part of the work would be the
construction of a feasible, parametric 3d model. Despite
its benefits our approach has still some drawbacks: the
decision threshold which rules the classification rates is
adapted manually at the moment. An automatic adap-
tion could be a topic for further research. In addition, it
would be interesting to replace the rigid rope model by
a flexible one to reduce the systematic registration inac-
curacies. However, a non-rigid registration would im-
ply a new problem: a trade-off must be found between
a good adaption to the intact rope on the one hand and
too much adaption to abnormal rope deformations on
the other hand. This implies an expansion of the classi-
fication problem by another dimension.
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