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Abstract. In this paper, we propose an approach for the semantic seg-
mentation of a 3D point cloud using local 3D moment invariants and the
integration of contextual information. Specifically, we focus on the task
of analyzing forestal and urban areas which were recorded by terrestrial
LiDAR scanners. We demonstrate how 3D moment invariants can be
leveraged as local features and that they are on a par with established
descriptors. Furthermore, we show how an iterative learning scheme can
increase the overall quality by taking neighborhood relationships between
classes into account. Our experiments show that the approach achieves
very good results for a variety of tasks including both binary and multi-
class settings.

1 Introduction

In recent years, several new techniques for the creation of 3D point clouds have
emerged. Current structure from motion techniques like LSD-SLAM [2] raise
each webcam to a powerful 3D scanning device. Furthermore, in companies and
research groups the use of laser based devices like LiDAR scanners (light de-
tection and ranging) becomes more common. Today, this recording technique is
also advanced enough to allow for a fast and easy scanning procedure. Thus, the
demand increases for algorithms which are able to process such data with respect
to typical pattern recognition tasks like detection, segmentation or classification.

In biological research projects like [19,6] with a focus on the ecological system
of forests such scanners are used to create a 3D representation of an area. It opens
up the possibility to use computer-assisted systems for their analysis. However,
there is often the need for a certain amount of user interaction. While this might
be feasible in environmental research, other areas like autonomous driving or
robotics in general are in need of real-time and thereby fully-automatic systems.

In this paper, we provide an approach for the fully-automatic semantic seg-
mentation of 3D point cloud data recorded by LiDAR scanning devices. We
make use of 3D moment invariants [9] which are a powerful local representation
and are invariant to Euclidean and affine transformations. For regular 2D image
data semantic segmentation represents the pixel-by-pixel classification of a whole
scene leading to a segmentation into meaningful regions [3,11,15,16]. The clas-
sification is based on local pixel representations within a certain neighborhood.
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(a) (b)

Fig. 1. Datasets for the analysis of outdoor areas used in our experiments: (a) 3DForest
dataset [19] with labels for tree, terrain, dead wood and miscellaneous and (b) Oakland
3D Point Cloud Dataset [12] with labels for facade, ground, vegetation, wire and pole.

While in grid data this neighborhood can easily be retrieved using common faces
or corners of pixels the neighborhood in an orderless point cloud is not as trivial.

We show how to create a local feature descriptor based on moment invariants
and augmented contextual cues that can represent neighborhood relations of
present classes. For the latter we make use of a cascade of classifiers and the
concept of auto-context [11,16,21]. Our experiments demonstrate the power of
our approach for the automatic segmentation of individual trees, as well as the
analysis of whole outdoor areas in general.

The outline of this paper is as follows. We first give a short overview of related
work in this field of research. In Section 3 we describe how local 3D moment
invariants as a feature descriptor can be derived. The iterative classification
scheme and the use of context information during learning is described in Section
4. An evaluation of the proposed framework follows in Section 5. A summary in
Section 6 concludes the paper.

2 Related Work

Segmentation tools provided with [6] and [19] for the analysis of forestal areas
are based on local statistics and heuristics. Especially, the clustering routines
of [6] are mainly based on outlier estimation and distance thresholding. These
are basic features for tasks like unsupervised segmentation that are not invariant
with respect to scaling and change of density in the data. An analysis of a variety
of such local statistics and features can be found in [22].

In a more recent approach local concavity is used as an indicator for bound-
aries to achieve a bottom-up segmentation [14]. Supervoxels have to be generated
in a first step. The authors of [5] propose a contour detection method to find
regions of interest. In both [14] and [5] graph-cut techniques are applied to fi-
nally segment the point cloud based on the features. In our work, however, we
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also try to find the meaning of these segmented regions which places additional
demands on the features itself.

Many works of the past decade focused on the development of meaningful 3D
feature descriptors for classification tasks. In [4] and [17] neighborhood spheres
are defined to create histograms of local features. For the 3D shape context de-
scriptor [4] the distribution of points within individual parts of the sphere are
used. The histograms of the SHOT descriptor [17] represent the distribution of
normal vectors in these parts. A similar work is based on spinning planes around
a point along all three axes in order to get a distribution of the residuals [7,8].
In all cases the main direction of the descriptor has to be computed in order to
make them invariant with respect to rotations. We propose to use features that
are derived for the purpose of being invariant to Euclidean and affine transfor-
mations.

For a task like semantic segmentation the modeling of context information
is possible. Relationships between nearby points can be directly modeled using
graphical models like Markov random fields (MRF) [10,13] or Markov networks
[12]. In the latter, a functional gradient approach is used to increase the perfor-
mance of MRFs by learning high-order interactions. Additionally, in [18] it was
shown how a classification approach based on conditional random fields can be
extended to an online learning setting that is able to improve iteratively.

Such a system can also be used to integrate classification outputs of previous
predictions. In [23] a sequence of classifiers is trained to iteratively refine the
learned model by adding context information. The authors of [3] propose to
train random decision forests (RDF) in an incremental manner using contextual
cues in deeper levels to semantically segment single images and image stacks.
We adopt this concept for the processing of 3D point clouds by augmenting our
initial set of features with information on the class distributions in a certain
neighborhood. This allows for modeling of relationships between both points
and classes. We also use RDFs in our framework as they are fast to learn and
only have very few setup parameters.

3 Local Features Based on 3D Moment Invariants

In order to classify each individual point, we need a powerful representation for it
which is especially robust against scaling as well as rotational and translational
transformations in 3D space. A natural choice are statistical moments and their
associated invariants. In this section, we describe how local 3D moment invari-
ants can be derived for our purpose. As a prerequisite, we define a set P ⊂ R3 of
3D points p(i), with 1 ≤ i ≤ N and N = |P| the amount of points in the cloud.

3.1 3D Surface Moments

Let us assume there is a surface triangulation S given representing the object
or scenery using P. Furthermore, S consists of triangles T (j), with 1 ≤ j ≤ NT
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and NT = |S| being the amount of triangles. Such a surface representation can
be efficiently created using a Delaunay triangulation.

Each triangle consists of three corner points c
(j)
1 , c

(j)
2 , c

(j)
3 ∈ P. The 3D sur-

face moments Mkln of (k + l + n)th order for S are defined as the accumulated

surface moments of the associated triangles T (j): Mkln =
∑

j m
(j)
kln. In the fol-

lowing we skip the superscript for easier readability. The surface moment mkln

for a triangle T can be computed using

mkln =

∫ ∫
T
xkylznρ(x, y, z)ds , (1)

where ρ is a density function, with ρ(x, y, z) = 1 in our case.
As was shown in [20,24] the calculation of mkln can be reduced to the com-

putation of the area moments

mpq =

∫ ∫
D

upvqdudv , (2)

where u, v ∈ D ⊂ R2 and PT (u, v)(xT , yT , zT ) a suitable parametrization. For
details on the parametrization and a derivation on how to exactly compute mkln

using mpq we refer to [20].

3.2 Local 3D Moment Invariants

By calculating Mkln using the accumulated surface moments m
(i)
kln we are now

able to compute the eleven 3D moment invariants I222, I
2
222, . . . , I

3
1113 which were

originally proposed by Lo & Don in [9]. The authors present moment invariants
of second and third order surface moments. Details about their derivation can
be found in [9].

In general, these 3D moment invariants can be computed using P to build a
descriptor that characterizes it. However, for a task like semantic segmentation
we are interested in a powerful feature representation of each individual point.
Hence, we need to compute moment invariants locally.

While it would be possible to classify complete objects that are part of a
scenery using the moment invariant representation, this would require a very
good pre-clustering of P into objects. However, we can not rely on such a method
to be given. Therefor, we propose to represent each point by its local surrounding

surface shape. We follow [20] by defining a sphere S
(i)
1 of radius r1 around each

p(i). For each S
(i)
1 we compute the 3D surface and consequently the 3D surface

moments using only the 3D points within that sphere. The individual local 3D
surface moments can be used to compute individual local 3D moment invariants.
We will denote these as features which are part of the vector x(i).

4 Leveraging Context Information using Random Forests

In this section, we focus on how to augment the features described before with
context information using a cascade of classifiers. First, we give a short descrip-
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tion of random forests. After that, we explain how intermediate classification
outputs can be used to enforce local smoothness and model class relations.

4.1 Random Forests for Semantic Segmentation

Random decision forest (RDF) is a well known machine learning tool that is
based on an ensemble of decision trees. Individual decision trees are of lim-
ited discriminative power and are also prone to over-fitting during training.
Breiman proposed in [1] randomization techniques that can help to overcome
several shortcomings of single decision trees. Multiple decision trees are learned
using different parts of the whole training data. Additionally, a random sampling
of features for the splitting decisions and a subsequent evaluation of these splits
increase diversity between the individually learned trees. A final voting among
the learned trees yields the final classification result.

In our case each point p(i) is represented by its local moment invariants
in x(i) ∈ R11. Accordingly, the splits are based on these feature dimensions
only. Local moment invariants are based on a certain neighborhood (see Sec.
3.2) and should thereby be similar for neighboring points. However, in RDFs
each example is classified individually without taking classification results of
neighboring examples into account. Hence, uncertain areas in the feature space
can lead to a partially scattered classification output. In the following we propose
an iterative classification scheme that helps to overcome this issue.

4.2 Contextual Cues from Local Neighborhoods

The standard framework of feature extraction and classification provides us with
a class decision for each point of the whole point cloud. While this classification
result might not be consistent in every detail, it allows to deduce the principal
semantics. Otherwise the originally chosen features must have been insufficient
for the given task or the classifier was configured poorly. Inspired by [3] we
propose to use these results to augment the original feature vector with local
class distributions within a certain neighborhood.

Let p(i) and S
(i)
1 be a point and its surrounding sphere as described in Section

3.2. Furthermore, let P(i) ⊂ P be the set of points within S
(i)
1 . The amount of

examples classified as class c is represented by N
(i)
c , with 1 ≤ c ≤ C and C the

amount of classes. Hence, we can retrieve the relative frequencies for class c by

f
(i)
c =

N(i)
c

|P(i)| and use them as additional features.

In the same manner, we define a second sphere S2 with radius r2 < r1
around that point and retrieve the relative class frequencies therein as well. The
idea is, to distinguish between the class distribution next to the point from the
distribution in an extended neighborhood. While the inner sphere S2 should
enforce smoothness among nearby points, the outer sphere S1 allows for the
modeling of relationships between occurring classes.

After computing these features we augment the initial feature vector x(i)

with them. In order to avoid concatenation and thereby reallocation of memory
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we suggest to initialize the 2C dimensions as 1
C . Thus, the dimension d = 2C+11

of a feature vector is constant during the whole classification process.

4.3 Cascaded Random Forests

After the feature augmentation step we train a new RDF with the same configu-
ration as before. Hence, the root nodes include all training examples and entirely
new trees are built in the process. A continuous learning scheme like in [3] could
also be applied to build one entire RDF in a level-wise manner. However, we find
it important to have meaningful contextual cues as possible splitting features for
all examples early in the training procedure.

In general, the concept of iteratively learning classifiers based on previous
outputs is referred to as auto-context [11,16,21]. Such a step-wise learning pro-
cedure can be applied multiple times. The additional information input should
increase the performance of the classifier. Thus, its output can again be used to
refine the features as were described in Sec. 4.2. The performance gain after each
iteration is likely to decrease over time. At some point the overall performance
might even get worse because of over-fitting. We will show in our experiments
that multiple iterations are beneficial in certain scenarios.

5 Experiments

We evaluate our proposed framework using three datasets. First, we apply it
to the binary segmentation task tree against background. After that, we use a
public dataset of a LiDAR scanned forestal area to demonstrate the power of
3D moment invariants as features in comparison with other 3D feature descrip-
tors. Furthermore, we analyze the impact of our proposed iterative classification
scheme. In the third experiment we show that our method is also applicable to
other outdoor scenes like urban areas.

For the evaluation we use the evaluation metrics precision and recall. These
measures account for unbalanced testing datasets. Additionally, we report the f1
score which is the harmonic mean of both measures. In multi-class settings we
report metrics that are averaged over all classes. In all our experiments we set
the radius of the inner sphere as r2 = 1

2r1. The size of r1 was analyzed during our
experiments and is provided in the evaluation sections, respectively. The RDF
consists of 20 trees with a minimum amount of 15 examples in each leaf node.
All reported performance results are averaged over five runs.

5.1 Segmentation of Individual Trees

Experimental Setup In this series of experiments we want to show how our
proposed framework performs for the task of segmenting an individual tree in a
noisy recording. We use a point cloud consisting of 180,304 points showing one
tree and its surrounding. A visualization of the point cloud can be found in Fig.
2b. The lower half of the scene is heavily distorted by noise. A ground-truth
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Fig. 2. Results for the segmentation of an individual tree: (a) Precision-recall curve for
the testing data. Qualitative results for the whole tree (b) including both training and
testing data: (c) only 3D moment invariants and (d) with additional contextual cues.

labeling for the classes tree and background is available. We split this cloud into
two parts in a way that the subsets contain both classes allowing us to report
quantitative results. The training set contains 94,488 points and the testing set
the remaining 85,816 points.

Evaluation First, we evaluated how 3D moment invariants alone are suited for
the segmentation of trees. As can be seen from the precision-recall curve in
Fig. 2a the features work already very well for this task. The visualization of
the qualitative result in Fig. 2c amplifies this observation. However, in details
the results are scattered as was expected (see Sec. 4.1) given the individual
classification of each point. By augmenting the raw features with contextual
cues we are able to increase the performance. The modeled influence from nearby
points and classes has an effect that is both visible in quality and measurable by
performance criteria. Especially, the precision increases considerably given our
proposed contextual cues.

5.2 Analysis of Forestal Areas

Experimental Setup To evaluate our method on a larger area with multiple trees
we use the data of the 3DForest project [19]. It consists of 467,211 points which
were recorded using a terrestrial LiDAR scanner. The authors provide labels
for the classes tree, terrain and dead wood. Additionally, a background class
miscellaneous is available. For our experiments we split the data into two parts
of almost the same size using the center position along the longest dimension.
Points lower and equal to y = 528.0 are used for training and the remaining
points are used for testing. The complete scenery is depicted in Fig. 1a. Examples
of the background class (≈ 10, 000 points) are excluded from the evaluation.
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(a) Ground-truth (b) HOR [7] (c) SHOT [17] (d) Ours

Fig. 3. Qualitative results for 3DForest [19] using different descriptors to classify tree,
dead wood and terrain. This figure is best viewed in color (zoom in for details).

Precision Recall F1 Score
tree terrain dead w. tree terrain dead w. average

Without context (it. 1)
HOR [7] (k = 100) 0.903 0.676 0.523 0.969 0.664 0.090 0.586
SHOT [17] (r1 = 1.7m) 0.912 0.795 0.735 0.998 0.721 0.052 0.602
Ours (r1 = 0.4m) 0.920 0.831 0.551 0.977 0.723 0.276 0.696

Context-based (it. 2)
HOR [7] (k = 100) 0.950 0.663 0.818 0.979 0.812 0.226 0.693
SHOT [17] 0.933 0.746 0.654 0.984 0.873 0.174 0.665
Ours 0.960 0.862 0.660 0.987 0.797 0.531 0.796

Table 1. Comparison of different feature descriptors for 3DForest [19] using our pro-
posed framework. For the context-based features a radius r1 = 0.5m was used.

Evaluation In a first series of experiments we want to know how the 3D moment
invariants perform in comparison with established feature descriptors like HOR
[7] and SHOT [17]. The pure performance of the features can be seen in the upper
part of Tab. 1. For all features the best performing configuration with respect
to the neighborhood parameters k and r1 was used. As can be seen from the
results, the SHOT descriptor reaches the best average precision over all classes.
In contrast, the average recall using moment invariants is considerably better.
In total the averaged f1 score over all classes is best for our proposed descriptor.

Adding the contextual cues improves the performance of all descriptors. How-
ever, the advantage of combining moment invariants and context information is
obvious. Especially, the class dead wood with fewer examples is captured better
using our method leading to a higher recall in general. This is also visible from
the qualitative results which can be found in Fig. 3. All features can be used to
differentiate between terrain and tree. However, the use of moment invariants
performs best on average over all classes.

For a more thorough analysis of our framework we continued with experi-
ments with respect to different parameter settings. The results in Fig. 4a demon-
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Fig. 4. Quantitative analysis of different feature configurations for 3DForest [19]: (a)
Influence of radius r1 on the performance of the 3D moment invariants and (b) perfor-
mance depending on the amount of iterations of the cascaded RDF.

strate how the size of the neighborhood influences the performance of moment
invariants in general. Although, the optimal value for parameter r1 is dependent
on the data itself, we observed that a value of 0.5 is very good starting point. A
larger value might be necessary for the modeling of class relationships.

In our last series of experiments we look into the iterative classification itself.
As can be seen from the plot in Fig. 4b more than two iterations are in most
cases not beneficial. However, this is not true for the use of moment invariants
as features. The performance improved after the third iteration showing again
how well the combination of moment invariants and contextual cues work.

5.3 Urban Scenes

Experimental Setup In our last series of experiments we test our method in a
different setting to show its wide applicability. We use the Oakland 3D Point
Cloud Dataset [12] which contains scenes from an urban area (see Fig. 1b). For
the experimental setup we follow the training and testing splits provided in [12].
Thus, we train our approach using 36,932 points with labels of the classes facade,
ground, pole/trunk, wire and vegetation.

Evaluation In contrast to the analysis of forestal areas the task of urban scene
understanding contains even more classes with few examples and tiny details.
Hence, the modeling of contextual information is even more important. How-
ever, the performance of moment invariants as a feature descriptor alone is still
interesting. In comparison with other local features without context modeling
we are able to outperform the best setup of [22] in terms of precision by almost 7
percentage points. Our performance with respect to recall is only slightly worse.
An overview over all results can be found in Tab. 2. We are also able to compete
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(a) Ground-truth (b) Ours

Fig. 5. Qualitative result for a partial view of the Oakland 3D Point Cloud Dataset
[12] with visible classes facade, vegetation, pole and ground. Areas with low spatial
density tend to be confused with the class pole because of their structural appearance.

Without context Context-based
average [22] Ours [13] [10] [12] Ours

Precision 0.611 0.678 0.566 0.704 0.730 0.736
Recall 0.739 0.710 0.807 0.866 0.902 0.798
F1 Score 0.623 0.655 0.587 0.757 0.778 0.695

Table 2. Quantitative results for the Oakland 3D Point Cloud Dataset [12]: the mea-
sures are averaged over all five classes. Misses for the subtle class wire have a negative
effect on our overall recall in comparison with MRF-based approaches.

with state-of-the-art results which include context modeling. The recall for all
classes on average is worse than the MRF methods because of false negatives
for the class wire. Especially [12], with its highly optimized learning procedure
is performing better with repsect to subtle structures. However, in terms of pre-
cision and overall performance our proposed method is very well suited for this
task. A comparison of our result with the ground-truth can be found in Fig. 5.

6 Conclusions

In this paper, we showed how 3D moment invariants and contextual cues can be
combined for the semantic segmentation of outdoor areas. With this approach
3D point clouds created by terrestrial LiDAR scanners can be analyzed in a fully
automatic manner. We proposed an iterative classification framework based on
powerful local feature descriptors that are invariant to many transformations in
3D space. Furthermore, we were able to overcome the drawback of RDFs for the
task of semantic segmentation which often leads to scattered classification results
due to its individual classification scheme. Experiments show its power for tasks
like the segmentation of individual trees and the analysis of whole forestal or
urban areas with multiple classes.
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20. Trummer, M., Süße, H., Denzler, J.: Coarse registration of 3d surface triangulations
based on moment invariants with applications to object alignment and identifica-
tion. In: IEEE International Conference on Computer Vision. pp. 1273–1279 (2009)

21. Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3d
brain image segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 32(10), 1744–1757 (October 2010)

22. Weinmann, M., Jutzi, B., Mallet, C.: Feature relevance assessment for the semantic
interpretation of 3d point cloud data. In: ISPRS Annals of Photgrammetry, Remote
Sensing and Spatial Information Science. vol. II-5/W2, pp. 313–318 (2013)

23. Xiong, X., Munoz, D., Bagnell, J.A., Hebert, M.: 3-d scene analysis via sequenced
prediction over points and regions. In: IEEE International Conference on Robotics
and Automation. pp. 2609–2616 (2011)

24. Xu, D., Li, H.: 3-d surface moment invariants. In: International Conference on
Pattern Recognition. pp. 173–176 (2006)

http://www.3dforest.eu/

	Semantic Segmentation of Outdoor Areas using 3D Moment Invariants and Contextual Cues

