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Abstract

In this paper we introduce a new moment based approach for deter-

mining the rotation angle between two closed regions. It is wideley in use

to determine the rotation angle by the second order moments. However,

in these cases if the inertial ellipse degenerates to the inertial circle, then

this method fails. In this paper we generalize that to the third and fourth

order moments and show that the method is very robust in most cases.
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1 Introduction

Matching problems are very important in practical image processing. In a lot
of practical applications only the rotation angle is of interest. In such a case
a simple and efficient method is the state of the art. Such a simple method is
using the orientation of the inertial ellipse for a given closed region, see [1, 2]
. The inertial ellipse is based on the second order area moments of the object.
If this inertial ellipse degenerates to an inertial circle the method fails. In the
present paper we generalize this fact to “inertial objects” using higher order
moments. We show, that we can use also the third or fourth order moments in
the case of a degenerating inertial ellipse.

2 The Well-known Moment Based Method

• First, we normalize the translation by the centroid, i.e. m10 = m01 = 0
and mij are the central moments.
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• Second, we normalize the rotation by the constraint m11 = 0, and we get
for the angle ϕ:

tan 2ϕ =
2m11

m20 − m02

. (1)

This is the well-known principal axes transform of the inertial ellipse. This
solution is unique exept for a period of π

2
. The angle may be with respect

to either the major principal axis or the minor principal axis. A usual
way to determine an unique orientation is to set additional constraints,
see e.g. [4]. If the conditions |m20 − m02| ≤ ε and |m11| ≤ ε are satisfied
(ε small) the method fails.

The derivation of the inertial ellipse of an object is very simple:

• We transform the moment m20 depending of the rotation angle ϕ:

m20(ϕ) = m20 cos2 ϕ + 2m11cosϕsinϕ + m02sin
2ϕ . (2)

This is the inertial function of the object, which can be taken by a para-
metrization of the object with respect to the rotation angle ϕ. The mini-
mum of the function (2) defined by one of the roots using

m11 + (m20 − m02) tan ϕ − m11 tan2 ϕ = 0 (3)

is the expression (1). However, the expression (1) is also a solution for
the maximum of the function (2). Thus we have prolems with the period
π
2
. Consequently, we define as an unique orientation with the period π

the minimum of the inertial function m20(ϕ) according to (2). If any
object has a symmetry with a rotation period lower than π then follows
m20(ϕ) = constant.

• We substitute sin(ϕ) = − x√
m20

, cos(ϕ) = y√
m20

in expression (2) and

receive
1 = m20y

2 − 2m11xy + m02x
2 , (4)

the well-known equation for the inertial ellipse.

3 Objects of a Degenerated Inertial Ellipse

It is not correct to believe that all objects with a degenerated inertial ellipse have
especial symmetries with a rotation period lower than π. For these purposes we
choose any object and calculate the central moments. Now we transform the
moments and the object (similar to the whitening transform), see [5] :

1. It is to normalize a x-shearing x′ = x + γy, y′ = y by m′
11 = 0. It is γ =

−m11

m02

and now transform all moments to m′
pq =

∑p

k=0

(

p

k

)

γp−kmk,p+q−k .
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2. It is to normalize an anisotrope scaling x′′ = αx′, y′′ = βy′ by m′′
20 =

1, m′′
02 = 1. It is α = 8

√

m02

m3

20

, β = 8

√

m20

m3

02

and now transform all moments

to m′′
pq = αp+1βq+1m′

pq .

3. With the calculated complete transformation we transform the given ob-
ject to an object which has a degenerate inertial ellipse.

In the Fig. 1 it is displayed the original object (left side) which has an inertial
ellipse and the transformed object (right side, thought has been given to an
additional isotrope scaling for displaying of the normalized object ) which has an
inertial circle. It can be seen that there are no especial symmetries of the object.
For these objects with an inertial circle we try to use higher order moments to
meet the requirements for a simple determination of the orientation using closed
regions.

Figure 1: Left side: Object has an inertial ellipse, Right side: Transformed
object has an inertial circle

4 Generalization to Higher Order Moments

First of all, we generalize the inertial function (2) to higer order moments:

mn,0(ϕ) =

n
∑

k=0

(

n

k

)

mn−k,k cosn−k ϕ sink ϕ , n = 2, 3, 4, 5, 6, 7, .... (5)

This is a general moment based parametrization for the contour of the object. If
an object is rotated, the both functions are shifted against each other. The shift
can be determined by special landmarks of the function (e.g. the minimum) or
an matching process. Second, we substitute sin ϕ = − x

n
√

mn,0

, cosϕ = y
n
√

mn,0

(n even), in the expression (5) and obtain

1 =
n

∑

k=0

(

n

k

)

(−1)kmn−k,kyn−kxk . (6)
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This generalization concerning the inertial objects makes sense only for an even
order of the moments. The idea for a practical determination of the orientation
of an object ist the following:

• Begin with n = 2 and determine the minimum of function mn,0(ϕ). This
is the orientation of the inertial object and can be used as the orientation
of the object.

• If mn,0(ϕ) = const holds, then the inertial object is a circle. Try to use the
function mn+1,0(ϕ). If this function is also constant, then put n := n+2
and repeat the process.

For practical applications the moments exceeding fourth order are too sensitive
to noise. For that reason, we analyze the case n = 3, 4 in the following.

5 Using Moments up to Fourth Order

The moments up to fourth order result in the inertial functions

m3,0(ϕ) = m30 cos3 ϕ+3m21 cos2 ϕ sin ϕ+3m12 cosϕ sin2 ϕ+m03 sin3 ϕ , (7)

m4,0(ϕ) = m40 cos4 ϕ + 4m31 cos3 ϕ sin ϕ + 6m22 cos2 ϕ sin2 ϕ+
+4m13 cosϕ sin3 ϕ + m04 sin4 ϕ

, (8)

and in the inertial object described by the polynom of fourth order

1 = m40y
4 − 4m31y

3x + 6m22x
2y2 − 4m13xy3 + m04x

4. (9)

In generalization to (3) we must find the minimum by finding the roots of the
third order polynomial

m21 + (2m12 − m30) tan ϕ + (m03 − 2m21) tan2 ϕ − m12 tan3 ϕ = 0 (10)

or the fourth order polynomial

m31 + (3m22 − m40) tan ϕ + (3m13 − 3m31) tan2 ϕ+
+(m04 − 3m22) tan3 ϕ − m13 tan4 ϕ = 0 .

(11)

In Fig. 2 an object can be seen, which has an inertial circle using the second
order moments, but the displayed inertial object of fourth order (9) has an
orientation. In Fig. 3 the function m40(ϕ) has a typical miminum with a period
π, the function m30(ϕ) has also a typical minimum even with a period 2π.

In Fig. 4 it is displayed a square which has a oriented inertial object of
fourth order. In Fig. 5 the inertial function of fourth order is displayed and has
a period of π

2
. All third order moments vanish, this means that m30(ϕ) ≡ 0.

If any object has a symmetry with a rotation period lower than π
2

then follows
m40(ϕ) = const. This means that the minimum of m40(ϕ) as the orientation of
fourth order is unique with the period π or π

2
. With respect to the inertial object

of fourth order the question arises: Why we do not use the moments m04(ϕ)
or m22(ϕ)? It is equivalent to use m04(ϕ), this function has only a phase shift
of π

2
compared with m04(ϕ) and has the same period π. However, the function

m22(ϕ) is not adequate simply, because this function has only a period of π
2
.
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Figure 2: Object has an inertial circle,
but an oriented inertial object of fourth
order
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Figure 3: m30(ϕ) and m40(ϕ)

6 Criterion for Using Third and Fourth Order

Moments

Now we have to decide with the help of a numerical criterion whether the second
order moments work or not. This criterion must be normalized and invariant
with the respect to the rotation. With the help of the simple inquality

m2
11 ≤ m20m02

it can be proved the following normalization

0 ≤ m2norm =
(m20 − m02)

2 + 4m2
11

(m20 + m02)2
≤ 1 . (12)

The numerator H2 = (m20 − m02)
2 + 4m2

11 and the root of the denominator
H1 = m20 + m02 are well-known Hu-invariants, see [3]. Therefore, the measure
m2norm is rotation invariant. Is m2norm = 0, then we have exactly an object
with an inertial circle. Is m2norm ≈ 1 then the object has a very prolate inertial
ellipse. Let be a the length of the semi-major axis and b the length of the semi-
minor axis concerning the inertial ellipse of an object. Let be s = a

b
the ratio

of both semi-axes, then we get

√
m2norm =

s2 − 1

s2 + 1
,

and we can choose the threshold depending on the ratio s. For a ratio of 11

10

we get a safe threshold with m2norm = 0.05. It follows, if m2norm ≥ 0.05 then
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Figure 4: An ideal square has an ori-
ented inertial object of fourth order
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Figure 5: m40(ϕ) ( m30(ϕ) vanishes)

we use the second order moments instead of the third or fourth order moments.
Concerning the sensitivity to noise we firstly consider the third order moments.
The method fails if nearly m30(ϕ) is constant. A good criterion is a moment-
based Hu-invariant:

m3norm =
√

(m30 − 3m12)2 + (3m21 − m03)2 .

If m3norm is nearly 0, the method fails. In this case we use the fourth order
moments and consider also the case if m40(ϕ) is constant. E.g. the conditions
m40 = m04 = 3m22 and m31 = m13 = 0 imply that situation. This means
that the inertial object of fourth order is also a circle. Now we have to define
a measure similar m2norm which is normalized and rotation invariant. For this
purpose we develop Hu-invariants using fourth order moments:

m4norm =
(m40 − m04)

2 + 4(3m22 − m40)(3m22 − m04) + 16(m31 − m13)
2

(m40 + 2m22 + m04)2
.

For the derivation of the fourth order Hu-invariants it can be used complex-
moments, see [1, 6].

7 The Algorithm

• For a given closed region compute the central moments up to fourth order.

• For numerical reasons normalize all moments to m′
00 = 1 by m′

p,q =

( 1√
m00

)p+q+2mp,q.

• If m2norm ≥ threshold2 compute the angle from the second order moments
using (1) STOP.
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• If m2norm < threshold2 then compute m3norm. If m3norm ≥ threshold3

compute the minimum of the inertial function of third order (7) with
period 2π. This can be done directly or by finding the roots of (10) using
that root with a minimum value. STOP.

• If m3norm < threshold3 then compute m4norm. If m4norm ≥ threshold4

compute the minimum of the inertial function of fourth order (8) with
period π. This can be done directly or by finding the roots of (11) using
the root with a minimum value. STOP.

• If m4norm ≤ threshold4 the method fails. STOP.

8 Numerical Experiments

It is trivial that the fourth order moments are more sensitive to noise than
the third order moments. However, our problem is the sensitivity of the angle-
determination against noise of the contour and that problem is not the same
one. The experiments have been carried out in the following way:

• Generate any closed region, compute the moments and transform the ob-
ject so that the object has a degenerate inertial ellipse, see section 3. This
means that the second order moments fail for a determination of the ori-
entation of the normalized object. Additionally, normalize the moments
to m′

00 = 1, see section 7.

• Choose randomly any rotation-angle, transform the object and choose
noise for every pixel in dependence of a given standard deviation. Compute
the moments of this object and normalize the moments to m′

00 = 1.

• Compute the orientation of both objects and calculate the difference to
the exact rotation angle.

Our main result is that the robustness basically depends on the shape of the
given closed region. In a lot of experiments we have detected the optimal thresh-
olds by m2norm = 0.05, m3norm = 0.01, and m4norm = 0.1. The third order
moments are sensitive to symmetries of the object. If there are nearly symme-
tries, then holds m3norm ≤ 0.01. We consider Fig. 6, it is displayed an object
which has no symmetries, it is m3norm = 0.04 and m4norm = 0.001. We see that
the third order moments work very well and are robust against noise. In Fig. 8 it
is given an object nearly with symmetries m3norm = 0.004, but m4norm = 0.13.
This means that the third order moments are instable, but the fourth order mo-
ments are stable and not sensitive to noise. In Fig. 10 an object is given with
a high stability of the fourth order moments indicated by m4norm = 0.8. The
object has no symmetries m3norm = 0.05 and therefore both, the third order
and the fourth order moments, work very well in dependence of noisy contours.
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Figure 6: Object with m3norm =
0.04, m4norm = 0.001
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Figure 7: m30(ϕ) is stable, m40 is un-
stable
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Figure 8: Object with m3norm =
0.004, m4norm = 0.13
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Figure 9: m30(ϕ) is unstable, m40(ϕ) is
stable

Figure 10: Object with m3norm =
0.05, m4norm = 0.8
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Figure 11: m30(ϕ) and m40(ϕ) are sta-
ble
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