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Abstract. Guided Kanade-Lucas-Tomasi (GKLT) feature tracking of-
fers a way to perform KLT tracking for rigid scenes using known camera
parameters as prior knowledge, but requires manual control of uncer-
tainty. The uncertainty of prior knowledge is unknown in general. We
present an extended modeling of GKLT that overcomes the need of man-
ual adjustment of the uncertainty parameter. We establish an extended
optimization error function for GKLT feature tracking, from which we
derive extended parameter update rules and a new optimization algo-
rithm in the context of KLT tracking. By this means we give a new for-
mulation of KLT tracking using known camera parameters originating,
for instance, from a controlled environment. We compare the extended
GKLT tracking method with the original GKLT and the standard KLT
tracking using real data. The experiments show that the extended GKLT
tracking performs better than the standard KLT and reaches an accuracy
up to several times better than the original GKLT with an improperly
chosen value of the uncertainty parameter.

1 Introduction

Three-dimensional (3D) reconstruction from digital images requires, more or less
explicitly, a solution to the correspondence problem. A solution can be found by
matching and tracking algorithms. The choice between matching and tracking
depends on the problem setup, in particular on the camera baseline, available
prior knowledge, scene constraints and requirements in the result.

Recent research [1,2] deals with the special problem of active, purposive 3D
reconstruction inside a controlled environment, like the robotic arm in Fig. 1,
with active adjustment of sensor parameters. These methods, also known as
next-best-view (NBV) planning methods, use the controllable sensor and the
additional information about camera parameters endowed by the controlled en-
vironment to meet the reconstruction goals (e.g. no more than n views, defined
reconstruction accuracy) in an optimal manner.
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Matching algorithms suffer from ambiguities. On the other hand, feature
tracking methods are favored by small baselines that can be generated in the
context of NBV planning methods. Thus, KLT tracking turns into the method
of choice for solving the correspondence problem within NBV procedures. Pre-
vious work has shown that it is worth to look for possible improvements of the
KLT tracking method by incorporating prior knowledge about camera parame-
ters. This additional knowledge may originate from a controlled environment or
from an estimation step within the reconstruction process. Using an estimation
of the camera parameters implicates the need to address the uncertainty of this
information explicitly.

Fig. 1. Robotic arm
Stäubli RX90L as an
example of a con-
trolled environment

Originally, the formulation of feature tracking based on
an iterative optimization process is the work of Lucas and
Kanade [3]. Since then a rich variety of extensions to the
original formulation has been published, as surveyed by
Baker and Matthews [4]. These extensions may be used
independently from the incorporation of camera param-
eters. For example, Fusiello et al. [5] deal with the re-
moval of spurious correspondences by using robust statis-
tics. Zinsser et al. [6] propose a separated tracking process
by inter-frame translation estimation using block match-
ing followed by estimating the affine motion with respect
to the template image. Heigl [7] uses an estimation of cam-
era parameters to move features along their epipolar line,
but he does not consider the uncertainty of the estimation.
Trummer et al. [8,9] give a formulation of KLT tracking,
called Guided KLT tracking (GKLT), with known camera
parameters regarding uncertainty, using the traditional
optimization error function. They adjust uncertainty man-
ually and do not estimate it within the optimization process.

This paper contributes to the solution of the correspondence problem by in-
corporating known camera parameters into the model of KLT tracking under
explicit treatment of uncertainty. The resulting extension of GKLT tracking es-
timates the feature warping together with the amount of uncertainty during the
optimization process. Inspired by the EM approach [10], the extended GKLT
tracking algorithm uses alternating iterative estimation of hidden information
and result values.

The remainder of the paper is organized as follows. Section 2 gives a repetition
of KLT tracking basics and defines the notation. It also views the adaptations
of GKLT tracking. The incorporation of known camera parameters into the
KLT framework with uncertainty estimation is presented in Sect. 3. Section 4
lists experimental results that allow the comparison between the standard KLT,
GKLT and the extended GKLT tracking presented in Sect. 3. The paper is
concluded in Sect. 5 by summary and outlook to future work.
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2 KLT and GKLT Tracking

For the sake of clarity of the explanations in the following sections, we first review
the basic KLT tracking and the adaptations for GKLT tracking. The complete
derivations can be found in [3,4] (KLT) and [8] (GKLT).

2.1 KLT Tracking

Given a feature position in the initial frame, KLT feature tracking aims at finding
the corresponding feature position in the consecutive input frame with intensity
function I(x). The initial frame is the template image with intensity function
T (x), x = (x, y)T . A small image region and the intensity values inside describe a
feature. This descriptor is called feature patch P . Tracking a feature means that
the parameters p = (p1, ..., pn)T of a warping function W (x,p) are estimated
iteratively, trying to minimize the squared intensity error over all pixels in the
feature patch. A common choice is affine warping by

W a(x,pa) =
(

a11 a12

a21 a22

) (
x
y

)
+

(
Δx
Δy

)
(1)

with pa = (Δx, Δy, a11, a12, a21, a22)T . The error function of the optimization
problem can be written as

ε(p) =
∑
x∈P

(I(W (x,p)) − T (x))2, (2)

where the goal is to find argminp ε(p). Following the additional approach
(cf. [4]), the error function is reformulated yielding

ε(Δp) =
∑
x∈P

(I(W (x,p + Δp))− T (x))2. (3)

To resolve for Δp in the end, first-order Taylor approximations are applied to
clear the functional dependencies of Δp. Two approximation steps give

ε′(Δp) =
∑
x∈P

(I(W (x,p)) +∇I∇pW (x,p)Δp − T (x))2 (4)

with ε(Δp) ≈ ε′(Δp) for small Δp. The expression in (4) is differentiated with
respect to Δp and set to zero. After rearranging the terms it follows that

Δp = H−1
∑
x∈P

(∇I∇pW (x,p))T (T (x)− I(W (x,p))) (5)

using the first-order approximation H of the Hessian,

H =
∑
x∈P

(∇I∇pW (x,p))T (∇I∇pW (x,p)). (6)

Equation (5) delivers the iterative update rule for the warping parameter vector.
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2.2 GKLT Tracking

In comparison to standard KLT tracking, GKLT [8] uses knowledge about intrin-
sic and extrinsic camera parameters to alter the translational part of the warping
function. Features are moved along their respective epipolar line, but allowing
for translations perpendicular to the epipolar line caused by the uncertainty in
the estimate of the epipolar geometry. The affine warping function from (1) is
changed to

W a
EU (x,pa

EU ,m) =
(

a11 a12

a21 a22

)(
x
y

)
+

( −l3
l1
− λ1l2 + λ2l1

λ1l1 + λ2l2

)
(7)

with pa
EU = (λ1, λ2, a11, a12, a21, a22)T ; the respective epipolar line l =

(l1, l2, l3)T = Fm̃ is computed using the fundamental matrix F and the feature
position (center of feature patch) m̃ = (xm, ym, 1)T . In general, the warping pa-
rameter vector is pEU = (λ1, λ2, p3, ..., pn)T . The parameter λ1 is responsible for
movements along the respective epipolar line, λ2 for the perpendicular direction.
The optimization error function of GKLT is the same as the one from KLT (2),
but using substitutions for the warping parameters and the warping function.
The parameter update rule of GKLT derived from the error function,

ΔpEU =AwH−1
EU

∑
x∈P

(∇I∇pEU WEU (x,pEU ,m))T (T (x)−I(WEU (x,pEU ,m))),

(8)
also looks very similar to the one of KLT (5). The difference is the weighting
matrix

Aw =

⎛
⎜⎜⎜⎜⎜⎜⎝

w 0 0 · · · 0
0 1− w 0

0 0 1
...

...
. . . 0

0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (9)

which enables the user to weight the translational changes (along/perpendicular
to the epipolar line) by the parameter w ∈ [0, 1] called epipolar weight. In [8]
the authors associate w = 1 with the case of a perfectly accurate estimate of the
epipolar geometry, since only feature translations along the respective epipolar
line are realized. The more uncertain the epipolar estimate the smaller is w said
to be. The case of no knowledge about the epipolar geometry is linked with
w = 0.5, when translations along and perpendicular to the respective epipolar
line are realized equally weighted.

3 GKLT Tracking with Uncertainty Estimation

The previous section briefly reviewed a way to incorporate knowledge about
camera parameters into the KLT tracking model. The resulting GKLT tracking
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requires manual adjustment of the weighting factor w that controls the transla-
tional parts of the warping function and thereby handles an uncertain epipolar
geometry. For practical application, it is questionable how to find an optimal w
and whether one allocation of w holds for all features in all sequences produced
within the respective controlled environment. Hence, we propose to estimate the
uncertainty parameter w for each feature during the feature tracking process.

In the following we present a new approach for GKLT where the warping
parameters and the epipolar weight are optimally computed in a combined es-
timation step. Like the EM algorithm [10], our approach uses an alternating
iterative estimation of hidden information and result values. The first step in
deriving the extended iterative optimization procedure is the specification of the
optimization error function of GKLT tracking with respect to the uncertainty
parameter.

3.1 Modifying the Optimization Error Function

In the derivation of GKLT from [8], the warping parameter update rule is con-
structed from the standard error function and in the last step augmented by the
weighting matrix Aw to yield (8). Instead, we suggest to directly include the
weighting matrix in the optimization error function. Thus, we reparameterize
the standard error function to get the new optimization error function

ε(ΔpEU , Δw) =
∑
x∈P

(I(WEU (x,pEU + Aw,ΔwΔpEU ,m))− T (x))2. (10)

Following the additional approach for the matrix Aw from (9), we substitute w+
Δw instead of w to reach the weighting matrix Aw,Δw used in (10). We achieve an
approximation of this error function by first-order Taylor approximation applied
twice,

ε′(ΔpEU ,Δw)=
∑

x∈P

(I(WEU (x,pEU ,m))+∇I∇pEU
WEU (x,pEU ,m)Aw,ΔwΔpEU−T (x))2 (11)

with ε(ΔpEU , Δw) ≈ ε′(ΔpEU , Δw) for small Aw,ΔwΔpEU . This allows for
direct access to the warping and uncertainty parameters.

3.2 The Modified Update Rule for the Warping Parameters

We calculate the warping parameter change ΔpEU by minimization of the ap-
proximated error term (11) with respect to ΔpEU in the sense of steepest descent,
∂ε′(ΔpEU ,Δw)

∂ΔpEU

!= 0. We get as the update rule for the warping parameters

ΔpEU=H−1
ΔpEU

∑
x∈P

(∇I∇pEU
WEU (x,pEU ,m)Aw,Δw)T (T (x)−I(WEU (x,pEU ,m))) (12)

with the approximated Hessian

HΔpEU
=

∑
x∈P

(∇I∇pEU
WEU (x,pEU ,m)Aw,Δw)T (∇I∇pEU

WEU (x,pEU ,m)Aw,Δw). (13)
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3.3 The Modified Update Rule for the Uncertainty Estimate

For calculating the change Δw of the uncertainty estimate we again perform
minimization of (11), but with respect to Δw, ∂ε′(ΔpEU ,Δw)

∂Δw

!= 0. This claim
yields

∑
x∈P

( ∂
∂Δw (∇I∇pEU WEU (x,pEU ,m)Aw,ΔwΔpEU ))·

(I(WEU (x,pEU ,m)) +∇I∇pEU WEU (x,pEU ,m)Aw,ΔwΔpEU − T (x)) != 0.
(14)

We specify

∂
∂Δw (∇I∇pEU

WEU (x,pEU ,m)Aw,ΔwΔpEU ) = ∇I∇pEU
WEU (x,pEU ,m)

∂Aw,Δw
∂Δw ΔpEU .

(15)
By rearrangement of (14) and using (15) we get

hΔw︷ ︸︸ ︷∑
x∈P (∇I∇pEU

WEU (x,pEU ,m)
∂Aw,Δw

∂Δw ΔpEU )(∇I∇pEU
WEU (x,pEU ,m))Aw,ΔwΔpEU

= ∑
x∈P (∇I∇pEU

WEU (x,pEU ,m)
∂Aw,Δw

∂Δw ΔpEU )(T (x)−I(WEU (x,pEU ,m)))︸ ︷︷ ︸
e

,

i.e. hΔwAw,ΔwΔpEU = e. (16)

Since e is real-valued, (16) provides one linear equation in Δw. With hΔw =
(h1, ..., hn)T and ΔpEU = (Δλ1, Δλ2, Δp3, ..., Δpn)T we reach the update rule
for the uncertainty estimate,

Δw =
e− h2Δλ2 − h3Δp3 − ...− hnΔpn

h1Δλ1 − h2Δλ2
− w. (17)

3.4 The Modified Optimization Algorithm

In comparison to the KLT and GKLT tracking, we now have two update rules:
one for pEU and one for w. These update rules, just as in the previous KLT
versions, compute optimal parameter changes in the sense of least-squares esti-
mation found by steepest descent of an approximated error function. We combine
the two update rules in an EM-like approach. For one iteration of the optimiza-
tion algorithm, we calculate ΔpEU (using Δw = 0) followed by the computation
of Δw with respect to the ΔpEU just computed in this step. Then we apply the
change to the warping parameter using the actual w.

The modified optimization algorithm as a whole is:

1. initialize pEU and w
2. compute ΔpEU by (12)
3. compute Δw by (17) using ΔpEU
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4. update pEU : pEU ← pEU + Aw,ΔwΔpEU

5. update w: w ← w + Δw
6. if changes are small, stop; else go to step 2.

This new optimization algorithm for feature tracking with known camera pa-
rameters uses the update rules derived from the extended optimization error
function (12) for GKLT tracking. Most importantly, these steps provide a com-
bined estimation of the warping and the uncertainty parameters. Hence, there
is no more need to adjust the uncertainty parameter manually as in [8].

4 Experimental Evaluation

Let us denote the extended GKLT tracking method shown in the previous section
by GKLT2, the original formulation [8] by GKLT1. In this section we quanti-
tatively compare the performances of the KLT, GKLT1 and GKLT2 feature
tracking methods with and without the presence of noise in the prior knowledge
about camera parameters. For GKLT1, we measure its performance with respect
to different values of the uncertainty parameter w.

(a) Initial frame of the test se-
quence with 746 features se-
lected.

(b) View of the set of 3D refer-
ence points. Surface mesh for il-
lustration only.

Fig. 2. Test and reference data

As performance measure we use tracking accuracy. Assuming that accurately
tracked features lead to an accurate 3D reconstruction, we visualize the tracking
accuracy by plotting the mean error distances μE and standard deviations σE

of the resulting set of 3D points, reconstructed by plain triangulation, compared
to a 3D reference. We also note mean trail lengths.

Figure 2 shows a part of the data we used for our experiments. The image in
Fig. 2(a) is the first frame of our test sequence of 26 frames taken from a Santa
Claus figurine. The little squares indicate the positions of 746 features initialized
for the tracking procedure. Each of the trackers (KLT, GKLT1 with w = 0, ...,
GKLT1 with w = 1, GKLT2) has to track these features through the following
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frames of the test sequence. We store the resulting trails and calculate the mean
trail length for each tracker. Using the feature trails and the camera parameters,
we do a 3D reconstruction by plain triangulation for each feature that has a
trail length of at least five frames. The resulting set of 3D points is rated by
comparison with the reference set shown in Fig. 2(b). This yields μE , σE of the
error distances between each reconstructed point and the actual closest point
of the reference set for each tracker. The 3D reference points are provided by a
highly accurate (measurement error below 70μm) fringe-projection measurement
system [11]. We register these reference points into our measurement coordinate
frame by manual registration of distinctive points and an optimal estimation of
a 3D Euclidean transformation using dual number quaternions [12]. The camera
parameters we apply are provided by our robot arm Stäubli RX90L illustrated
in Fig. 1. Throughout the experiments, we initialize GKLT2 with w = 0.5.

The extensions of GKLT1 and GKLT2 affect the translational part of the fea-
ture warping function only. Therefore, we assume and estimate pure translation
of the feature positions in the test sequence.

Table 1. Accuracy evaluation by mean error distance μE(mm) and standard deviation
σE(mm) for each tracker. GKLT1 showed accuracy from 9% better to 269% worse than
KLT, depending on choice of w relative to respective uncertainty of camera parameters.
GKLT2 performed better than standard KLT in any case tested. Without additional
noise accuracy of GKLT2 was 5% better than KLT.

KLT GKLT1, w equals: GKLT2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Using camera parameters without additional noise:

μE(mm) 2.68 9.90 3.52 3.15 2.93 2.77 2.77 2.65 2.62 2.51 2.45 3.90 2.56

σE(mm) 3.70 6.99 4.65 4.08 3.63 3.38 3.63 3.55 3.41 3.17 2.77 5.12 3.36

Using disturbed camera parameters:

μE(mm) 2.68 5.09 2.76 2.68 2.75 2.76 2.77 2.78 2.88 3.05 3.35 7.98 2.66

σE(mm) 3.70 5.60 3.40 3.37 3.60 3.71 3.63 3.50 4.05 4.08 4.30 6.90 3.61

Throughout the experiments GKLT2 produced trail lengths that are compa-
rable to standard KLT. The mean runtimes (Intel Core2 Duo, 2.4 GHz, 4 GB
RAM) per feature and frame were 0.03 ms for standard KLT, 0.14 ms for GKLT1

with w = 0.9 and 0.29 ms for GKLT2.
The modified optimization algorithm presented in the last section performs

two non-linear optimizations in each step. This results in larger runtimes com-
pared to KLT and GKLT1 which use one non-linear optimization in each step.
The quantitative results of the tracking accuracy are printed in Table 1.

Results using camera parameters without additional noise. GKLT2 showed a
mean error 5% less than KLT, standard deviation was reduced by 9%. The results
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of GKLT1 were scattered for different values of w. The mean error reached from
9% less at w = 0.9 to 269% larger at w = 0 than with KLT. The mean trail
length of GKLT1 was comparable to KLT at w = 0.9, but up to 50% less for
all other values of w. An optimal allocation of w ∈ [0, 1] for the image sequence
used is likely to be in ]0.8, 1.0[, but it is unknown.

Results using disturbed camera parameters. To simulate serious disturbance of
the prior knowledge used for tracking, the camera parameters were selected
completely random for this test. In the case of fully random prior information,
GKLT2 could adapt the uncertainty parameter for each feature in each frame to
reduce the mean error by 1% and the standard deviation by 2% relative to KLT.
Instead, GKLT1 uses a global value of w for all features in all frames. Again
it showed strongly differing performance with respect to the value of w. In the
case tested GKLT1 reached the result of KLT at w = 0.2 considering mean error
and mean trail length. For any other allocation of the uncertainty parameter the
mean reconstruction error was up to 198% larger and the mean trail length up
to 56% less than with KLT.

5 Summary and Outlook

In this paper we presented a way to extend the GKLT tracking model for inte-
grated uncertainty estimation. For this, we incorporated the uncertainty param-
eter into the optimization error function resulting in modified parameter update
rules. We established a new EM-like optimization algorithm for combined esti-
mation of the tracking and the uncertainty parameters.

The experimental evaluation showed that our extended GKLT performed bet-
ter than standard KLT tracking in each case tested, even in the case of completely
random camera parameters. In contrast the results of the original GKLT varied
seriously. An improper choice of the uncertainty parameter caused errors sev-
eral times larger than with standard KLT. The fitness of the respectively chosen
value of the uncertainty parameter was shown to depend on the uncertainty of
prior knowledge, which is unknown in general.

Considering the experiments conducted, there are few configurations of the
original GKLT that yield better results than KLT and the extended GKLT.
Future work is necessary to examine these cases of properly chosen values of the
uncertainty parameter. This is a precondition for improving the extended GKLT
to reach results closer to the best ones of the original GKLT tracking method.
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