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Abstract. We present a new approach for anomaly detection in the con-
text of visual surface inspection. In contrast to existing, purely appearance-
based approaches, we explicitly integrate information about the object
geometry. The method is tested using the example of wire rope inspection
as this is a very challenging problem.
A perfectly regular 3d model of the rope is aligned with a sequence of
2d rope images to establish a direct connection between object geometry
and observed rope appearance. The surface appearance can be physically
explained by the rendering equation. Without a need for knowledge about
the illumination setting or the reflectance properties of the material we
are able to sample the rendering equation. This results in a probabilistic
appearance model. The density serves as description for normal surface
variations and allows a robust localization of rope surface defects.
We evaluate our approach on real-world data from real ropeways. The
accuracy of our approach is comparable to that of a human expert and
outperforms all other existing approaches. It has an accuracy of 95% and
a low false-alarm-rate of 1.5%, whereupon no single defect is missed.
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1 Introduction

Automatic surface inspection is a research area of rising interest. It is an impor-
tant problem as the inspection task is an exhausting and monotonous work for a
human with high quality claims on the other hand. In addition, surface analysis
in general is a difficult problem, as the visual appearance of surfaces is highly
subjected to various kinds of noise and changing lighting conditions.

A good example for such a task is the visual inspection of wire ropes. This is
a very important problem, as damaged ropes pose a risk for the human life. Fur-
thermore, the long, heavy ropes cannot be unmounted, are often contaminated
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with e.g mud or oil and their material is highly reflective. In consequence, the
surface appearance of an intact rope exhibits various characteristics. In contrast,
defects in the surface structure are often very small and inconspicuous. Some ex-
amples for typical surface defects are displayed in the upper images of Fig. 5. Due
to the high intra-class variability and the poor inter-class separability, a discrim-
ination between defect and normal appearance variation is a difficult problem.
Furthermore, a common problem of visual inspection tasks is the limited amount
of available defective samples which hinders a supervised learning. For this rea-
son, anomaly detection techniques [1,4], also known as one-class classification
[9] have been used in the past for defect detection in material surfaces [8,11].
In general, these approaches are highly dependent on their choice of features
used to represent the intact class. Platzer et al [7] compared the performance
of different textural features for the problem of defect detection in wire rope
surfaces. Their results underline the importance of context information for the
problem of surface defect detection, especially with respect to the complex struc-
ture of wire ropes. In [6] Platzer et al focused on contextual anomaly detection
by modeling the intact class with help of Hidden Markov Models. Haase et al [2]
diagnosed contextual anomalies in the rope surface with help of an autoregres-
sive model which predicts the intact surface appearance given its neighborhood.
Nevertheless, no approach achieves the accuracy of a human inspector.

We state that the main reason for this is the lack of geometrical context in
these purely appearance-based approaches. Therefore, we present a model-based
approach for visual surface inspection. By fusing a geometrical structure model
with a statistical appearance model we achieve a much better discrimination be-
tween a real defect and normal appearance variations. In a first step the model
geometry is estimated in an image-based manner with help of a perfectly regular
3d rope model introduced recently by Wacker and Denzler [10]. In contrast to
our work, they used this model to monitor important rope parameters but they
did not address the problem of rope surface defect detection. We introduce a
statistical appearance model which is linked to the geometric constraints im-
plied by the rope structure. This allows a description of the surface appearance
dependent on the position in the rope. Our method is data-driven and purely
image-based. Moreover, we have no need for calibration information with respect
to camera positions or the illumination setting.

The remainder of this paper is structured as follows: in section 2 the 3d
model and the geometry estimation are summarized. Section 3 explains how this
structural model can be linked to an statistical appearance model based on the
rendering equation, which gives a physical explanation for light transport. Fi-
nally, section 4 turns to the problem of anomaly detection for defect analysis. A
special focus will be laid on a validation strategy, which normalizes the learned
appearance model with respect to small inaccuracies, which result from the ge-
ometry estimation step. Our experimental evaluation on real-world rope data is
provided in section 5. Finally, conclusions are given in section 6.
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Fig. 1: Scenario sketch: given the point correspondence of a rope pixel xr in the
real rope image (B) and a rope pixel xi in the aligned artificial model projection
(A) a 3d surface point X of the rope can be parametrized by the two phase
angles ϕS , ϕW and the 2d distance d′c of xi to its corresponding projected wire
centerline. d′c results from a 1:1 mapping of the unknown 3d distance dc.

2 Geometric Rope Model

To estimate the rope geometry from 2d rope images, we use the framework
described recently by Wacker and Denzler [10]. Their approach focuses on the
image-based monitoring of important rope parameters and is not suitable for
the automatic detection of surface defects.

A rope has a hierarchical structure composed of J strands Sj which comprise
I wires Wi. A wire centerline Wi,j of wire i in strand j for the time step t can
be described by a sum of two parametrized helices:

Wi,j(p, t) =

 t
rS sin(ϕS(p, t))
−rS cos(ϕS(p, t))


︸ ︷︷ ︸

Sj

+

 0
rW sin(ϕW(p, t))
−rW cos(ϕW(p, t))


︸ ︷︷ ︸

Wi

. (1)

p is a vector of free model parameters and ϕS(p, t), ϕW(p, t) are the phase
angles of the helices which are dependent on the model parametrization. The
cross section through this model for one time step is shown in the top of Fig. 1.

By means of analysis-by-synthesis this parametric model is aligned with the
digitally acquired 2d rope images. For that purpose an artificial 2d projection of
the 3d rope model is computed. Real rope images and the artificial projections are
then registered by optimizing the free model parameters in a non-linear fashion
and these steps are repeated until convergence. We obtain a correspondence
between a pixel xi in the artificial projection and a pixel xr in the real image.

In contrast to [10] we use this correspondence to form a parametric descrip-
tion of each surface point X in the rope. Fig. 1 clarifies that every 3d surface
point can be described by the two phase angles ϕS and ϕW of the corresponding



wire centerline and the 3d distance dc to this surface point (time is neglected):

X(ϕS(p), ϕW(p), dc) = Wi,j(p) +

 0
dc

−
√

0.5∅2
W − d2c


︸ ︷︷ ︸

n′

(2)

Here ∅W is the known diameter of the wires and n′ points into the direction of
the surface normal. As the rope model reveals no volumetric information dc is
unknown, but there exists a 1:1 mapping to the measurable 2d distance d′c of an
image pixel xi to its corresponding projected wire centerline. Therefore, we will
use the parametric description θ = (ϕS(p), ϕW(p), d′c) to characterize a surface
point in the rope and to build a combined model for structure and appearance.

3 Combined Model for Structure and Appearance

The rendering equation is a physical model describing the observed radiance at
a surface point of an geometric object. It was first introduced by Kajiya [3] in
1986 and is an integral equation describing the propagation of light. One of the
most common formulations of the rendering equation is:

LO(X, ωo) = LE(X, ωo) +

∫
Ω

fr (X, ωi, ωo) LI(X, ωi) (ωi · n)dωi. (3)

The radiance which can be observed at a surface point X depends on the viewing
direction ωo, the emitted amount of light LE and the reflected radiance which
results from the incoming radiance LI , the bidirectional reflectance distribution
function fr of the surface point and the inner product of surface normal n and
the inward direction ωi integrated over the hemisphere Ω.

Usually, in visual inspection scenarios we have neither calibration information
nor knowledge about the illumination setting so that ωo and ωi are unknown.
However, the relation between camera, object and position of the light source(s)
typically stays fixed. This implies that the viewing direction and the incident
angle of the incoming light depend only on the parametrization θ of the surface
point X, which we derived in section 2. Fig. 1 clarifies this scenario. In this case,
the rendering equation can be re-parametrized and the emitting term LE can be
neglected for non-emitting objects like the rope:

L̃O(θ) = LO(X(θ)) =

∫
Ω

fr (X(θ), ωi) LI(X(θ), ωi)(ωi · n(X(θ)))dωi, (4)

Now, we are able to sample the observed irradiance LO at a surface point X
of the rope only dependent on its parametrization θ without additional knowl-
edge about the camera position or the illumination setting. As our goal is the
estimation of a representative surface appearance model including normal ap-
pearance variations, we exploit the periodic structure of a rope to obtain several
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Fig. 2: Original rope image with defect (left), corresponding probability map
(middle) for the strand with the defect and sketch of the rope regions (right).

samples for the same surface point. We consider a whole sequence of rope images
which are aligned with the rope model for this purpose.

The appearance model is learned from an images of an intact rope. We are
interested in the likelihood of observing a gray value gr at the position xr in
the real rope image given its corresponding 3d surface point X(θ). This can be
formulated as a density estimation problem. We estimate the joint distribution
p(gr, θ) for any parametrization θ and its corresponding observed gray values
gr in a non-parametric manner. To obtain a dense representation we apply a
4d Parzen estimator. This density constitutes a combined model for appearance
and structure, which allows to describe the normal surface appearance of each
surface point subjected to the underlying rope geometry.

4 Defect Analysis

Once having learned the rope surface appearance model, the defect diagnosis
can be treated as anomaly detection problem. Again, the input rope images
must be aligned with the rope model to obtain the parametrization θ of each
surface point. Subsequently, the appearance representation is extracted from the
density p(gr, θ) as a function of the position in the rope. A probability map can
be computed which contains the likelihood of observing gray value gr for a pixel
xr in the real rope image given its corresponding parametrization θ

p(gr | θ) =
p(gr, θ)

p(θ)
. (5)

Fig. 2 shows a real rope image including a typical defect on the left and its
corresponding probability map for the strand of interest in the middle. The
darker the color in the probability map, the smaller the obtained likelihood.

Nevertheless, an alignment of a rigid rope model with the flexible structure
of a real rope leads to systematic registration inaccuracies which arise mainly in
the border areas between two strands. In these regions a robust estimation of
the appearance model is hindered. Hence, we normalize the appearance model
with respect to these stability variations.

Different regions in the rope can be encoded with help of the two phase angles
ϕS , ϕW of the 3d model. This allows a separation into K discrete region classes



Rk as sketched in the right hand side of Fig. 2. In order to increase the robustness
of the appearance model with respect to systematic registration inaccuracies, we
normalize the expectation of all rope regions. Hence, we compute the average
likelihood p(Rk) for each rope region Rk and all Nk rope pixels belonging to Rk:

p(Rk) =
1

Nk

Nk∑
n=1

p(gnr | θn). (6)

This average is used to obtain a normalized likelihood according to (5):

p̃(gr | θ) = p(gr | θ)
1

ε+ p(Rk)
. (7)

ε > 0 is a stabilization factor. The validation compensates for a systematic prob-
lem caused by the alignment of a rigid model with flexible real-world data. Thus,
the normalization is data-independent and can be performed on the training set.

Finally, the resulting probability map for the input rope image including the
normalized likelihoods p̃(gr | θ) is filtered along the wire course. To transfer this
soft classification result into a hard discrimination between suspicious changes
and normal variations in the rope surface, a thresholding operation can be used.

5 Experiments

We evaluate our approach on real-world data taken from real ropeways under
realistic acquisition conditions. Our data set comprises 400 meters of rope in
total which corresponds to 7.7 GB of data. It was carefully selected by a human
expert to ensure, that a maximum amount of appearance variations and surface
defects are contained. The used system [5] operates with four line cameras, which
are equally placed around the rope. A concatenation of the four individual 1d
measurements results in four different 2d image sequences which are referenced
as view 1 - 4 from now on. Thus the amount of rope meters is quadrupled
and the set of natural variations which occur during the acquisition process is
augmented. The reference labeling is also provided by a human expert. The
appearance model is trained on 5 m of rope which are known to be defect free.
The remaining 395 m were used for testing.

5.1 Overall Performance

In order to evaluate the overall performance of our approach, we compute Re-
ceiver Operating Characteristic (ROC) curves for each sequence. The results can
be seen in Fig. 3. The Area Under the Curve (AUC) value for each curve is given
in the legend. The True Positive Rate (TPR) represents the total area of recov-
ered defects and the False Positive Rate (FPR) relates to the false alarm rate
(both measured in camera lines). As it is not sufficient to measure the error just
as a function of the total length of detected anomalies we furthermore introduce
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Fig. 3: Model-based approach: ROC
curves and the 50% recovery of each de-
fect marked by black squares.
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Fig. 4: Comparison to HMM-approach:
ROC curves and 50% recovery of each
defect marked by black squares.

Fig. 5: Recovered defects: original rope image (upper image in each group) and
result with recovered defect (blue) and ground truth labeling (black box).

the 50% recovery case. The black squares on each curve mark the recognition
rates, which can be achieved if every known defect is recognized to at least 50%
of its extent. Note, that these rates are bounded to the most inconspicuous de-
fects in the sequence and the overall recognition rate is significantly higher than
50% in all cases. Keep in mind, that for the application it is not important to
recover 100% of the defect area. But, it is crucial to recover every single defect
to at least a certain extent while minimizing the FPR. In Fig. 5 some of our
detection results are displayed. These results underline the high accuracy of the
presented approach. As in most security relevant applications, the final decision
must be made by a human expert who needs an image context of around 5 cm
around each system alarm to judge weather it is a critical anomaly or a false
alarm. With a false alarm rate of 1.5% for the 50% defect recovery case, a human
expert would have to re-inspect only 103 m of the rope instead of 395 m.



5.2 Comparison to other Rope Defect Detection Approaches

We compare our results to the one obtained with the Hidden-Markov model
(HMM) approach of Platzer et al [6] which leads to the best published results
so far with regard to an individual analysis of each camera view.

Fig. 4 shows the ROC curves obtained on the same dataset with the HMM
approach. Again the AUC values for each curve are given and the black squares
mark the recognition rates obtained for the 50% recovery case of each defect.

It is obvious that our approach outperforms the HMM-based strategy. Par-
ticularly, in case of views 2–4 the HMM approach fails with an unfeasible high
false alarm rate if the request is a detection of every single defect to at least 50%.
But for a security-relevant task this claim is essential and this is not guaranteed
by the existing approaches.

6 Summary and Conclusions

We presented a new approach for anomaly detection in wire ropes. The com-
bination of a statistical appearance model with a parametric description of the
object geometry leads to a position-dependent appearance representation. This
combination allows a clearly enhanced discrimination between normal appear-
ance variations and suspicious anomalies. One open question is the automatic
determination of an optimal threshold. At the moment, the optimal threshold is
evaluated with ROC curves, which always require a labeled data set.

Our results obtained on real-world rope data are very accurate and compa-
rable to those of a human expert. We achieve low false alarm rates of 1.5% while
fulfilling the claim that every single defect is recovered to a certain extent. This
outperforms all existing approaches for automatic rope inspection and marks a
clear improvement with respect to the practical applicability. Furthermore, our
approach allows a precise localization of the defects.
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