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Abstract. Affine point pattern matching (APPM) is an integral part
of many pattern recognition problems. Given two sets P and Q of points
with unknown assignments pi → qj between the points, no additional
information is available. The following task must be solved:
– Find an affine transformation T such that the distance between P

and the transformed set Q′ = TQ is minimal.
In this paper, we present a new approach to the APPM problem based
on matching in bipartite graphs. We have proved that the minimum of
a cost function is an invariant under special affine transformations. We
have developed a new algorithm based on this property. Finally, we have
tested the performance of the algorithm on both synthetically generated
point sets and point sets extracted from real images.

1 Introduction

Point pattern matching (PPM) is an important problem in image processing.
Cox and Jager have already given in 1993 a survey with respect to different
types of transformations and methods [4], also Wamelen et.al. have given a
survey in [22]. An overview and a new statistical approach is published by Luo
et.al. in [15]. In recent years there have been several significant advances in this
area, ranging from O(n6) complexity to O(n2) algorithms. These advances have
focused on developing faster algorithms and better statistical interpretation [15].
Our proposed method is theoretically well founded and tackles the problem of
affine point pattern matching in O(n3) complexity only using geometric distances
between the points. The algorithm is based on the Hungarian method and is
completely different to the widely used “Nearest Neighbors Search”, see e.g.
[3]. The advantage of our algorithm is the robustness against noise and outliers
in practical applications. The algorithm even works very well in the case of
projective transformations that are typical for real cameras. Our approach can
be separated in two steps:

– Problem A (Assignment): Find all point references between two given point-
sets with respect two an unknown affine transformation. This means that it
is to find the correct permutation resp. it is to solve the assignment problem.
For this step we have developed a novel theory.
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– Problem B (Backtransformation): Compute from the references the affine
transformation.

2 Graph Theory Domain - The Assignment Problem

Now we will solve the first problem A. Let P be a given set of n points pi , i =
1, ..., n. The ordering of the points is unknown and no additional knowledge
about the image is given. There is a geometric transformation T that holds
qi = Tpi , i = 1, ..., n. This means that qi from the point set Q is the reference
point of pi with respect to the given transformation T. However, in practical
applications the transformation is unknown and also the references between the
points of P and the points of Q are unknown. Only the transformation group is
known as a priori knowledge. The important goal in matching of point sets is to
find all corresponding pairs of points.
First of all we assume in the following that the number of points of both point
sets are equal to n. We show later that the problem is not strongly limited by this
constraint in practice. We are searching for the correct point correspondences,
this means we have to find a correct permutation of the indices.
The main idea is now to reduce our problem to matching in a bipartite graph.
A bipartite graph is a graph whose vertex set can be split into two nonempty,
disjoint sets P and Q in such a way that every edge joins a vertex of P to a
vertex of Q. A graph is weighted if we give a cost function c that associates each
edge with a real value c. We denote by (k1, k2, ..., ki, ..., kn) any permutation
of the indices of the points p1, ...,pn. For our problem we have to solve for a
permutation

n∑
i=1

c(pi,qki
) → minimum.

Now we have the assignment problem of finding a perfect minimum cost weighted
matching in bipartite graphs. The matching on bipartite graphs is a well studied
problem in combinatorial optimization, see e.g. [14].
For the solution we use an algorithm, known as Hungarian Method [12],[16],
[14]. It takes as input a matrix of the weights of the edges that relate the two
disjoint sets of the bipartite graph and outputs the optimal permutation and
minimum cost. The original Hungarian method is of O(n4) runtime complexity
[12]. Using special data structures [16], the runtime complexity is reduced to
O(n3). It is possible to improve the runtime complexity using parallel algorithms,
see [7]. We have made the assumption that the two point sets P and Q are of
equal cardinality n. For practical applications the approach could be extended
to include the case of different size as well, by simply adding empty transactions
(e.g. zero) to the smallest point set. But, our proof and the theory are only exact
in the case of equal cardinality.
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3 The Novel Theory

3.1 Translations

The main problem is now to find a correct measure for the costs so that we can
determine the correct permutation. For the cost function we will investigate the
properties of geometric distances d(pi,qki

).
At first we choose the simplest transformation, a translation. This means

qi = pi + a , i = 1, ..., n ,

whereby aT = (a10, a20) is a translation vector. If we now choose for the costs
the Euclidean distances of the points d(pi,qki) = |pi − qki |, then it is simple
to show by an counter-example that the method does not work. Now we try to
use the squares of the Euclidean distances

S =
n∑

i=1

|pi − qki |2 → minimum. (1)

We are substituting the translation and get

S =
n∑

i=1

(pi − (pki + a))2 =

=
n∑

i=1

pT
i pi − 2

n∑
i=1

pT
i pki − 2

n∑
i=1

pT
i a +

n∑
i=1

(pki + a)2 → minimum.

The solution is the searched permutation. The translation a is also unknown
but given for the problem and therefore a constant. We can see that the terms∑n

i=1 pT
i pi,

∑n
i=1 pT

i a do not depend on the searched permutation. Since

n∑
i=1

(pki
+ a)2 =

n∑
i=1

p2
ki

+ 2
n∑

i=1

pT
ki

a +
n∑

i=1

a2 =
n∑

i=1

p2
i + 2

n∑
i=1

pT
i a +

n∑
i=1

a2

the term
∑n

i=1(pki +a)2 also does not depend on the searched permutation. For
this reason we can reduce the problem to

n∑
i=1

pT
i pki → maximum (2)

for the determination of the unknown permutation.
Now we make an estimate of the sum

∑n
i=1 pT

i pki . Using pT
i = (xi, yi) and

xT = (x1, x2, ..., xn) , xT
perm = (xk1 , xk2 , ..., xkn) (analog for y,yperm) we get

n∑
i=1

pT
i pki =

n∑
i=1

xixki +
n∑

i=1

yiyki = xT xperm + yT yperm .
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Using the Cauchy-Schwarz’s inequality we get

(xT xperm)2 ≤ ‖ x ‖2‖ xperm ‖2 = ‖ x ‖2‖ x ‖2 = ‖ x ‖4 .

This means that xT xperm ≤ ‖ x ‖2. Finally, it follows

xT xperm + yT yperm ≤ ‖ x ‖2 + ‖ y ‖2 =
n∑

i=1

‖ pi ‖2 .

From this follows that
n∑

i=1

pT
i pki ≤

n∑
i=1

‖ pi ‖2 .

The identity (this means the maximum of the left side) in the Cauchy-Schwarz’s
inequality is be accepted if and only if both vectors are linear combinations
of each other. This means that xki = xi , yki = yi and therefore it follows
pki = pi , i = 1, 2, ..., n. This statement is very important for the uniqueness of
the solution. The result is that we get the correct permutation for any translation
of the points by solving the extremal problem (1).

3.2 Special Affine Transformations

In the following we will try to generalize the results to general affine transfor-
mations

qi = Api + a =
(

a11 a12

a21 a22

) (
xi

yi

)
+

(
a10

a20

)
.

First of all, we are substituting the affine transformation in the same way using
the extremal problem (1):

S =
n∑

i=1

(pi − (Apki + a))2 = (3)

=
n∑

i=1

pT
i pi − 2

n∑
i=1

pT
i Apki − 2

n∑
i=1

pT
i a +

n∑
i=1

(Apki + a)2 → minimum.

Again, the first term
∑n

i=1 pT
i pi and the third term

∑n
i=1 pT

i a do not depend
on the permutation. It is very simple to see that also the term

∑n
i=1(Apki +a)2

doesn’t depend on the permutation. Finally, we have to solve
n∑

i=1

pT
i Apki

→ maximum. (4)

The idea is now to reduce the problem (4) to the problem (2). For that we
introduce a matrix C with p′

i = Cpi and compose

n∑
i=1

pi
′T p′

ki
=

n∑
i=1

(Cpi)T (Cpki) =
n∑

i=1

pT
i CT Cpki → maximum. (5)
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If we now can find a matrix C with the relation A = CT C, then the correct
permutation is the solution of the problem (4) resp. problem (3). Such a matrix
C exists, if the affine matrix A is symmetric and positive definite. If this fac-
torization is possible then we can refer it to as “taking the square root” of A.
In this case it follows p′ki

= p′i, i.e. Cpki = Cpi, and finally pki = pi. Our novel
theory for the determination of the correct alignment works for the special affine
transformation

qi = Spi + a , S is symmetric and positiv definite

by a minimization of the squares of the Euclidean distances of the points. This
means that the optimal permutation is an invariant against this special kind of
affine transformations. A presumption may be that the theory also works in the
case of higher exponents than two of the Euclidean distances. However,

S =
n∑

i=1

|pi − qki |n → minimum

does not work in the case of n 6= 2. This is a very surprising fact. We can not
prove this fact, however we can find a lot of counter-examples by doing computer
experiments.

3.3 Affine Transformations

Now we will investigate the case of general affine transformations. For the general
case it is not possible to find the correct alignment by minimization of the
costs. For that reason we try to decompose the general case in a special affine
transformation (with a symmetric, positiv definite matrix and a translation) and
in a rotation. For the rotation we generate a matching process to find the best
permutation.

Lemma: Any affine matrix A with det(A) > 0 can be decomposed in
a symmetric, positiv definite matrix S and a rotation matrix R (R−1 =
RT , det(R) = +1), i.e. A = S ·R . The constraint det(A) > 0 means
only that there is no reflection in the affine transformation.

For the proof we are using the inverse relation ART = S with(
a11 a12

a21 a22

)
·
(

cos ϕ sinϕ
− sinϕ cos ϕ

)
=

(
a b
b c

)
.

Using the proposed symmetry, it follows for the non-diagonal elements

a11 sinϕ + a12 cos ϕ = a21 cos ϕ − a22 sinϕ .

The solution is

tanϕ =
a21 − a12

a11 + a22
with the periodicity π .
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Within the interval [0, 2π] we have two solutions with the period π. We choose
those solution with

a11 cos ϕ − a12 sinϕ = a > 0 .

This is always possible because cos ϕ and sinϕ change their sign with π. From
the supposition det(A) > 0 follows that also a21 sinϕ + a22 cos ϕ = c > 0
applies. A symmetric matrix S with the conditions det(S) > 0, a > 0 and c > 0
is positiv definite.
It follows from this fact that we can combine our theory with a direct opti-
mization for the rotation space. Thus, the main conclusion is that we have
reduced the 6-dimensional matching problem for affine transformations to an
one-dimensional problem. It needs only an optimization process regarding the
rotation. It can be chosen any point for the rotation center, e.g. the centroid of
the point set.

4 Estimating the Affine Transformation

Using the Hungarian method we get a list of point references. With the help
of this list it is simple to solve the second problem B. The simplest method
is to compute the transformation T by an optimization process using e.g. the
Least Squares Method (LSE). In our practical implementation we use instead
of the LSE method the so called Least Absolute Differences method (LAD), see
[19],[20],[21]. The LAD method is more robust against noise and outliers than
the LSE method and is easy to implement using linear programming methods,
e.g. the simplex method.

5 Algorithm

For practical applications now we have to do:

– We rotate the first point set P (or alternatively the set Q) from 0 degree to
360 degrees with an increment of about 5 until 10 degrees. In most applica-
tions an increment of only ten degrees is sufficient. Any point can be chosen
as the rotation center, e.g. the centroid.

– For every rotation we solve the permutation problem (1) using the Hungarian
Method to determine an optimal permutation of the assignment problem A.

– By the references pi → qki we calculate the affine transformation using the
LAD-Method (problem B, see e.g. [19],[20]). We transform the first point set
P by this affine transformation to a point set P ′ and consider the references
p′i → qki .
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– We calculate the distance between P ′ and Q. An advantage is that it is
not necesarry to use a modified Hausdorff distance (see [6]). We use the
calculated permutation p′i → qki for the following point set distance:

d(P ′, Q) =
n∑

i=1

|p′i − qki | .

– We choose those angle for the rotation with the lowest distance d(P ′, Q).
The permutation concerning this angle is the searched permutation.

It follows that the algorithm does not contain a strong separation in problem
A and problem B. The algorithm is a combination of solving the assignment
problem and the problem of determination of the affine transformation.

6 Implementation

The algorithm described above was implemented in the C++ programming lan-
guage. We tested the program on many randomly generated data sets and did a
case study on a calibration grid. Instead of the LSE method for finding the global
affine transformation resp. projective transformation we use the LAD method.
As already mentioned the LAD method is more robust against noise and out-
liers than the LSE method solving the problem B. Because the algorithm is a
combination of solving problem A and problem B we have two factors for the
robustness of the method:

– How many percent of the correct references can be computed for the correct
rotation angle in the case of noise, outliers or a different cardinality of the
point sets?

– How many percent of the correct references are necessary for the computation
of the correct affine or projective transformation? For this purpose we used
the LAD-method in the present paper. However, in a future work we will test
accumulation methods (cluster methods, voting methods) to solve problem
B.

6.1 Random Point Sets

We tested the program on a large number of randomly generated point sets P . A
randomly generated point set has always 100 points in a 400 x 400 pixel image.
An affine transformation is generated with the condition that the determinant
of the affine matrix is between 0.8 and 1.2. Then we have transformed the gen-
erated point set to Q. In our first experiments, in order to make them more
realistic, we used normally distributed noise for every coordinates of a point in
the point set Q. We will denote the standard deviation of noise by σ. Adding
noise to these points we tested our new algorithm. It can be seen in Fig. 1 that
the algorithm is very robust against noise.
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In a second series of experiments we have investigated the steps of the discretiza-
tion of the rotation. It is very surprising that the permutation problem is robust
against the rotation. Fig. 2 shows the percentage of correct references against
the rotation increment in degree. Beginning with an increment of 15 degrees, no
correct references occur. For most practical applications a rotation increment of
10 degree is sufficient.
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Fig. 1. Alignment error in
dependence of noise of all
points
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Fig. 2. Alignment error in
dependence of discretization
of rotation

6.2 Outliers

It is very difficult to give a real evaluation of the algorithm with respect to out-
liers. The LAD-method for solving problem B basically determines the behavior
of the algorithm against outliers. About 5 percent outliers or 5 percent difference
in the cardinality of the point sets also lead to a stable result. We have tested
the algorithm for point sets with a lot of different levels of the cardinality. The
result is very surprising. There are examples where the point set P has only 20
percent of the point set Q, and the algorithm works very well. However, there
are also examples with 90 percent and the algorithm fails. It depends apparently
on the “order” of the points. This area is our research for the near future.
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6.3 Case Study

To test our new algorithm on a real world situation, we applied it to a planar cal-
ibration problem to test the influence of (practical) projective transformations.
We took a calibration grid of 50 squares printed on a paper. The coordinates
are known as the intersection of the two diagonales of each square and form
the point set P . These 50 coordinates (xi, yi), i = 1, ..., 50 are saved in a data
structure, (see Fig. 3) . We took also a real image produced with a camera from
this printed calibration grid with projective transformations and distortions of
the lens. Lenses with a small focal length produce often distortions, (see Fig. 4).
This means that our real image can not be approximated by an affine transfor-
mation. In our algorithm we have to substitute the affine transformation by a
projective mapping. In a first step we are searching the objects of the projec-
tively transformed squares in the image by a contour following process. We fit
quadrangles to each object, and compute the intersection of the both diagonales
(to use the centroid would be not correct). These points present now the second
point set Q, see also Fig. 4.

Fig. 3. Calibration grid without markers or landmarks

Even though we have strong projective deformations the algorithm works
very well. With the correct references we can projectively transform the image
Fig. 4 to the image Fig. 5. In the image Fig. 6 we can see a small occlusion. The
algorithm has detected 96 percent of all references as correct references. The
projective backtransformation to the image Fig. 7 works very well.

7 Conclusions and Future Work

In the present paper, we have developed a novel theory for affine point pattern
matching (APPM). We have constructed a suitable cost function, and by min-
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Fig. 4. Image I of the calibration
grid

Fig. 5. Projectively transformed
image I ′ with correct references

Fig. 6. Image I of the calibration
grid with an occlusion

Fig. 7. But for all that it can
be computed a correct projectively
transformed image I ′

imization of the costs we get the optimal permutation of the second point set.
The cost for a point pair is the square of the geometric distance of the both
points. For the minimization of the cost function we have used the Hungarian
method. It is very surprising that the minimization of the costs is associated
with an affine transformation of the points. The method is very robust against
noise and can also be used for projective transformations appearing in real situa-
tions using real cameras. The robustness of the procedure against outliers and a
different cardinality of the point sets can be improved by using a method which
is more robust against outliers than the LAD method for the determination of
the transformation.
On this note, one well known method in APPM is the accumulation-method or
cluster-method (voting). In the simplest case, we select from the first point set
P three points, and from the second point set Q also three points, compute the
affine transformation and accumulate it in the six-dimensional accumulation-
space (for projective transformations the accumulation is done in 8 dimensions).
This is a robust algorithm, but it has the time-complexity O(n6). Using barycen-
tric coordinates and geometric hashing the complexity can be reduced to O(n4),
see e.g. [13],[5]. However, if we have solved our assigment problem A, then we
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can select 3 references, compute the affine transformation and accumulate it in
the accumulation space. This algorithm has only the complexity O(n3). It is the
same complexity as in the case of the Hungarian method.
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