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Chapter 1

Introduction

This chapter states the motivations of this research work. A tour map of the

thesis is also given.

1.1 Background and Motivations

With the extraordinary advances in the �elds of digital computing, digital sig-

nal processing, and high speed integrated circuits, two dimensional digital �lters

have exhibited an impressive growth in the past three decades in terms of both

theoretical development and applications [1]-[4]. However, it was only till the

late 80th, and due to the increasing demand for real time image and video signal

processing in telecommunications and multimedia technology, when researchers

e�orts started to be directed towards the development of multidimensional adap-

tive �lters.

For image enhancement and restoration problems, the minimum mean square

error (Wiener) non-adaptive �lter, the classical stationary solution to these prob-

lems, is not adequate due to its low-pass characteristic, which gives rise to un-

13
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acceptable blurring of line and edges in the images. To overcome such problem,

some attempts have adopted non-stationary approaches in the �lter design [6],

[7], however, in many real time �ltering applications, the spatial domain design

of 2-D �lter with an o�-line method is not practical owing to the large num-

ber of �lter parameters and the large size of data required in evaluating these

parameters.

As an alternative approach, in the last decade, 2-D adaptive �lters have re-

ceived considerable research interest due to their ability to take into account the

inherent nonstationary statistical properties of images [11]. A 2-D adaptive �lter

is a space varying �lter relies for its operation on a recursive algorithm which is

responsible for updating the �lter's weights so that the �lter can perform satis-

factorily in an unknown environment and be able to track any spatial variation

in the image statistics. For example, in the background region the �lter's weights

are adjusted to narrow the pass band of the �lter to remove as much of the noise

as possible. Within edge regions the �lter's weights are adjusted to widen the

�lter's pass band and maintain the sharpness of the edges.

So far, several 1-D adaptive �ltering techniques have been extended to two di-

mensional adaptive �ltering applications, such as adaptive di�erential pulse code

modulation, image restoration and wide band noise suppression [11]. However,

such extension is not always straightforward and faced with some vital problems.

(1) 2-D real time �ltering applications, such as real time image and video signal

processing, involve more data; thus, it is always desirable to improve the conver-

gence speed and reduce the computational complexity of 2-D adaptive �ltering
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algorithms. (2) The mathematics for understanding the properties and charac-

teristic of 2-D adaptive systems are less complete. As we know, any adaptive

algorithm is a form of closed loop feedback system and there is always a potential

for instability and divergence of the adaptive system. The issues of dynamical

behaviour analysis of the adaptive system, stabilization, stability monitoring and

testing are very diÆcult even in the 1-D case. For two dimensional adaptive �l-

tering such issues are by far more diÆcult. (3) Images are highly nonstationary

signals; hence high tracking ability in nonstationary environment becomes an es-

sential goal in the development of 2-D adaptive �ltering algorithms. (4) Images

are highly correlated signals; unlike the 1-D case, the correlation of the image

pixels exists in all directions. Accordingly the scanning scheme used to process

the 2-D data has signi�cant e�ect on the performance of the adaptive algorithms.

Considering these relevant issues, the purpose of this research work is to add

few contributions on the line of the development of 2-D adaptive �ltering algo-

rithms in terms of both algorithm development and dynamical behaviour analysis.

This thesis contains three main contributions to the area of 2-D adaptive �ltering,

and thus can be divided into three main parts summarized as follows.

The �rst part of this thesis focuses on the development of a bias removal

algorithm for the 2-D equation error-based adaptive cascade IIR �lters with sep-

arable denominator function [15]. As well known, equation error-based adaptive

IIR �ltering algorithms have the advantages of fast convergence and unimodal

mean-square-error (MSE) surface. These advantages, however, come along with

the drawback of biased parameter estimates in the presence of measurement noise.
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The adaptive �lter structure in the proposed algorithm is based on the con-

cept of backpropagating the desired signal through a cascade of the denominator

vertical and horizontal sections. To handle the bias problem, the proposed al-

gorithm uses a scaled value of the output error of each of the cascaded sections

as an estimate for the measurement noise embedded in the signal part of the

coeÆcient-update procedure of that section. Thus, while maintaining the advan-

tages of easy stability monitoring, fast convergence, and low computational load,

the e�ect of the measurement noise is suppressed.

The second part of the thesis concerns the analysis of the convergence be-

haviour of the 2-D LMS adaptive FIR �ltering algorithm [19] in which the �lter's

weights are updated along both the vertical and horizontal directions as a doubly-

indexed dynamical system (so called Fornasini and Marchesini (F-M) state space

model). In what follows we will refer to this algorithm as the 2-D doubly-indexed

LMS. Updating the �lter's weights in both directions enables eÆcient use of the

2-D correlation information of the image pixels in both vertical and horizontal di-

rections and hence, provides better performance in nonstationary environments

[19]. However, from convergence analysis aspect, this truly 2-D nature of the

weights' update results in a new problem that is not encountered in the 1-D in-

dexing scheme based adaptive methods. The MSE analysis for 1-D LMS, as well

as 1-D indexing scheme based 2-D LMS methods, reduces mainly to the stability

analysis of a set of �rst order coupled di�erence equations in the coeÆcients of

the Weight Error Correlation Matrix (WECM). This set of di�erence equations

maintains stability under a general condition imposed on the used step size value
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[26], [27]. For the 2-D doubly-indexed LMS, as will be shown in the thesis, MSE

analysis calls for stability analysis of a set of second-order coupled 2-D di�er-

ence equations in the coeÆcients of the WECM, which is very diÆcult to handle

mathematically. The second part of this thesis is devoted to solving this problem

and to deriving the upper bounds on the step size parameters that insure the

convergence of the 2-D doubly indexed LMS in the MSE sense.

The third part of this thesis focuses on the development of a new 2-D adaptive

LMS FIR �ltering algorithm by block-wise processing of data in order to gain the

bene�ts of parallel computation and improved stability performance associated

with block �ltering scheme. In the proposed algorithm, the input signal is parti-

tioned into non-overlapping blocks; the weights are then adjusted once per each

block of the input signal. The �lter weights update process is carried out along

both the vertical and horizontal directions as a doubly-indexed dynamical system

in accordance with the 2-D doubly indexed LMS. In addition to the improving

the tracking ability in nonstationary environments, the 2-D doubly-indexed block

LMS (2DDI-BLMS) is shown to be very suitable for parallel processing.

1.2 Tour Map of the Thesis

This thesis is organized as follows.

Chapter 1 explains the motivations and purposes of this research work. It

also gives the thesis outline.

Chapter 2 �rst discusses the need for 2-D adaptive �lters. Next, it presents

principles of 2-D adaptive FIR �lters, principles of 2-D adaptive IIR �lters, and
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2-D adaptive �ltering applications. Then, performance measures in adaptive

�ltering are reviewed. This chapter furnishes the reader with the necessary back-

ground and information on the state-of-the-art.

Chapter 3 proposes a 2-D bias removal algorithm for 2-D adaptive cascade

IIR �lters with separable denominator transfer function. First, a 2-D backprop-

agation IIR �lter structure with the �lter denominator decomposed into cascade

of vertical and horizontal sections is introduced. Next, the 2-D bias removal al-

gorithm (2DBRA) is proposed. The Input-output (I/O) stability analysis for the

2DBRA is also discussed. The proposed algorithm is then applied to 2-D system

identi�cation and image enhancement experiments where the e�ectiveness and

the superiority of the 2DBRA over other proposed methods are illustrated by

numerical results.

Chapter 4 �rst reviews the 2-D doubly indexed LMS. Next, it addresses the

problem that is encountered in evaluating the �lter's weight-error covariance ma-

trix (WECM) for doubly indexed LMS algorithm. The independence assumption

theory is then reviewed and a method for the calculation of steady state value

of the WECM is proposed using the independence assumption. The special case

when the input signal is white Gaussian is further discussed, and the condition

required to ensure the convergence in the MSE sense is derived. Finally, numer-

ical experimental results that support the validity of the proposed analysis are

presented.

Chapter 5 �rst develops a 2-D doubly-indexed block LMS (2DDI-BLMS) al-

gorithm. The convergence behaviour of the 2DDI-BLMS is then analysed and the
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upper bounds on the step size parameters that guarantee the convergence of the

adaptive algorithm in the mean and the variance are also derived. Experimen-

tal results that support the validity of the obtained convergence analysis results

are presented. The advantages of the proposed method over the other methods

proposed in the literature are also discussed.

Chapter 6 concludes this thesis. The main contributions of this thesis to the

area of 2-D adaptive �lters are summarized. Suggestions for future work are also

introduced.



Chapter 2

Fundamental Study of 2-D

Adaptive Digital Filters

2.1 Introduction

The estimation of images is a fundamental problems which lies at the heart of

two related areas of image processing: enhancement and data compressions. The

enhancement problem is essentially one of the optimal �ltering with respect to

some error criterion. The most widely used criterion is the mean square error

(MSE). The classical stationary solution to the problem, Wiener �lter, has been

used with limited success, because its design is based on the assumption that

both the relevant signal and the noise are stationary signals and does not take into

account the high frequency components in the image. This stationary assumption

results in low pass characteristic that smears the edges of the images.

2-D Adaptive �lter o�ers promising alternative solution due to its ability to

change the �ltering characteristic while scanning the image to match the image

generating mechanism and track spatial variations of the image statistics.

This chapter reviews some of the fundamental principles and applications of

20
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2-D adaptive �lters.

2.2 2-D Wiener Filters

The basic structure of 2-D Wiener �lter is shown in Fig. 2.1. In this �gure, the

desired image d(m;n) and the input image x(m;n) are of dimension M by M .

The �lter used is an N by N causal FIR �lter. The �lter weights are convolved

with the input image x(m;n) to produce the output image y(m;n) as follows:

y(m;n) =
N�1X
l=0

N�1X
k=0

hj(l; k)x(m� l; n� k) (2.1)

where j is some function of (m;n) specifying the indexing scheme used to process

the 2-D data. At iteration j, the error signal e(m;n) is given by

e(m;n) = d(m;n)�
N�1X
l=0

N�1X
k=0

hj(l; k)x(m� l; n� k) (2.2)

The aim of Wiener �lter is to obtain a set of weights such that the output error

e(m;n) given in Eq. (2.2) is minimized in the MSE sense. The MSE is de�ned as

MSE = Efe2(m;n)g (2.3)

where Ef:g denotes the mathematical expectation operator. Substituting Eq.

(2.2) in Eq. (2.3), it can be shown after some mathematical manipulation that the

weights hopt(l; k) that minimizes the MSE is given by the following 2-D Wiener-

Hopf equation:

Hopt = R�1P (2.4)
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Figure 2.1: 2-D Wiener �lter.

where

R = EfXjX
t
jg (2.5)

P = EfXjd(m;n)g: (2.6)

Hopt = [hopt(0; 0); hopt(1; N � 1); � � � ; hopt(0; N � 1);

hopt(1; N � 1); � � � ; hopt(N � 1; N � 1)]t: (2.7)

with

Xj = [x(m;n); ; x(m + 1; n); � � � ; x(m�N + 1; n);

x(m;n + 1) � � � ; x(m�N + 1; n�N + 1)]t (2.8)

However, no perfect solution for Hopt can be obtained due to the fact that

in�nite data is required to calculate the exact correlation matrix R and the cross

correlation vector P. Moreover, the statistics of the input signal x(m;n) and the

desired signal d(m;n) may not be available, or could be space varying.
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An alternative approach is to use adaptive �lter. An adaptive �lter relies for

its operation on a recursive algorithm which is responsible for updating the �lter's

weights so that the error between the desired signal d(m;n) and output signal

y(m;n) is minimized in the mean square error sense. The most commonly used

adaptive algorithm is the least mean square (LMS) algorithm due to its simplicity

in computation.

2.3 2-D LMS Adaptive FIR Filters

Consider the N by N , causal, 2-D adaptive FIR �lter shown in Fig. 2.2. The

�lter's input x(m;n) is a 2-D stationary signal of size M �M . The �lter output

y(m;n) is calculated by

y(m;n) =
N�1X
i=0

N�1X
j=0

hj(l; k)x(m� l; n� k)

= Ht
j Xj (2.9)

where j is some function of (m;n) specifying the indexing scheme used to process

the 2-D data (cf. Fig. 2.3), and Hj and Xj are respectively the adaptive �lter's

weight-vector and the input data vector given at iteration j by

Xj = [x(m;n); � � � ; x(m�N + 1; n); � � � ; x(m�N + 1; n�N + 1)]t

Hj = [hj(0; 0); � � � ; hj(0; N � 1); � � � ; hj(N � 1; N � 1)]t: (2.10)

The two-dimensional LMS (TDLMS) weights update can be obtained in straight-

forward manner using the steepest descent algorithm as follows [17]:

Hj+1 = Hj � �Gj (2.11)
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Figure 2.2: 2-D adaptive �lter.

(a) (b)

(c) (d)

Figure 2.3: Indexing Schemes- a) rectangular indexing with short scan lines, b)
rectangular indexing with image-length scan lines, c) diagonal indexing, and d)
block diagonal indexing.
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where

Gj =
@E[e2(m;n)]

@Hj

�
@e2(m;n)

@Hj

(2.12)

is the instantaneous gradient of the MSE. Accordingly, the weights update equa-

tion becomes:

Hj+1 = Hj + �e(m;n)Xm;n (2.13)

To examine the performance of the TDLMS, it is common to consider �rst the

convergence of the mean of the weight vector, and second, the convergence of

the mean squared output error (MSE). The TDLMS is a direct extension of the

well-known 1-D LMS proposed by Widrow [18]. And Eq. (2.9) is mathematically

equivalent to an N2 one dimensional convolution. Accordingly, the performance

analysis of Eq. (2.13) is identical to that of the 1-D LMS [5], [18].

2.4 2-D Adaptive IIR Filters

Adaptive IIR �lter can o�er reduced computational complexity with reduced

parameter set while achieving increased modeling 
exibility provided by the re-

cursive structure. However, there are several reason why the class of IIR adaptive

�lters has not received the same level of attention and success as the FIR class:

1. It is possible for the adaptive process to drive the poles of the adaptive �lter

outside the unit circle causing instability. Thus, there is a need for stability

monitoring which is very diÆcult for 2-D IIR �lters.

2. The error e(m;n) is non-linear with respect to the �lter parameters, conse-

quently, the MSE is not quadratic with possible local minima causing the
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adaptive process to converge to suboptimal solution.

3. Adaptive IIR �lters have slow convergence due to the interaction between

the movement of the poles and the movement of the zeros during the adap-

tive learning process. This means that although an IIR �lter may have

fewer coeÆcients than an equivalent FIR �lter, the IIR �lter may require

more iterations to convergence.

In spite of these serious problems, the class of IIR �lters remains of great interest

for its potential to solve problems which require the synthesis of very long impulse

responses. Two main approaches to adaptive IIR �lters based on di�erent error

criteria have been considered so far [11]-[13]. The �rst one is called the output

error formulation. The second approach is called the equation error formulation.

In the following we introduce these two approaches to the IIR adaptive �ltering.

2.4.1 Output Error Formulation

Fig. 2.4 shows 2-D adaptive IIR �lter in output-error formulation. The output

error �lter is described by the recursive di�erence equation

y(m;n) =
N1X
i=0

N2X
j=0

â(i; j)u(m� i; n� j) +
M1X
i=0

M2X
j=0

(i;j)6=(0;0)

b̂(i; j)y(m� i; n� j) (2.14)

The objective of any adaptive algorithm is to minimize some performance criteria

based on minimizing some error criteria. The most common cost function is the

mean square error (MSE) given as:

MSE = Efe2(m;n)g (2.15)
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Figure 2.4: Output error formulation.

where e(m;n) is called the output error, i.e., it is the instantaneous error be-

tween the adaptive �lter output and the output of the unknown system which it

attempts to match. It is known that the use of the output error in the formulation

of the cost function prevents bias in the solution due to noise in the desired signal.

However, since the output error is non-linear in terms of the �lter parameters,

the current �lter parameters now depend upon previous �lter coeÆcients, which

are time varying. This leads to non-quadratic MSE surface with possible one or

more local minima.

2.4.2 Equation Error Formulation

Fig. 2.5 shows 2-D adaptive IIR �lter in equation-error formulation. Equation

error adaptive �lter improves upon the unsatisfactory performance of the output

error IIR by �ltering the output error with the denominator function and then
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Figure 2.5: Equation error formulation.

minimizes the new error function. The new error function which is called equation

error is given by

ee(m;n) = B̂(q�11 ; q�12 )d(m;n)� Â(q�11 ; q�12 )u(m;n) (2.16)

The equation error is clearly linear in the �lter's parameters. That is, the MSE

surface is quadratic with one global minima. Moreover, equation-error adaptive

IIR �lter has fast convergence since it is equivalent to an FIR �lter with two

inputs namely d(m;n) and u(m;n). However, minimizing the equation error is

not the same as minimizing the output error. That is, the solution given by

LMS algorithm based on equation error criteria is not necessarily the same as the

Wiener solution for the original problem. This is due to the fact that, by �ltering

the desired signal d(m;n), the measurement noise buried in it is also �ltered. And

thus the adaptive �lter will try to minimize the power of the noise that reaches

the equation error while identifying the poles of the �lter. These con
icting two
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goals may lead to biased parameter estimates.

2.5 2-D Adaptive Filtering Applications

Two dimensional adaptive �lters have found applications in the area of telecom-

munications, seismology, biomedicine, and image processing. Three applications

of 2-D adaptive �lters will be discussed in this section. 2-D system identi�ca-

tion con�guration, 2-D adaptive di�erential pulse code modulation and 2-D noise

cancellation.

2.5.1 2-D System Identi�cation Con�guration

System identi�cation con�guration is a fundamental adaptive �ltering concept

that underlies many applications of adaptive �lters. A 2-D adaptive �lter is said

to be used in system identi�cation con�guration when both the adaptive �lter

and the unknown system are excited by the same input signal x(m;n) as shown in

Fig. 2.6. Then the �lter's parameters are iteratively adjusted to minimize some

speci�ed function of the the error e(m;n) = d(m;n) � y(m;n), where y(m;n)

is the output of the adaptive �lter and d(m;n) is the desired signal, which is

the observed output of the unknown system. When the minimum of the cost

function is achieved and the adaptive �lter's parameters have converged to stable

values, the adaptive �lter provides a model of the unknown system in the sense

that the adaptive process has formed the best approximation it can in the MSE

sense using the structure imposed by the the adaptive system. In order for the

adaptive system to form a good model of the unknown system at all frequencies, it

is important that the input signal has suÆciently rich spectral contents. A white
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Figure 2.6: 2-D system identi�cation con�guration.

noise input signal is ideal because it excites all frequencies with equal power.

2.5.2 2-D Adaptive Di�erential Pulse Code Modulation

2-D adaptive �lters can be used to update the predictor coeÆcients in adaptive

di�erential pulse code modulation (DPCM) in image compression applications

[11]. Fig. 2.7 shows the system identi�cation con�guration for the 2-D ADPCM.

The predictor is an adaptive �lter which accounts for the input signal's unknown

and slowly changing statistics. The input signal can be a gray level image frame

for which the error signal is encoded and transmitted. The error signal is calcu-

lated by subtracting the predicted signal from the input signal, and accordingly

it has smaller variance and can be transmitted with fewer bits. For gray level

images, experimental results [11] have shown that the reconstructed image using

two-bit error word-length is visually indistinguishable from the original image.
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Figure 2.7: 2-D ADPCM, encoder and decoder with quantizer Q.

2.5.3 2-D Adaptive Noise Cancellation

Fig. 2.8 shows 2-D adaptive noise canceler. As shown in this �gure, there are two

available signals: a signal which is contaminated with interference and a noise

source which is in some way correlated with the interference. The objective is to

produce the best possible estimate of the interference and subtract it from the
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Figure 2.8: 2-D adaptive noise canceler.

contaminated signal.

2.6 Performance Measures in 2-D Adaptive Fil-

ters

In the development of adaptive systems, it is necessary to establish performance

measures that provide comparative performance evaluations for di�erent �lter

structures and adaptive algorithms. The choice of one algorithm over another is

determined by one or more of the following factors [5], [11]:

1. Stability. Since any adaptive system is a form of closed loop feedback con-

trol system, there is always a potential for instability and divergence of the

adaptive system, hence, the question of stability becomes of fundamental

concern. Adaptive FIR �lters are stable providing that the step size param-

eters are chosen small enough to satisfy general constraints. However, for

adaptive IIR �lters, the question of stability concerns as well the possible
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immigration of the poles of the adaptive �lters during the adaptive learning

process. This problem is very essential in understanding the behaviour of

adaptive IIR �ltering algorithm because any re
ection technique that can

be used to keep the poles of the adaptive �lter within the unit circle will

slow the convergence speed of the adaptive algorithm.

2. Convergence Rate. This is de�ned as the number of iterations required for

the adaptive algorithm with stationary input to converge close enough to

the optimal Wiener solution.

3. Misadjustment. The misadjustment provides a measure of the amount by

which the �nal value of the mean-squared error deviates from the minimum

mean squared-error produced by the Wiener �lter.

4. Computational Complexity. This issue includes, 1) number of multiplica-

tion, number of additions required to complete one iteration of the algo-

rithm. 2) the size of memory locations required to store the data and 3)

the investment required to program the algorithm on a computer.

5. Robustness. Robustness of the adaptive algorithms is very important mea-

sure and involves two important issues: 1) robustness with respect to ex-

ternal noise and 2) robustness with respect to algorithmic ill-conditioning

and arithmetic quantization noise.



Chapter 3

Bias Removal Algorithm for 2-D

Equation Error Adaptive IIR

Filters

3.1 Introduction

Equation error adaptive IIR �lters have the advantages of fast convergence and

unimodal mean square error surface. However, their main drawback is that they

converge to biased parameter estimates in the presence of measurement noise.

A 1-D equation error cascade IIR �ltering algorithm has been proposed by Gao

and Snelgrove [16]. This algorithm is based on the concept of backpropagating the

desired signal d(m) through the inverse of the all pole second order sections while

the input signal u(m) is passed through the adaptive �lter transversal section, cf.

Fig. 3.1, such that new intermediate errors ei(m); i = 1; 2; � � � ; m are generated;

then the �lter's parameters are adjusted to minimize those intermediate errors.

This cascade structure has the advantages of easy stability check and low

parameter sensitivity. Moreover, minimizing the intermediate equation error

functions instead of the output error o�ers signi�cant reduction in the gradi-

34
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Figure 3.1: 1-D backpropagation adaptive cascade IIR �lters.

ents' computational complexity [16]. Such advantages are of great interest in

2-D adaptive IIR �lters. Thus, based on the extension of the backpropagation

concept [16] to 2-D case, several 2-D cascade and parallel-cascade IIR �ltering

algorithms have been proposed in the literature [15], [33], [34]. The algorithm in

[15] uses the backpropagation concept for 2-D IIR �lters with separable denomi-

nator function. This class of 2-D IIR �lters have several advantages. In addition

to the simplicity of stability monitoring, separable denominator adaptive IIR �l-

ters o�er signi�cant reduction in the computational load when compared with

direct form 2-D IIR �lters. On the other hand, and if the numerator is nonsep-

arable polynomial, separable denominator IIR �lters can be eÆciently used to

approximate nonseparable 2-D IIR �lters [2].

However, the main drawback of the algorithm [15], as well as [33] and [34],

is that they are based on minimizing equation error functions; accordingly, it
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Figure 3.2: Equation error formulation for separable denominator 2-D IIR �lters.

is expected that they converge to biased parameter estimates when the desired

signal is contaminated with measurement noise. So far, stability analysis and the

performance of the 1-D backpropagation cascade structure [16] as well as the 2-D

backpropagation cascade structure [15]-[34] have not been considered.

This chapter presents a 2-D Bias Removal Algorithm (2DBRA) for the back-

propagation cascade structure [15]. The 2DBRA presented here makes use of

the idea of using a scaled value of the output-error as an estimate for the mea-

surement noise which has been proposed in [36] for direct form 1-D adaptive IIR

�lters. This idea resembles in fact the error-feedback method used for round-
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o� noise reduction [37] in digital �lters. However, for any adaptive algorithm

that makes use of such idea, the scaling factor can not be �xed value as it is

the case in roundo� noise reduction, and should be time varying in a way that

the output-error feedback mechanism works only when the output-error becomes

good estimates of the measurement noise.

3.2 2-D Backpropagation Adaptive Cascade IIR

Filters

Consider the 2-D separable denominator IIR �lter in a system identi�cation con-

�guration as shown in Figure 3.2. The observable output d(m;n) of the unknown

system is given by

d(m;n) = w(m;n) + v(m;n) (3.1)

w(m;n) =
N1X
i=0

N2X
j=0

a(i; j)u(m� i; n� j) +

M1X
i=0

M2X
j=0

(i;j)6=(0;0)

b1(i)b2(j)w(m� i; n� j) (3.2)

where u(m;n); m = 0; � � � ;M; n = 0; � � � ; N; is the input signal, w(m;n) is the

noise free output signal, and v(m;n) is a zero mean measurement noise assumed

to be independent of w(m;n) and u(m;n).

In Figure 3.2, A(q�11 ; q�12 ) denotes the �lter transversal section, B1(q
�1
1 ) and
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B2(q
�1
2 ) are respectively the denominator horizontal and vertical parts, i.e.

A(q�11 ; q�12 ) =
N1X
i=0

N2X
j=0

a(i; j)q�i1 q�j2

B1(q
�1
1 ) = 1�

M1X
i=1

b1(i)q
�i
1

B2(q
�1
2 ) = 1�

M2X
j=1

b2(j)q
�j
2 (3.3)

where q�11 and q�12 are used to denote spatial delay operators in the horizontal

and vertical directions respectively.

For the separable denominator adaptive IIR �lter shown in Figure 3.2, the

desired signal d(m;n) is backpropagated through the cascade of the adaptive �l-

ter's denominator vertical and horizontal sections in a way that two intermediate

error functions, namely e1(m;n) and e2(m;n), can be generated as follows:

e1(m;n) = d1(m;n)� y1(m;n)

= d2(m;n)�
M1X
i=1

b̂1(i)d2(m� i; n)�
N1X
i=0

N2X
j=0

â(i; j)u(m� i; n� j)

= d2(m;n)� �̂
T

1 (k � 1)'1(m;n) (3.4)

e2(m;n) = d2(m;n)� y2(m;n)

= d(m;n)�
M2X
j=1

b̂2(j)d(m;n� j)� y2(m;n)

= �̂
T

2 (k � 1)'2(m;n)� y2(m;n): (3.5)

In the inner product notations, k denotes the iteration number used in updating

the coeÆcients; the value of k is some function of (m;n) specifying the indexing
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scheme, and

�̂1(k) = [b̂k1(1); � � � ; b̂
k
1(M1); â

k(0; 0); � � � ; âk(N1; N2)]
T (3.6)

'1(m;n) = [d2(m� 1; n); � � � ; d2(m�M1; n);

u(m;n); � � � ; u(m�N1; n�N2)]
T (3.7)

�̂2(k) = [1;�b̂k2(1); � � � ;�b̂
k
2(M2)]

T (3.8)

'2(m;n) = [d(m;n); � � � ; d(m;n�M2)]
T : (3.9)

Here, �̂1(k) denotes the parameter vector of the adaptive �lter's transversal sec-

tion and the denominator horizontal section; �̂2(k) denotes the parameter vector

of the denominator vertical section; '1(m;n) and '2(m;n) are two regressor

vectors associated with the adaptive �lter.

The 2-D adaptive algorithm [15] updates the adaptive �lter parameter vectors

�̂1(k) and �̂2(k) subject to minimizing the intermediate error functions e1(m;n)

and e2(m;n) respectively. The parameter update procedures are given by

�̂
T

1 (k) = �̂
T

1 (k � 1)� �1
1

2

@e21(m;n)

@�̂1(k � 1)

= �̂
T

1 (k � 1) + �1e1(m;n)'1(m;n) (3.10)

�̂2(k) = �̂2(k � 1)� �2
1

2

@e22(m;n)

@�̂2(k � 1)

= �̂2(k � 1)� �2e2(m;n)'2(m;n) (3.11)

where, �2 = diag[0; �2; � � � ; �2] is a diagonal step size matrix.

Now, whether minimizing these intermediate error signals e1(m;n) and e2(m;n)

will lead to minimizing the output error signal or not, requires further discussion.

Indeed, experimental results have shown that, in analogy with the 1-D equation
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error IIR adaptive �ltering algorithms, the algorithm [15] performs signi�cantly

well in noise free case, however its performance degrades signi�cantly when the

desired signal d(m;n) is contaminated with additive noise.

In the following section we present the 2-D Bias Removal Algorithm (2DBRA)

2DBRA which is derived from modifying the regressor vectors '1(m;n) and

'2(m;n) in Eqs: (3.10) and (3.11) respectively. The performance of the algo-

rithm [15] will be discussed in the following sections as a special case of the

2DBRA.

3.3 2-D Bias Removal Algorithm (2DBRA)

Using Eq. (3.1), the regressor vector '2(m;n) in Eq.(3.9) can be rewritten as

'(m;n) = '20(m;n) + v2(m;n) (3.12)

with

'20(m;n) = [w(m;n); � � � ; w(m;n�M2)]
T (3.13)

v2(m;n) = [v(m;n); � � � ; v(m;n�M2)]
T : (3.14)

To handle the bias problem, the 2DBRA tries to counteract the e�ect of the

noise vector v2(m;n) embedded in the regressor vector '2(m;n) of the coeÆcients

update equation (3.11), by using a scaled value of the output-error vector

"o(m;n) = [eo(m;n); eo(m;n� 1); � � � ; eo(m;n�M2)]
T (3.15)

with

eo(m;n) = d(m;n)� y(m;n) (3.16)
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Figure 3.3: Equation error formulation for separable denominator 2-D IIR �lters
with the bias removal method.

as an estimate for the noise vector v2(m;n). That is, the 2DBRA modi�es Eq.

(3.11) as follows:

�̂2(k) = �̂2(k � 1)��2e2(m;n)['2(m;n)� �2(m;n)"o(m;n)] (3.17)

where �2(m;n) is a scaling factor de�ned as

�2(m;n) = min

�
1; �2

k'2(m;n)k

k"o(m;n)k

�
; �2 � 0 (3.18)

with k k denoting the Euclidean norm.

In a similar way, the 2DBRA uses a scaled value of the error signal e2(m;n)
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to estimate the colored noise

v1(m;n) = �̂
T

2 (k � 1)v2(m;n) (3.19)

that reaches the intermediate signal d2(m;n) (see Figure 3.2). That is, the

2DBRA modi�es Eq. (3.10) as follows:

�̂1(k) = �̂1(k � 1) + �1e1(m;n)['1(m;n)� �1(m;n)"2(m;n)] (3.20)

where

"2(m;n) = [e2(m� 1; n) � � � e2(m�M1; n); 0]
T (3.21)

and �1(m;n) is a scaling factor de�ned as

�1(m;n) = min

�
1; �1

k'1(m;n)k

k"2(m;n)k

�
; �1 � 0: (3.22)

The time varying scaling factor �1(m;n)(�2(m;n)) de�ned in Eq. (3.22)((3.18)) is

chosen to be inversely proportional to the variance of the error e2(m;n)(eo(m;n)).

At the beginning of the adaptive process, the variance of e2(m;n)(eo(m;n)) is

large, and the value of �1(m;n)(�2(m;n)) is close to zero, i.e., the adaptive learn-

ing process works almost without the bias removal mechanism. As the variance

of the error e2(m;n)(eo(m;n)) decreases, e2(m;n)(eo(m;n)) tends to be more

accurate estimate of the measurement noise in d2(m;n)(d(m;n)), and the value

of �1(m;n)(�2(m;n)) increases gradually to reach a maximum value of unity.

However, as the value of the scaling factor �1(m;n)(�2(m;n)) increases, a larger

portion of the output error e2(m;n)(eo(m;n)) is installed in the 2DBRA. Conse-

quently, the stability of the 2DBRA becomes more critical.



3.4. CONVERGENCE ANALYSIS OF THE 2DBRA 43

In the following section it is shown that the stability of the 2DBRA can be

maintained under general conditions imposed on the step size parameters �1 and

�2 and the constants �1 and �2 used in calculating the scaling factors �1(m;n)

and �2(m;n) respectively.

3.4 Convergence Analysis of the 2DBRA

Rigorous convergence analysis of the 2-D adaptive cascade structure in Figure

3.3 as a whole dynamic is very complicated due to the interaction between the

cascaded sections. And, Eqs. (3.4)((3.5)) when considered together will lead to

highly nonlinear optimization problem.

In an attempt to analyze the convergence behaviour of the 2DBRA, as well as

the algorithm [15], the cascade structure is divided into two parts. The �rst one

consists of the transversal section and the denominator horizontal section. And

the second part consists of the denominator vertical section. Then it is shown

that the interconnection between the cascaded sections, can be replaced by a

noise component in the desired signal of each part.

Now under the assumption that the adaptation process of the �lter coeÆcients

is slow, i.e. the used step size parameters are suÆciently small, stability anal-

ysis of each of the di�erence equation that describes the parameter-error vector

of each part can be carried out as if these two part were independent using the

stability robustness theory of perturbed linear system. On the other hand, and

in order to further reduce the interconnection between the dynamic behavior of

the cascaded sections, it is assumed that, at the update iteration k, the signals
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y1(m;n), d2(m;n) and d1(m;n) are calculated from the estimated parameters at

iteration k � 1, while the signal y2(m;n) and y(m;n) are calculated from the

estimated parameters at iteration k� 2. Accordingly, at iteration k, the interme-

diate signal y2(m;n) is independent of �̂1(k � 1), that is e2(m;n) is independent

of �̂1(k � 1). In this view, the error function e1(m;n)(e2(m;n)) given in Eqs.

(3.4)((3.5)) can be considered to be linear with respect to the updated parameter

vector �̂1(k� 1) (�̂2(k� 1)); and each section has its global minimum. However,

there is no guarantee that in the presence of measurement noise, the convergence

of each section to its global minimum will lead to global convergence of the output

error of the whole structure.

In the following subsections, the convergence of the mean of the following

parameter-error vectors is considered.

Ef~�1(k)g = Ef�1 � �̂1(k)g (3.23)

Ef~�2(k)g = Ef�2 � �̂2(k)g: (3.24)

Here, the tilde \~ " is used to denote the error in the estimated entities, and �1

and �2 are the ideal parameter vectors de�ned as

�1 = [b1(1); � � � ; b1(M1); a(0; 0); � � � ; a(N1; N2)]
T (3.25)

�2 = [1;�b2(1); � � � ;�b2(M2)]
T : (3.26)

In the following convergence analysis, it is assumed that the parameter vector

�̂1(k � 1)(�̂2(k � 1)) is independent of the regressor vector '1(m;n)('2(m;n)).

This assumption is similar to the well known independence assumption used in

the analyzing the convergence behavior of LMS adaptive �ltering algorithms [10].
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3.4.1 Convergence Analysis of the First Part of the Struc-

ture

The parameters of the part of the adaptive �lter that contains the transversal

section and the denominator horizontal section are updated using Eq. (3.20).

This part of the structure can be considered as a time-varying FIR �lter with

desired signal d2(m;n), c.f. Figure 3.3. Before going into the stability analysis of

Eq. (3.23), we will �rst show that the desired signal d2(m;n) can be decomposed

into three components as follows:

d2(m;n) = d20(m;n) + �2(m;n) + v1(m;n) (3.27)

with d20(m;n) represents the noise free desired signal for this part of the structure;

v1(m;n) is the �ltered version of the measurement noise v(m;n) as de�ned in Eq.

(3.19); �2(m;n) is a perturbation component related to the 
uctuation of the

parameter-error vector ~�2(k � 1).

From Figure 3.3, and using Eqs. (3.12) and (3.19), we have

d2(m;n) = �̂
T

2 (k � 1)'2(m;n)

= �̂2(k � 1)T'20 + v1(m;n)

= �T2'20(m;n)� ~�
T

2 (k � 1)'20(m;n) + v1(m;n)

= �T2'20(m;n) + �2(m;n) + v1(m;n) (3.28)

where

�2(m;n) = �~�
T

2 (k � 1)'20(m;n): (3.29)
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However, from Eq. (3.2) we can �nd that

�T1'10(m;n) = �T2'20(m;n) (3.30)

where

'10(m;n) = [d20(m� 1; n); � � � ; d20(m�M1; n);

u(m;n); � � � ; u(m�N1; n�N2)]
T (3.31)

d20(m;n) = d20(m;n) = �T2'20(m;n): (3.32)

Substituting Eq. (3.30) in Eq. (3.28) we arrive at Eq. (3.27) with d20(m;n) =

�T1'10(m;n).

Now, substituting Eq. (3.20) in Eq. (3.23) and using Eqs. (3.4) and (3.27)

we get

Ef~�1(k)g = [A1 +B1(m;n)]Ef~�1(k � 1)g+ Av1 + A�2 (3.33)

where

A1 = I � �1R'1'1 (3.34)

B1(m;n) = �1Ef�1(m;n)'1(m;n)"T2 (m;n)g (3.35)

Av1 = �1Ef[b
T
1 v1(m;n)� v1(m;n)]['1(m;n)� �1(m;n)"2(m;n)]g(3.36)

A�2 = ��1Ef[1; � bT1 ]�2(m;n)['1(m;n)� �1(m;n)"2(m;n)]g(3.37)

with

R'1'1 = Ef'1(m;n)'T
1 (m;n)g (3.38)

b1 = [b1(1); � � � ; b1(M1)]
T (3.39)

v1(m;n) = [v1(m� 1; n); � � � ; v1(m�M1; n)]
T (3.40)

�2(m;n) = [�2(m;n); �2(m� 1; n); � � � ; �2(m�M1; n)]
T : (3.41)
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Note that the di�erence equation (3.33) has two forcing terms. The �rst one A�2

is due to the interaction between the cascaded sections. And the second Av1 is

due to the colored measurement noise v1(m;n). Hence, even in the absence of

measurement noise, the forcing term A�2 may also cause the adaptive algorithm

to converge to biased parameter estimates.

Now, the di�erence equation (3.33) is stable if the autonomous perturbed

system presented by the �rst term of Eq. (3.33) is asymptotically stable and the

forcing terms A�2 and Av1 are bounded.

i) Stability Analysis of the Autonomous Part of Eq. (3.33)

The autonomous perturbed system

Ef~�1(k)g = [A1 +B1(m;n)]Ef~�1(k � 1)g (3.42)

is exponentially and asymptotically stable if the following two conditions hold

[38].

1. All the eigenvalues of the the stability matrix A1 are within the unit circle.

Such condition is satis�ed if and only if

0 � �1 �
2

�1max
(3.43)

where �1max denotes the maximum eigenvalue of the input autocorrelation matrix

R'1'1 . Condition (3.43) can be replaced with a more practical and strict one

given by

�1 =
2�1

tr(R'1'1)
�

2

�1max
; 0 < �1 � 1: (3.44)
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Then we can de�ne the state transition matrix

�1(k) = Ak
1; k > 0 (3.45)

that satis�es

k�1(k)k � c1�
k
1 ; c1 > 0; �1 2 [0; 1]: (3.46)

2. The perturbation term B1(m;n) satis�es

0 � �1 + c1kB1(m;n)k � 1: (3.47)

From Eq. (3.35) we have

kB1(m;n)k = kE
�
�1(m;n)�1'1(m;n)"T2 (m;n)

	
k

� �1E

�
k'1(m;n)k

k"2(m;n)k

2�1k'1(m;n)k

tr(R'1'1)
k"2(m;n)k

�
� 2�1�1: (3.48)

Thus, the value of �1 should satisfy

0 � �1 �
1� �1
2�1c1

: (3.49)

ii) The Boundedness of the Forcing Term Av1

Making use of Eq. (3.27) in Eq. (3.36), and considering the assumption that

the measurement noise v(m;n) is independent of u(m;n) and w(m;n), we can

�nd that

kAv1k = �1kEf[b
T
1 v1(m;n)� v1(m;n)][v1(m;n)� �1(m;n)v1(m;n)]gk

= �1k[1� �1(m;n)][Rv1v1b1 � Efv1(m;n)v1(m;n)g]k

� �1kRv1v1b1 � Efv1(m;n)v1(m;n)gk (3.50)
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with Rv1v1 = Efv1(m;n)vT1 (m;n)g. Hence, the forcing term Av1 is bounded, and

kAv1k will approach zero as �1(m;n)! 1.

Notice that, without the bias removing mechanism, i.e. �1(m;n) = 0, the

norm of the forcing term Av1 is proportional to the power of the measurement

noise v1(m;n). Thus unless the desired signal d2(m;n) is free from measurement

noise, i.e. v1(m;n) � 0, the adaptive algorithm [15] converges to biased parame-

ter estimates.

iii) The Boundedness of the Forcing Term A�2

From Eq. (3.37) we have

kA�2k = �1kEf[1; � b1]�2(m;n)['1(m;n)� �1(m;n)"2(m;n)]gk

� �1(
M1X
i=0

b21(i))
1=2Efk�2(m;n)kk['1(m;n)� �1(m;n)"2(m;n)]kg:

(3.51)

Equation (3.51) states that the norm of the forcing term A�2 is bounded providing

that the error signal �2(m;n) has �nite variance. Generally speaking, there is

no guarantee that the variance of the error signal �2(m;n) will approach zero.

However, the boundedness of the error �2(m;n) is guaranteed if the step size �2,

used in the update procedure of the denominator vertical section, satis�es the

necessary condition for the convergence of the LMS FIR �lter B̂2(q
�1
2 ) in the

variance which is given by [10]

�2 <
2

3tr(R'2'2)
(3.52)

with R'2'2 = Ef'2(m;n)'T
2 (m;n)g. In order to reduce the in
uence of the
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forcing term A�2 , a suÆciently small step size �2 that guarantees small variance

for ~�2(k), and hence for �2(m;n), should be used.

3.4.2 Convergence Analysis of the Second Part of the

Structure

In Figure 3.3, the intermediate signal y2(m;n) can be considered as the desired

signal for the adaptive FIR �lter B̂2(q
�1
2 ). It can be decomposed into two com-

ponents as follows:

y2(m;n) = �T2'20(m;n) + �1(m;n): (3.53)

The �rst component �T2'20(m;n) can be considered as the noise free stationary

desired signal; �1(m;n) is a time-varying 
uctuation component related to the

parameter-error vector ~�1(k � 2).

Substituting Eq. (3.53) in Eq. (3.5) and using Eq. (3.12) we �nd

e2(m;n) = �̂
T

2 (k � 1)'2(m;n)� �T2'20(m;n)� �1(m;n)

= �~�
T

2 (k � 1)'2(m;n) + �T2 v2(m;n)� �1(m;n): (3.54)

Substituting Eq. (3.17) in Eq. (3.24) and using Eq. (3.54) we �nd

Ef~�2(k)g = [A2 +B2(m;n)]Ef~�2(k � 1)g+ Av2 + A�1 (3.55)

where

A2 = I � �2R'2'2 (3.56)

B2(m;n) = Ef�2(m;n)�2'2(m;n)"To (m;n)g (3.57)
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and

Av2 = �2Ef�
T
2 v2(m;n)['2(m;n)� �2(m;n)"o(m;n)]g (3.58)

A�1 = ��2Ef�1(m;n)['2(m;n)� �2(m;n)"o(m;n)]g: (3.59)

i) Stability Analysis for the Autonomous Part of Eq. (3.55)

The autonomous perturbed system

Ef~�2(k)g = [A2 +B2(m;n)]Ef~�2(k � 1)g (3.60)

is asymptotically stable if the following two conditions hold:

1. All the eigenvalues of the stability matrix A2 are within the unit circle. This

condition holds if the step size �2 satis�es

0 � �2 �
2

�2max
(3.61)

where �2max denotes the maximum eigenvalue of the autocorrelation matrixR'2'2.

Condition (3.61) can be replaced with a more practical one given by

�2 =
2�2

tr(R'2'2)
�

2

�2max
; 0 < �2 � 1: (3.62)

Then, we can de�ne the state transition matrix �2(k) = Ak
2 that satis�es

k�2(k)k � c2�
k
2 ; c2 > 0; �2 2 [0; 1]: (3.63)

2. The perturbation term B2(m;n) satis�es

0 � �2 + c2kB2(m;n)k � 1: (3.64)
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Calculating kB2(m;n)k, we can �nd that condition (3.64) holds if

0 � �2 �
1� �2
2�2c2

: (3.65)

ii) The Boundedness of the Forcing Term Av2

Substituting Eq. (3.16) in Eq. (3.58), and using the assumption that v(m;n)

is independent of u(m;n) and d(m;n), we �nd

kAv2k = k�2Ef�
T
2 v2(m;n)[v2(m;n)� �2(m;n)v2(m;n)]gk

= �2k[1� �2(m;n)][Rv2v2�2]k

� �2kRv2v2�2k (3.66)

with Rv2v2 = Efv2(m;n)vT2 (m;n)g. Hence the forcing term Av2 is bounded, and

kAv2k ! 0 as �2(m;n)! 1.

iii) The Boundedness of the Forcing Term A�1

From Eq. (3.59) we �nd that

kA�1k = k�2Ef�1(m;n)'2(m;n)gk

� �2Efk�1(m;n)kk'2(m;n)� �2(m;n)"o(m;n)kg: (3.67)

Equation (3.67) states that, the forcing term A�1 is bounded providing that the er-

ror signal �1(m;n) is bounded. Practically, if the denominator horizontal section,

i.e. 1=B1(q
�1) is assured to be stable, then y2(m;n) is bounded, and consequently

�1(m;n) is bounded. In order to reduce the in
uence of the forcing term A�1, a

step size parameter �1 that guarantees �nite variance for the FIR �lter with pa-

rameter vector �̂1(k), should be used. That is, �1 should satisfy the condition
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[10]

�1 <
2

3tr(R'1'1)
(3.68)

3.5 Experimental Results and Discussion

Example 1: Noisy desired signal (white measurement noise)

In this example, the 2-D adaptive algorithm [15] and the 2DBRA are applied

to the system identi�cation experiment. A 2-D zero mean white Gaussian signal

of unit variance and size 256 by 256 is used for the input signal u(m;n). And

a zero mean, unit variance Gaussian noise which is independent of the input

signal is used for the additive noise v(m;n). The process w(m;n) is generated by

�ltering the input signal u(m;n) with the separable denominator 2-D IIR �lter:

H(q�11 ; q�12 ) =
1 + 0:8q�11 � 0:5q�12 � 0:4q�11 q�12

(1� 1:2q�11 + 0:36q�21 )(1 + 0:9q�12 + 0:2q�22 )
: (3.69)

Table 3.1 shows the obtained parameter estimates for �1 = 0:0012, �2 = 0:0008,

and �1 = �2 = 0:5. Figure 3.4 shows the convergence of the output error eo(m;n)

for both algorithms using the following 1-D error function:

"(i) =
1

2(i+ 1)

iX
j=0

�
eo(i; j)

2 + eo(j; i)
2
	
; 0 � i �M � 1: (3.70)

In Eq. (3.70), the 2-D output error eo(m;n) is mapped to the 1-D error "(i)

by averaging the squared output-error for the pixels that lie on the row segment

f(i; 0); (i; i)g and the column segment f(0; i); (i; i)g. Figs. 3.5 and 3.6 show how

the the value of each of the time varying scaling factors �k(m;n); k = 1; 2 changes

from zero to the maximum value of one during the adaptive learning process. The



3.5. EXPERIMENTAL RESULTS AND DISCUSSION 54

Table 3.1: Parameter estimates for Example 1 (30 runs).
a(1; 0) a(0; 1) a(1; 1) b1(1) b1(2) b2(1) b2(2)

True values 0.8 -0.5 -0.4 1.2 -0.36 -0.9 -0.2
Ref. [15] 1.3208 -0.4717 -0.6225 0.6844 0.0980 -0.9174 -0.2346
2DBRA 0.7967 -0.5028 -0.4063 1.2050 -0.3591 -0.8981 -0.1994

2-D values of the scaling factors are presented using the following 1-D functions:

��k(i) =
1

2(M � 1� i)
�M�1
j=i � 2k (i; j) + � 2k (j; i); 0 � i �M � 1; k = 1; 2: (3.71)

In agreement with the discussion given in previous section, experimental re-

sults have shown that the amount of the reduction in the bias caused by the

interaction between the cascaded sections depends on the values of the used step

size parameters �1 and �2. For suÆciently small step size values, signi�cant

reduction in the bias caused by both the measurement noise and the cascade

interaction can be obtained. This reduction in the bias is achieved, however, at

the expense of moderate increase in the computational load of the 2DBRA over

the algorithm [15]. This increase is merely due to the requirement of adjusting

the time varying scaling factors �1(m;n) and �2(m;n) at each iteration.

Example 2: Noisy desired signal (colored measurement noise)

In this experiment we to compare the performances of the proposed 2DBRA

with that of the 2-D LMS algorithm [15] and the family of hyperstable adaptive

IIR �ltering algorithms presented in [40]. In this experiment the proposed 2DBRA

is applied to the system identi�cation experiment described in [40] (Experiment

3 and Experiment 4). The following transfer function is used for the unknown
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Figure 3.4: The convergence of the mean squared output error of the bias removal
algorithm for Example 1 (average of 30 runs), �1 = �2 = 0:0004, �1 = �2 = 0:5.

system:

H(q�11 ; q�12 ) =
1 + q�11 + 2q�12 + 3q�11 q�12

1� 0:25q�11 � 0:5q�12 + 0:125q�11 q�12

: (3.72)

A 2-D white Gaussian noise of variance 500.4 and zero mean is used for the input

signal u(m;n). And a 320 columns by 200 rows of the\Lena" image with variance

2216:6 and mean value 108:9 is used for the colored measurement noise v(m;n).

The variance of the noise w(m;n) is initially 18125.14. The image is processed

row by row repeatedly such that the values of the estimated parameters at the

end of one pass are used as the parameter initial values at the beginning of the
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Figure 3.5: Plot of the scaling factor ��1(i)
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Figure 3.6: Plot of the scaling factor ��2(i)
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next pass as performed in [40]. The error signal e0(m;n) = d(m;n) � y(m;n)

gives the enhanced image. The variance of the noise left in the processed image

is calculated by subtracting the noiseless image from it and then computing the

variance.

Table 3.2 shows the obtained parameter estimates for the 2DBRA and the

algorithm [15]. Table 3.3 shows the variance of the noise left in the processed

image for di�erent passes and for four di�erent algorithms. The results for the

2-D modi�ed HARF and 2-D SHARF are taken from [40] (Table 4 and Table 5

respectively). The image enhancement experiment results for the 2DBRA and

the algorithm [15] are shown for di�erent values of the step size parameter � =

�1 = �2.

Figs. 3.7 and 3.8 show the original and the noisy image \Lena" respectively.

Figs. 3.9 and 3.10 show the processed images at the 41st pass using algorithm

[15] and the 2DBRA respectively.

From these results and other simulation examples, we found that the pro-

posed 2DBRA algorithm performs much better than the algorithm [15] at the

expense of very small increase in the computational load. On the other hand, the

2DBRA converges faster than the 2-D modi�ed HARF and the 2-D SHARF. For

suÆciently small step size parameters �1 and �2 the 2DBRA remains stable and

no stability monitoring was required.
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Table 3.2: Parameter estimates at the 41st pass, �1 = �2 = 6� 10�9, �1 = �2 =
0:5.

Parameter True Value Ref. [15] 2DBRA
a(1; 0) 1 0.9409 0.9812
a(0; 1) 2 1.9544 1.9985
a(1; 1) 3 2.8432 2.9634
b1(1) 0.25 0.2991 0.2520
b2(1) 0.5 0.5556 0.5081
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Figure 3.7: Original image \Lena".

Figure 3.8: Noisy image \Lena".
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Figure 3.9: The processed image at the 41st pass using algorithm [15], �1 = �2 =
6� 10�9.

Figure 3.10: The processed image at the 41st pass using the 2DBRA, �1 = �2 =
6� 10�9, �1 = �2 = 0:5.
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Table 3.3: The variance of the noise left in the processed images at di�erent
passes.

Pass 2-D modi�ed 2-D SHARF � = 6� 10�9 � = 12� 10�9

HARF Ref. [40] Ref. [40] Ref. [15] 2DBRA Ref. [15] 2DBRA
2 12986.05 12986.35 6499.09 6252.90 3790.08 3724.27
3 9963.90 9957.31 4480.32 4334.35 1934.58 1953.93
4 6864.88 6860.09 3163.56 3117.18 1059.03 1027.20
5 4358.73 4355.70 2273.30 2250.78 628.77 542.73
6 3097.05 3094.77 1660.42 1626.07 412.61 289.54
11 1083.04 1081.76 461.71 325.22 192.57 20.61
21 166.10 165.42 194.94 20.46 182.43 8.48
31 51.61 51.21 183.16 7.91 182.29 8.41
41 32.34 32.09 182.25 7.26 182.29 8.49

Example 3: Noisy desired signal (colored measurement noise)

In this example, we repeated the system identi�cation experiment described

in the previous example, however for this experiment we used 2-D white Gaussian

noise of zero mean and 104 variance for the input signal u(m;n). And we used

the \Mandrill " image of mean 129.1378, variance 1749.8, and size 256 columns

by 256 rows, for the measurement noise v(m;n).

Table 3.4 shows the obtained parameter estimates for the 2DBRA and the

algorithm [15]. Figure 3.11 shows the improvement in the the Signal to Noise

Ratio (SNR) of the enhanced image through successive passes using the algorithm

[15] and the 2DBRA. The SNR is calculated by

SNR = 10 log

�
�2
v

�2
n

�
(3.73)

where �2
v = 1749:8 is the variance of the original image \Mandrill" and �2

n is the
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Table 3.4: Parameter estimates for Experiment 3 at the 10th pass.
Parameter True Value Ref. [15] 2DBRA

a(1; 0) 1 0.9158 0.96323
a(0; 1) 2 1.9814 1.9862
a(1; 1) 3 2.8038 2.9797
b1(1) 0.25 0.3215 0.2629
b2(1) 0.5 0.5811 0.5135

variance of the noise left in the enhanced image. The SNR value of the initial

noisy image is �7:711. As this �gure indicates, for low SNR, the 2DBRA works

almost without the bias removal mechanism as the algorithm [15]. As the SNR

increases gradually, the e�ectiveness of the output-error-feedback becomes very

clear. Figs. 3.12 and 3.13 show the original and the noisy image \Mandrill"

respectively. Figs. 3.14 and 3.15 show the enhanced images at the 10th pass

using algorithm [15] and the 2DBRA respectively.

In all the experiments presented here, stability monitoring was not required.

It has been observed that, for suÆciently small step size parameters, whenever

the poles of the adaptive �lters start to immigrate outside the unit circle, the out-

put error of each section increases suddenly and consequently the scaling factors

�1(m;n) and �2(m;n) decreases; the adaptive algorithm works without output-

error feedback and is able to draw the poles back to the unit circle.
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Figure 3.11: The improvement of the SNR of the enhanced image through con-
secutive passes in Example 2.
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Figure 3.12: The original image \Mandrill".

Figure 3.13: The noisy image \Mandrill".
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Figure 3.14: The enhanced image at the 10th pass using algorithm [15], �1 =
�2 = 7:6894� 10�8.

Figure 3.15: The enhanced image at the 10th pass using the 2DBRA, �1 = �2 =
7:6894� 10�8; �1 = �2 = 0:7.
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3.6 Summary

The bias removal algorithm for 2-D equation error adaptive IIR �lters has been

presented. The �lter structure in the proposed algorithm is based on the concept

of backpropagating the desired signal through a cascade of the denominator ver-

tical and horizontal sections. The key idea in the proposed algorithm is to use

a scaled value of the output error of each of the cascaded sections to counteract

the e�ect of the measurement noise embedded in the regressor of the update pro-

cedure of that section. I/O stability analysis has been carried out. It has been

shown that the proposed algorithm remains stable and the e�ect of the measure-

ment noise can be signi�cantly suppressed under general conditions imposed on

the values of the used step sizes and scaling factors. Image enhancement and

2-D system identi�cation experimental results have been presented to support

the e�ectiveness of the proposed 2DBRA algorithm.



Chapter 4

Steady State Analysis of 2-D

Doubly Indexed LMS Adaptive

Filters

4.1 Introduction

Two dimensional Least Mean Square (LMS) type adaptive �lters has received

considerable research interest, mainly because of its simplicity in computation.

Hadhoud and Thomas [17] have proposed a 2-D LMS algorithm, which is called

TDLMS, by direct extension of the 1-D LMS algorithm [18]. In the TDLMS,

the weights' update process is carried out using either vertical or horizontal 1-D

indexing scheme. Accordingly, the authors of [17] have shown that the weights'

update equation of TDLMS can be written in a form which is mathematically

equivalent to the well known 1-D LMS [18]; hence, the analysis procedures and

results of the 1-D LMS can be directly applied to the TDLMS. The drawback of

the algorithm [17], however, is that it can only exploit the correlation information

of the image pixels in the direction of the indexing scheme used to process the

2-D data. To overcome such problem, the authors of [19] have proposed a 2-D

67
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LMS algorithm in which the �lter's weights are updated along both the verti-

cal and horizontal directions as a doubly-indexed dynamical system [20]. Such

update mechanism enables eÆcient use of the 2-D correlation information of the

image pixels in both vertical and horizontal directions and hence, provides better

performance in nonstationary environments [19].

The convergence of the mean for the 2-D LMS [19] (in what follows, it will

be referred to as 2-D doubly indexed LMS) has been investigated in [19] using

stability theory of 2-D Fornasini and Marchesini (F-M) state space model [20].

Convergence of the mean does not, however, guarantee �nite mean square error

(MSE) for the adaptive algorithm.

In this chapter, we consider the MSE analysis of the 2-D LMS. The analy-

sis presented here is the �rst attempt in the literature to investigate the steady

state MSE analysis for a doubly-indexed 2-D LMS algorithm. The MSE anal-

ysis is carried out using the assumption that the successive input vectors are

statistically independent, jointly Gaussian-distributed random variables. This

assumption, generally referred to as the independence assumption [5], is widely

used in the convergence analysis of 1-D LMS for two main reasons. The �rst is

due to the simpli�cation in analysis obtained under such assumption. The second

is due to the good agreement between the analytical results obtained using the

independence assumption and experimental results [10]-[27].

Though the 2-D MSE analysis will be signi�cantly simpli�ed when invoking

the independence assumption, the use of 2-D indexing scheme in the weights'

update equation of the 2-D doubly indexed LMS results in a new problem that
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is not encountered in the 1-D case. For the 1-D LMS, as well as for the TDLMS,

the adaptive �lter's weight-vector update equation is a 1-D �rst order di�erence

equation given by

Hj+1 = Hj � �Gj (4.1)

where j is the iteration number; Hj is the adaptive �lter's weight-vector; � is a

scalar parameter that controls the convergence rate of the LMS algorithm, and

Gj is the instantaneous gradient of the MSE at iteration j. From Eq. (4.1),

it follows that the weight-error covariance matrix is calculated by a set of 1-D

�rst order di�erence equations. According to [26], [27], this set of di�erence

equations maintains stability under a general condition imposed on the used

step size parameter �. For the 2-D doubly indexed LMS, however, the adaptive

�lter weight-vector update equation is described by the 2-D �rst order di�erence

equation

Hm+1;n+1 = fhHm;n+1 + fvHm+1;n

��hGm;n+1 � �vGm+1;n (4.2)

where m and n are two spatial indices in the vertical and horizontal direction

respectively. Hm;n is the adaptive �lter weight-vector at spatial indices (m;n);

fh, fv, �h and �v are scalar parameters, and Gm;n is the instantaneous gradient

of the MSE at spatial indices (m;n). From Eq. (4.2), and as will be shown in

the sequel, the weight-error covariance matrix for the 2-D doubly indexed LMS

is calculated by a set of 2-D second order di�erence equations. Stability analysis

for such set of equations is, however, very diÆcult to handle mathematically.
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In Section 4.3 of this chapter, we show that for the steady state, this set of

2-D second order di�erence equations can be reduced to a set of linear simultane-

ous equations in the coeÆcients of weight-error correlation matrices at di�erent

spatial lags; however, the number of the unknowns in this set exceeds the number

of equations. To solve this problem, we propose a method for the approximation

of the coeÆcients of weight-error correlation matrices at large spatial lags. The

approximation method is based on the extension of the direct averaging method

[10] to 2-D case. It can also serve as an approximation method for the weight-

error covariance matrix without invoking the independence assumption providing

that the step size parameters are suÆciently small.

4.2 The 2-D Doubly Indexed LMS Algorithm

Consider the N by N , causal, 2-D adaptive FIR �lter shown in Fig. 4.1. The

�lter's input x(m;n) is a 2-D stationary signal of size M1�M2. The �lter output

y(m;n) is calculated by

y(m;n) = Ht
m;nXm;n (4.3)

where Hm;n and Xm;n are respectively the adaptive �lter's weight-vector and the

input data vector given at spatial indices (m;n) by

Xm;n = [x(m;n); � � � ; x(m�N + 1; n); � � � ; x(m�N + 1; n�N + 1)]t

Hm;n = [hm;n(0; 0); � � � ; hm;n(0; N � 1); � � � ; hm;n(N � 1; N � 1)]t: (4.4)

The 2-D doubly indexed LMS updates the �lter's weight-vector along both the

vertical and horizontal directions such that the error between the �lter output
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Figure 4.1: 2-D adaptive �lter.

y(m;n) and the desired signal d(m;n) is minimized in the MSE sense. The MSE

is de�ned as

MSE = Efe2(m;n)g

= Ef
�
d(m;n)�Ht

m;nXm;n

�2
g: (4.5)

The update equation for the 2-D doubly indexed LMS is given by

Hm+1;n+1 = fhHm;n+1 + fvHm+1;n

+�he(m;n + 1)Xm;n+1 + �ve(m + 1; n)Xm+1;n;

Hm;0 = 0; m = 0 � � �M1;H0;n = 0; n = 0 � � �M2;

fh + fv = 1 (4.6)

where �h and �v denote the step size parameters in the horizontal and vertical

directions respectively.

The optimal solution Hopt that minimizes the MSE is given by the Wiener-
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Hopf equation

Hopt = R�1P (4.7)

where

R = EfXm;nX
t
m;ng

P = EfXm;nd(m;n)g: (4.8)

In [19], it has been shown that the 2-D doubly indexed LMS converges to the

optimal solution i.e., EfHm+1;n+1 �Hoptg ! 0 as m + n ! 1, if the following

condition holds:

jfh � �h�ij+ jfv � �v�ij < 1 (4.9)

where �i; i = 0; � � � ; N2 � 1, are the eigenvalues of the input correlation matrix

R.

Condition (4.9) is, however, not suÆcient to guarantee convergence of the 2-D

doubly indexed LMS in the MSE sense. Moreover, convergence of the mean does

not provide any information about the performance of the adaptive algorithm.

In the following section we will present the steady state MSE analysis for the 2-D

doubly indexed LMS.

4.3 Steady State Mean Square Error Analysis

using the Independence Assumption

The MSE analysis will be carried out using the independence assumption [10],

consisting of the following points:
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A.1 The input vectors X0;0;X1;0; � � � ; Xm;n are zero mean, statistically indepen-

dent, , Gaussian-distributed random variables.

A.2 The error

"(m;n) = d(m;n)�Ht
optXm;n (4.10)

is a zero mean, white Gaussian noise of variance �2
" , and is statistically

independent of the input vector Xm;n.

4.3.1 MSE Calculation

Let us de�ne the adaptive �lter weight-error vector

Cm;n = Hm;n �Hopt: (4.11)

Then, using Eqs. (4.10) and (4.11), the error signal e(m;n) can be given by

e(m;n) = d(m;n)�Ht
m;nXm;n

= "(m;n) +Ht
optXm;n �Ht

m;nXm;n

= "(m;n)�Ct
m;nXm;n: (4.12)

Now if we substitute Eq. (4.12) in (4.5) and make use of assumptions A.1 and

A.2, we can �nd that the steady state MSE is given by

�1 = lim
m+n!1

Efe(m;n)2g

= �2
" + lim

m+n!1
EfCt

m;nXm;nX
t
m;nCm;ng (4.13)

= �2
" + lim

m+n!1
tr(R Km;n;m;n) (4.14)
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where

Km;n;m;n = EfCm;nC
t
m;ng (4.15)

is the weight-error covariance matrix.

Note that from A.1 it follows that the input vector Xm;n and the weight-error

vector Cm;n are statistically independent. Accordingly, the expectation term

in Eq. (4.13) can be treated as a product of two expectation terms. Strictly

speaking, in adaptive �ltering applications, these two vectors are dependent since

the successive input vectors are statistically dependent. However, even when

this statistical dependency is ignored, the independence assumption still preserve

the correlation structure for EfXm;nX
t
m;ng as well as for EfCt

m;nCm;ng. Hence,

the analysis under such assumption still retains enough information about the

behaviour of the adaptive process even when the input signal is correlated, (see

[10], [5] and references therein).

In the rest of this section we will consider the calculation of the weight-error

covariance matrix. In this calculation, we assume that the condition (4.9), which

is necessary for the convergence of the mean, holds.

4.3.2 Weight-Error Covariance Matrix

To calculate the weight-error covariance matrix we need �rst to derive the update

equation for the weight-error vector. Indeed, if we subtract Hopt from both sides
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of Eq. (4.6) and make use of Eq. (4.12), we get

Cm+1;n+1 = Hm+1;n+1 �Hopt

= (fhI� �hXm;n+1X
t
m;n+1)Cm;n+1

+(fvI� �vXm+1;nX
t
m+1;n)Cm+1;n

+�h"(m;n+ 1)Xm;n+1

+�v"(m+ 1; n)Xm+1;n: (4.16)

If Eq. (4.9) holds, the converges of the the mean of weight-error vector is guar-

anteed. That is:

~m = EfCm;ng ! 0 as m + n!1: (4.17)

The variance of Cm+1;n+1 is de�ned as

varfCm+1;n+1g = EfCm+1;n+1C
t
m+1;n+1g � ~m ~mt

= EfCm+1;n+1C
t
m+1;n+1g: (4.18)

Multiplying each side of Eq. (4.16) by its transpose we obtain:

Cm+1;n+1C
t
m+1;n+1 = T1 + T2 + T3 + T4 + T5 + T5 + T6 (4.19)
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where t denotes the matrix transpose operator. And, for notational convenience,

we have de�ned

T1 = (fhI � �hXm;n+1X
t
m;n+1)Cm;n+1C

t
m;n+1(fhI � �hXm;n+1X

t
m;n+1)

T2 = (fvI � �vXm+1;nX
t
m+1;n)Cm+1;nC

t
m;n+1(fhI � �hXm;n+1X

t
m;n+1)

t

T3 = (fhI � �hXm;n+1X
t
m;n+1)Cm;n+1C

t
m+1;n(fvI � �vXm+1;nX

t
m+1;n)

t

T4 = (fvI � �vXm+1;nX
t
m+1;n)Cm+1;nC

t
m+1;n(fvI � �vXm+1;nX

t
m+1;n)

t

T5 =
�
(fhI � �hXm;n+1X

t
m;n+1)Cm;n+1 + (fvI � �vXm+1;nX

t
m+1;n)Cm+1;n

�
(�hXm;n+1"m;n+1 + �vXm+1;n"m+1;n)

t

T6 = (�hXm;n+1"m;n+1 + �vXm+1;n"m+1;n) (�hXm;n+1"m;n+1 + �vXm+1;n"m+1;n)
t

(4.20)

Calculating the expectation values of each term of Eq. (4.20) we can write:

EfT1g = f 2
hEfCm;n+1C

t
m;n+1g � �hfhEfCm;n+1C

t
m;n+1gR

��hfhREfCm;n+1C
t
m;n+1g+ 2�2

hREfCm;n+1C
t
m;n+1gR

+�2
htr
�
EfCm;n+1C

t
m;n+1gR

�
R: (4.21)

EfT2g = Ef(fvI � �vXm+1;nX
t
m+1;n)Cm+1;nC

t
m;n+1(fhI � �hXm;n+1X

t
m;n+1)

t

= fhfvEfCm+1;nC
t
m;n+1g � �hfvEfCm+1;nC

t
m;n+1gR

��vfhREfCm+1;nC
t
m;n+1g+ �h�vREfCm+1;nC

t
m;n+1gR: (4.22)
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EfT3g = fhfvEfCm;n+1C
t
m+1;ng � �vfhEfCm;n+1C

t
m+1;ngR

��hfvREfCm;n+1C
t
m+1;ng+ �h�vREfCm;n+1C

t
m+1;ngR (4.23)

EfT4g = Ef(fvI � �vXm+1;nX
t
m+1;n)Cm+1;nC

t
m;n+1(fhI � �hXm;n+1X

t
m;n+1)g

= f 2
hEfCm+1;nC

t
m+1;ng � �vfvEfCm+1;nC

t
m+1;ngR

��hfvREfCm+1;nC
t
m+1;ng+ 2�2

hREfCm+1;nC
t
m+1;ngR

+�2
htr
�
EfCm+1;nC

t
m+1;ngR

�
R: (4.24)

EfT5g = 0 (4.25)

EfT6g = (�2
h + �2

v)�
2
"R: (4.26)

Note that in the calculation of Eqs. 4.21-4.26 we have made use of the inde-

pendence assumptions and the following property of zero mean Gaussian random

variables [26]:

EfXm;n+1X
t
m;n+1(X

t
m;n+1Cm;n+1)

2g = 2REfCm;n+1C
t
m;n+1gR+

tr
�
EfCm;n+1C

t
m;n+1gR

�
R:

(4.27)

Now before proceeding, we need to de�ne some necessary notations. Since the

input correlation matrix R is symmetric, there exists an orthogonal matrix Q

such that

QRQt = � = diag(�0; �1; � � � ; �N2�1)

Qt = Q�1: (4.28)



4.3. STEADY STATE ANALYSIS USING THE INDEPENDENCE ASSUMPTION 78

Thus, we can de�ne the transformed matrix:

�m1;n1;m2;n2 = QEfCm1;n1C
t
m2;n2

gQt

=
�

i;jm1;n1;m2;n2

�
;

i; j = 0; � � � ; N2 � 1 (4.29)

where the superscripts (i; j) in the notation 
i;jm1;n1;m2;n2 is used to point to the

element at the ith row and jth column of the matrix �m1;n1;m2;n2.

Now, substituting Eqs. (4.21)-(4.26) in Eq. (4.18) and making use of the

orthogonal transform Q we arrive at

�m+1;n+1;m+1;n+1 = f 2
h�m;n+1;m;n+1

��hfh�m;n+1;m;n+1�� �hfh��m;n+1;m;n+1

+2�2
h��m;n+1;m;n+1�+ �2

htr(�m;n+1;m;n+1�)�

+fhfv�m+1;n;m;n+1 � �hfv�m+1;n;m;n+1�

��vfh��m+1;n;m;n+1 + �h�v��m+1;n;m;n+1�

+fhfv�m;n+1;m+1;n � �vfh�m;n+1;m+1;n�

��hfv��m;n+1;m+1;n + �h�v��m;n+1;m+1;n�

+f 2
v�m+1;n;m+1;n � �vfv�m+1;n;m+1;n�

��vfv��m+1;n;m+1;n + 2�2
v��m+1;n;m+1;n�

+�2
vtr(�m+1;n;m+1;n�)�+ (�2

h + �2
v)�

2
"�: (4.30)

Analysing the stability of the set of second-order coupled 2-D di�erence equations

(4.30) is a very complicated task. Thus, we propose to simplify the analysis by

making use of the following two facts.
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1. For the transformed weight-error correlation matrix de�ned in Eq. (4.29),

it follows from Schwartz' inequality [42] that

(
i;jm1;n1;m2;n2
)2 � 
i;im1;n1;m1;n1

:
j;jm2;n2;m2;n2
: (4.31)

That is to say, the boundedness of the diagonal terms of the weight-error cor-

relation matrices ensures the boundedness of the o�-diagonal ones. Hence,

it is suÆcient to analyze the stability of the diagonal terms of the matrix

equation (4.30). Note that, as for the MSE evaluation (see Eq. (4.14)), we

are only interested in the diagonal terms since

tr(RKm;n;m;n) = tr(��m;n;m;n)

=
N2�1X
j=0


j;jm;n;m;n�j: (4.32)

2. Let, for notational convenience, 
i;ik ; k = 0; 1; � � � , denote the steady state

values of the weight error correlation coeÆcients at spatial lag (k;�k). That

is


i;ik = lim
m+n!1


i;im+1;n+1�k;m+1�k;n+1: (4.33)

Now, if the adaptive algorithm reaches the steady state, the signal Cm;n

becomes stationary random signal. Consequently, if the weight-error co-

variance coeÆcient 
i;im+1;n+1;m+1;n+1, i = 0; � � � ; N2 � 1, has a steady state

value, say 
i;i0 , then the following equality should holds:

lim
m+n!1


i;im+1;n;m+1;n = lim
m+n!1


i;im;n+1;m;n+1

= 
i;i0 : (4.34)
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Similarly, if the weight-error correlation coeÆcient 
i;im+1;n;m;n+1; i = 0; � � � ; N2�

1, has a steady state value, say 
i;i1 , then the following equality should hold:

lim
m+n!1


i;im+1;n;m;n+1 = lim
m+n!1


i;im;n+1;m+1;n

= 
i;i1 : (4.35)

Consequently, for the steady state, the N2 diagonal coeÆcients of the Eq. (4.30)

should obey the equality


i;i0 =
�
f 2
h + f 2

v � 2(�hfh + �vfv)�i + 2(�2
h + �2

v)�
2
i

�

i;i0

+2
�
fhfv � (�hfv + �vfh)�i + �h�v�

2
i

�

i;i1

+(�2
h + �2

v)�i

N2�1X
j=0


j;j0 �j + (�2
h + �2

v)�
2
"�i: (4.36)

There is a need for another set of equations in the unknowns 
i;i0 and 
i;i1 .

If we apply the same way of analysis to evaluate the matrix

lim
m+n!1

�m+1;n;m;n+1 = [
i;j1 ]; i; j = 0; � � � ; N2 � 1

we can �nd that for the steady state, i.e. m+ n!1, the diagonal terms of the

correlation matrix �m+1;n;m;n+1 should obey the equality


i;i1 =
�
fhfv � (�hfv + �vfh)�i + 2�h�v�

2
i

�

i;i0

+
�
f 2
h + f 2

v � 2(�hfh + �vfv)�i + (�2
h + �2

v)�
2
i

�

i;i1

+
�
fhfv � (�hfv + �vfh)�i + �h�v�

2
i

�

i;i2

+�h�v�i

N2�1X
j=0


j;j0 �j + �h�v�i�
2
" (4.37)
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where


i;i2 = lim
m+n!1


i;im+1;n�1;m�1;n+1: (4.38)

If we continue in similar way evaluating the weight-error correlation matrices for

higher spatial lags, i. e.

lim
m+n!1

�m+1;n+1�k;m+1�k;n+1 = [
i;jk ]; k = 2; 3; � � � ;

at each stage k 2 0; 1; � � �, we will have a set of (k+1)�N2 equations in (k+2)�N2

unknowns, namely, 
i;ij ; 0 � j � k + 1; 0 � i � N2 � 1. To solve this problem,

we propose two methods. The �rst method, presented in Section 4.5, makes use

of the direct averaging method [10]. It approximates the stochastic di�erence

Eq. (4.16) of the weight-error vector with a simpler time-invariant averaged

system. The proposed direct averaging-based analysis can be used to derive an

approximation of the weight-error correlation matrix �m;n�k;m�k;n for an arbitrary

integer k without invoking the independence assumption given by A.1 and A.2.

For example, we can use this method to obtain an approximation for the weight

error correlation coeÆcients, 
i;i2 = limm+n!1 
i;im+1;n�1;m�1;n+1; i = 1; � � � ; N2;

using this approximation in Eq. (4.37), the two sets of equations (4.36) and

(4.37) can then be solved for 
i;i0 and 
i;i1 .

The second alternative method is to state that, under the white Gaussian

assumption for the input vector Xm;n and the error signal "(m;n), the weight-

error correlation coeÆcients 
i;ik+1 for k � 1 can be approximated with zero. Thus,

the available (k+1)�N2 equations can be solved for the (k+1)�N2 unknowns to

obtain the weight-error covariance coeÆcients 
i;i0 ; i = 0; � � � ; N2�1. The solution
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of these (k+1)�N2 simultaneous equations can be obtained using mathematical

tool box for the general case. In the Section 4.5 we show that the error that

results from setting the weight-error correlation coeÆcients 
i;ik+1; k � 1 decreases

as the spatial lag k increases.

In the following section we will discuss in more details the steady state analysis

for the simple case when the input signal is white Gaussian noise.

4.4 Steady State MSE Analysis withWhite Gaus-

sian Input Data

In this section we deal with the steady state analysis for the case when the input

signal is white Gaussian noise with variance �2
x; the correlation coeÆcients 
i;i2 ,

i = 0; � � � ; N2 � 1 are set to zero; fh = fv, and �h = �v = �. We choose to work

with this case merely to make the solution of the equations traceable. Similar

kind of analysis can be applied to any other case within which A.1 and A.2 hold.

For the white Gaussian input case, �0 = �1; � � � ; �N2�1 = �2
x. Accordingly,


0;00 = 
1;10 = 
i;i0 = 
0, i = 0; � � � ; N2 � 1. Hence, solving Eqs. (4.36) and (4.37)

for 
0 we get


0 =
�2
"

�2
x

�2

(0:25� � + (2 + p)�2)
�

0:375� � + (0:5 + 1:5p)�2 + (6 + 2p)�3 � (4 + 2p)�4

0:125 + 3� � (2:5 + 1:5p)�2 � (6 + 2p)�3 + (4 + 2p)�4

(4.39)

where, for notational convenience, we have de�ned p = N2, and

� = ��2
x: (4.40)
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Figure 4.2: Weight-error covariance coeÆcient 
0 as a function of � = ��2
x for 2

by 2 adaptive FIR �lter.

Now, since the weight-error covariance coeÆcient 
i;i0 ; i = 0; 1; � � � ; N2 � 1

should be positive and �nite, the range of the step size � that ensures the con-

vergence of the 2-D doubly indexed LMS in the MSE sense can be determined by

the following condition

0 � 
i;i0 <1; i = 0; 1; � � � ; N2 � 1: (4.41)

For this simpli�ed case, analysis of Eq. (4.39) reveals that in this equation, the

�rst term and the numerator of the second term are always positive for 0 � � < 1,

and that for any value ofN2 � 1, the polynomial in the denominator of the second

term has only one real positive root, say �1, in the range 0 � � < 1 where the
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sign of this polynomial changes from positive to negative. Thus, we can deduce

that the upper bound of the step size value that ensures �nite variance is given

by

0 � � <
�1
�2
x

: (4.42)

Fig. 4.2 shows 
0 as a function of � with �
2
"=�

2
x = 1 for a 2 by 2, 2-D adaptive FIR

�lter. Fig. 4.3 shows the values of the root �1 for di�erent values of N . From

Fig. 4.3, it is clear that for any �lter order, �1 < 1. Accordingly, the condition

required for the convergence in the MSE sense, as given in Eq. (4.42), decreases

signi�cantly the convergence region of the 2-D doubly indexed LMS algorithm
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when comparing to the condition necessary for the convergence of the mean

0 � � <
1

�2
x

(4.43)

given by Eq. (4.9).

4.5 Direct Averaging Method for the Approxi-

mation of theWeight-Error Correlation Ma-

trix

Providing that the step sizes �h and �v are small, and based on the direct av-

eraging method [10], the solution of the stochastic di�erence Eq. (4.16) can be

approximated with that of the following averaged system:

Cm+1;n+1 = AhCm;n+1 +AvCm+1;n + �h"m;n+1Xm;n+1 + �v"m+1;nXm+1;n

(4.44)

where

Ah = fhI� �hR

Av = fvI� �vR:

Eq. (4.44) is a 2-D F-M state space model with local state space vector Cm;n and

input vector "m;nXm;n. This 2-D F-M model is exponentially stable if and only

if [20]

det(I� z�11 Ah � z�12 Av) 6= 0 (4.45)
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in the region

U2 = f(z1; z2)j jz1j � 1; jz2j � 1g:

Note that the condition (4.45) is the same condition required for the convergence

of the mean which was reduced in [19] to the condition (4.9).

Now, the transfer function between the input "m;nXm;n and the state space

vector Cm;n is given by

H(z1; z2) = (I �Ahz
�1
1 �Avz

�1
2 )�1(�hz

�1
1 + �vz

�1
2 )

= (�hz
�1
1 + �vz

�1
2 )

1X
k=0

(Ahz
�1
1 +Avz

�1
2 )k

= (�hz
�1
1 + �vz

�1
2 )

1X
i=0

1X
j=0

Ai;jz�i1 z�j2 (4.46)

where the series expansion is absolutely convergent in the region U2 [20], and

A0;0 = I

Ai;j = AhA
i�1;j +AvA

i;j�1; for i+ j > 0

Ai;j = 0; for i < 0 or j < 0: (4.47)

Hence, from Eq. (4.46), the weight-error vector Cm;n can be calculated by

Cm;n =
mX
i=0

nX
j=0

H(i; j)"m�i;n�jXm�i;n�j (4.48)

with

H(i; j) = �hA
i�1;j + �vA

i;j�1:
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From Eq. (4.48), the weight-error correlation matrix Km;n�k;m�k;n can be calcu-

lated for any spatial lag k as follows:

Km;n�k;m�k;n = EfCm;n�kC
t
m�k;ng

=
mX
i=0

nX
j=0

mX
p=0

nX
q=0

H(i; j � k)EfVm�i;n�k�jV
t
m�p�k;n�qgH(p� k; q)

(4.49)

where, for notational convenience, we have de�ned:

Vm;n = "m;nXm;n: (4.50)

If the probability distribution of the input signal x(m;n) and the measurement

noise "m;n are available, Eq. (4.49) can be used to obtain the weight-error corre-

lation matrix Km;n�k;m�k;n.

For the special case when the measurement noise "(m;n) is white Gaussian

noise and independent of x(m;n), Eq. (4.49) is reduced to:

Km;n�k;m�k;n = �2
"

mX
i=k

nX
j=k

H(i; j � k) R H(i� k; j): (4.51)

Stability condition (4.9) guarantees that the spectral norm of each of the matrices

Ah, Av, and A
i;j are less than unity. And since these matrices are symmetric,

it is straightforward to show that, limi;j!1H(i; j) = 0. Thus, we can deduce

that the error that results from using the approximation (4.51) decreases as the

spatial lag k increases. For suÆciently large k, the correlation matrix Km;n;m;n

can be approximated with zero as it has been suggested in Subsection 3.2. For

k = 0, Eq. (4.51) can be used as an approximation of the weight error covariance

matrix Km;n;m;n.
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4.6 Experimental Results and Discussion

Example 1:

In this example we aim to test the accuracy of the obtained analytical results

for the simpli�ed setting (�0 = �1; � � � ; �N2�1 = �2
x, fh = fv = 0:5, and �h =

�v = �). We performed system identi�cation experiment for the following 2-D

FIR �lter:

d(m;n) = x(m;n) + 0:5x(m� 1; n) + 0:5x(m;n� 1)

+0:125 x(m� 1; n� 1) + "(m;n): (4.52)

We used two independent, 2-D white Gaussian sequences with variances �2
x = 1,

and �2
" = 1 for the input signal x(m;n) and the additive noise "(m;n) respectively.

As a measure for the performance of the 2-D doubly indexed LMS we used

the misadjustment M which is de�ned as

M =
�1 � �2

"

�2
"

=
1

�2
"

lim
m+n!1

tr(RKm;n;m;n)

=
1

�2
"

N2�1X
j=0


j;j0 �j: (4.53)

Fig. 4.4 shows a comparison between experimental results and the misadjustment

obtained using two di�erent methods. In the �rst method (referred to as the

independent assumption method in Fig. 4.4), the coeÆcients of the WECM in

Eq. (4.53) were calculated using Eq. (4.39). And in the second (referred to as

the the direct averaging method in Fig. 4.4), the WECM in Eq. (4.53) were

calculated using the direct averaging method presented in Section 4.5 with k set
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Table 4.1: Simulation results for Example 2, correlated Gaussian input
step � = 0:2 � = 0:3 � = 0:4
size � = 0:19 � = 0:16 � = 0:11
� Indep. Exper. Indep. Exper. Indep. Exper.

0.3 �� 0.0929 0.0929 0.0821 0.0821 0.0544 0.0545
0.4 �� 0.1522 0.1522 0.1339 0.1341 0.0877 0.0901
0.5 �� 0.2288 0.2289 0.2001 0.2010 0.1283 0.1287
0.6 �� 0.3297 0.3316 0.2856 0.2871 0.1776 0.1864
0.7 �� 0.4661 0.5011 0.3989 0.4783 0.2381 0.3180
0.8 �� 0.6600 0.8611 0.5550 1.1034 0.3130 0.6101

to zero in Eq. (4.51). The experimental misadjustment is calculated by averaging

the results of 30 independent runs. For each run the misadjustment is calculated

by averaging 40000 iteration in the steady state.

From Fig. 4.4, we can observe that the MSE analysis using both the inde-

pendent assumption and the direct averaging method gives satisfactory results

for small step size value. However, as the step size � increases, the error in the

estimated MSE increases. On the other hand, we can notice that the performance

of the 2-D doubly indexed LMS was well preserved using the independence as-

sumption based analysis, whereas, the direct averaging method fails completely

for large step size values.

Example 2:

In this example we performed the system identi�cation experiment described

in Example 1, however, with correlated input signal. The correlated input x(m;n)

was generated by �ltering a 2-D white Gaussian noise u(m;n) of zero mean and
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Table 4.2: Simulation results for Example 2, maximum step size value �max,
Gaussian input, N=2.

� 0 0.1 0.2 0.3 0.4 0.5
Ref. [19] 1 0.81 0.67 0.55 0.46 0.38
Indep. 0.29 0.26 0.22 0.19 0.16 0.14

unit variance with the following 2-D, 2� 2 �lter:

x(m;n) = u(m;n) + �u(m� 1; n) + �u(m;n� 1): (4.54)

Accordingly, the 4� 4 input correlation matrix R is given by:

R =

2
664
1 + �2 � � 0
� 1 + �2 �2 �
� �2 1 + �2 �
0 � � 1 + �2

3
775 : (4.55)

We repeated the same experiment for di�erent value of �, (� = 0:2; 0:3; 0:4), to

test the accuracy of the obtained analytical results for di�erent levels of input

correlation. In this example, an approximation of the weight-error correlation

coeÆcients 
i;i2 was calculated using the proposed direct averaging method (Eq.

(4.51) with k = 2). The weight-error correlation coeÆcients 
i;i0 ; i = 0; � � � ; N2�1

were then obtained by solving Eqs. (4.36) and (4.37).

Table 4.1 shows the values of the misadjustment calculated both experimen-

tally and using the proposed independence assumption based analysis. From

the table entries which are illustrated also in Fig. 4.5, it is seen that the in-

dependence assumption based analysis provides accurate results for small step

size values. However, for large step size values, the error in estimating the mis-

adjustment of the adaptive �lter increases as the level of the input correlation



4.7. SUMMARY 91

increases.

The upper bound on the step size parameter � that ensures the convergence in

the MSE, say �max, were calculated for each particular value of � from condition

(4.41). Table 4.2 shows the obtained numerical results in comparison with the

upper bound on the step size parameter � that ensures convergence of the mean

as given by Eq. (4.9) [19]. It is seen that the maximum step size values that

ensures convergence of the MSE is signi�cantly smaller than those that ensures

the convergence of the mean.

Example 3:

In this example we aim to test the obtained analytical results for non Gaussian

input. We performed a system identi�cation experiment similar to that presented

in Example 1, however with uncorrelated binary input signal of unit variance. Fig.

4.6 shows the values of the misadjustment obtained both experimentally and using

the independence assumption analysis. It can be seen that the independence

assumption-based analysis can serve to give good insight to the behavior of the

adaptive process even when the Gaussian assumption does not hold.

4.7 Summary

We have considered the steady state MSE analysis for 2-D doubly indexed LMS

algorithm using the independence assumption. We have shown that the evalua-

tion of the weight-error covariance matrix for doubly-indexed 2-D LMS algorithm

requires approximation of the weight error correlation coeÆcients at large spa-

tial lags. Then, we have proposed a method to solve this problem. We have



4.7. SUMMARY 92

shown that the convergence in the MSE sense occurs for step size range that

is signi�cantly smaller than the one necessary for the convergence of the mean.

Simulation example was presented to support the analytical results and to show

that the analysis using the independence assumption does provide good insight

to the performance of the 2-D doubly indexed LMS algorithm.
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Figure 4.5: Simulation results for correlated Gaussian input, (a) � = 0:2, (b)
� = 0:4.
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Chapter 5

2-D Doubly-Indexed Block LMS

Adaptive Filters

5.1 Introduction

Block adaptive �ltering allows eÆcient implementation of parallel processors and

Fast Fourier Transform (FFT) for convolution [5], [21]. Images are in particular

very suitable for block-wise processing scheme. Therefore, several 2-D block LMS

adaptive FIR �ltering algorithms, with application to image enhancement and

2-D system identi�cation, have been proposed [22]-[24] . In [22], a 2-D block

LMS algorithm was introduced by direct extension of the 1-D block LMS [21].

However, in order to preserve the local correlation information of the image pixels,

a block diagonal indexing scheme was employed. On the other hand, the authors

in [23] and [24] have worked on the development of an optimal space varying

convergence parameter that is adjusted once per each data block in order to

improve the convergence behavior in nonstationary environment.

This chapter focuses on the development of a new 2-D adaptive LMS FIR

�ltering algorithm by block-wise processing of data in order to gain the bene�ts

96
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2-D adaptive 
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＋

－

Figure 5.1: 2-D adaptive FIR �lter.

of parallel computation and improved stability performance associated with block

�ltering scheme. In the proposed algorithm, the input signal is partitioned into

non-overlapping blocks; the weights are then adjusted once per each block of

the input signal. The �lter weights update process is carried out along both

the vertical and horizontal directions as a doubly-indexed dynamical system in

accordance with the 2-D LMS [19].

5.2 2-D Doubly-Indexed Block LMS Algorithm

(2DDI-BLMS)

Consider the 2-D, N�N -tap adaptive FIR �lter shown in Fig. 5.1. The adaptive

�lter's input x(m;n) is a 2-D signal of sizeM�M partitioned into non-overlapping

blocks; each block is of size K�K as shown in Fig. 5.2. The (i; j)th block of the
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output signal y(m;n) is calculated by

Yi;j = Xi;jHi;j (5.1)

where Yi;j is the K
2� 1 vector that consists of the (i; j)th output block elements

arranged in row order as follows:

Yi;j = [yiK;yiK+1; � � � ;yiK�K+1] (5.2)

with

yp = [y(p; jK); � � � ; y(p; jK +K � 1)]: (5.3)

Hi;j is the adaptive �lter's weight-vector at the (i; j)th block given by

Hi;j = [hi;j(0; 0); � � � ; hi;j(0; N � 1); � � � ; hi;j(N � 1; N � 1)]t (5.4)

and Xi;j is the (i; j)th block input matrix of size K2 �N2, de�ned as

Xi;j = [XiK;jK;XiK;jK+1; � � � ;XiK;jK+K�1;XiK+1;jK;

XiK+1;jK+1; � � � ;XiK+1;jK+K�1; � � � ;XiK+K�1;jK+K�1]
t (5.5)

with

Xm;n = [x(m;n); � � � ; x(m;n�N + 1); � � � ; x(m�N + 1; n�N + 1)]t(5.6)

denoting the adaptive �lter's input vector at spatial indices (m;n).

The adaptive �lter's weight-vector is adjusted subject to minimizing the 2-D

Block Mean Square Error :

BMSE =
1

K2
EfEt

i;jEi;jg (5.7)
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Figure 5.2: 2-D block-wise processing scheme.

where E denotes the expectation operator, and

Ei;j = Di;j � Yi;j (5.8)

with Di;j denoting the K
2 � 1 vector that consists of the elements of the (i; j)th

block of the desired signal d(m;n), de�ned in a way similar to Yi;j. The weight-

vector update equation for the 2DDI-BLMS is given by

Hi+1;j+1 = fhHi;j+1 + fvHi+1;j

+
�h
K2

X t
i;j+1Ei;j+1 +

�v
K2

X t
i+1;jEi+1;j;

Hi;0 = 0; i = 0; � � � ; imax; H0;j = 0; j = 0; � � � ; jmax;

fh + fv = 1 (5.9)

where �h and �v denote the step size parameters in the horizontal and vertical
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directions respectively.

In Eq. (5.9), the weight-vector is updated in both directions as a 2-D state

space model. This update method enables eÆcient use of the 2-D correlation

information of the image pixels in both vertical and horizontal directions and

hence, provides better performance in nonstationary environments. Moreover,

using such update method, it is possible to adjust simultaneously all the adaptive

�lter's weight-vectors Hi;j's that lie on the same diagonal. This property makes

the 2DDI-BLMS very suitable for parallel processing.

In the following section, we analyse the convergence behavior of the 2DDI-

BLMS.

5.3 Convergence Analysis of the 2DDI-BLMS

The convergence analysis of the 2DDI-BLMS is carried out using the following

assumptions:

A.1 The input vectors X0;0;X1;0; � � � ; Xm;n are zero mean, statistically indepen-

dent, Gaussian-distributed random variables.

A.2 There exists a true weight-vector Hopt such that the error signal

"(m;n) = d(m;n)�Ht
optXm;n (5.10)

is a zero mean, white Gaussian noise of variance �2
" , and is statistically

independent of the input vector Xm;n.
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To analyze the convergence behavior of the adaptive algorithm in Eq. (5.9), we

should �rst derive the update equation for the weight-error vector

Ci+1;j+1 = Hi+1;j+1 �Hopt: (5.11)

Now, using Eqs. (5.10) and (5.11), the output error vector E(i; j) in Eq. (5.8)

can be calculated by

E(i; j) = Ei;j � Xi;jCi;j: (5.12)

where Ei;j is the K
2 � 1 vector that consists of the elements of the (i; j)th block

of the the error signal "(m;n).

Then, if we subtract Hopt from both sides of Eq. (5.9) and make use of Eq.

(5.12), we get

Ci+1;j+1 = Hi+1;j+1 �Hopt

= (fhI�
�h
K2

X t
i;j+1Xi;j+1)Ci;j+1

+(fvI�
�v
K2

X t
i+1;jXi+1;j)Ci+1;j

+
�h
K2

X t
i;j+1Ei;j+1 +

�v
K2

X t
i+1;jEi+1;j: (5.13)

We can now study the convergence properties of the 2DDI-BLMS. We do this

by calculating the mean of the weight-error vector Ci+1;j+1 and the steady state

value of the BMSE.

5.3.1 Convergence of the Mean

Taking the expectation of both sides of Eq. (5.13) and using the assumptions

A.1 and A.2 we get

EfCi+1;j+1g = (fhI� �hR) EfCi;j+1g+ (fvI� �vR) EfCi+1;jg: (5.14)
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Eq. (5.14) is the same 2-D state space model derived for the mean of weight-error

vector of the 2-D LMS. Accordingly, proceeding the mean analysis as discussed

in [19] it can be shown that EfCi;jg ! 0 as i+j !1, if the following condition

holds:

jfh � �h�pj+ jfv � �v�pj < 1 (5.15)

where �p; p = 0; � � � ; N2 � 1, are the eigenvalues of the input correlation matrix

R = EfXm;nX
t
m;ng.

Note that condition (5.15) is exactly the same condition necessary for the

convergence of the mean of the 2-D LMS.

5.3.2 Convergence of the BMSE

Calculation of the steady state BMSE

Making use of Eq. (5.12), and in the light of assumptions A.1 and A.2, we can

�nd that the steady state BMSE is given by

�1 = lim
i+j!1

1

K2
EfEi;jE

t
i;jg

�2
" + lim

i+j!1
tr (R Ki;j;i;j) (5.16)

where

Ki;j;i;j = EfCi;jC
t
i;jg (5.17)

is the weight-error covariance matrix. In the rest of this section we will consider

the calculation of the weight-error covariance matrix. In this calculation, we

assume that the condition (5.15), which is necessary for the convergence of the

mean, holds.
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Calculation of the weight-error covariance matrix

For the calculation of the weight-error covariance matrix Ki;j;i;j, it will be useful

to use a unitary transformation Q such that

QRQt = � = diag(�p); p = 0; � � � ; N2 � 1: (5.18)

Then, we can de�ne the following transformed variance matrix:

�i1;j1;i2;j2 = QEfCi1;j1C
t
i2;j2

gQt

=
�

p;qi1;j1;i2;j2

�
; p; q = 0; � � � ; N2 � 1: (5.19)

Now, multiplying each side of Eq. (5.13) with its transpose, taking the expected

values, and making use of the orthogonal transform Q we arrive at

�i+1;j+1;i+1;j+1 = f 2
h�i;j+1;i;j+1 � �hfh (�i;j+1;i;j+1�

+ ��i;j+1;i;j+1) +
�2
h

K2

�
2(K2 + 1)��i;j+1;i;j+1�+

+ tr(�i;j+1;i;j+1�)�) + fhfv�i+1;j;i;j+1

��hfv�i+1;j;i;j+1�� �vfh��i+1;j;i;j+1

+
�h�v
K2

��i+1;j;i;j+1� + fhfv�i;j+1;i+1;j

��vfh�i;j+1;i+1;j�� �hfv��i;j+1;i+1;j

+
�h�v
K2

��i;j+1;i+1;j� + f 2
v�i+1;j;i+1;j

��vfv (�i+1;j;i+1;j�+��i+1;j;i+1;j)

+
�2
v

K2

�
2(K2 + 1)��i+1;j;i+1;j�

+tr(�i+1;j;i+1;j�)�) +
�2
h + �2

v

K2
�2
"�: (5.20)
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Analysing the stability of the set of second-order coupled 2-D di�erence equations

(5.20) is a very diÆcult to handle mathematically. Thus, we propose to simplify

the analysis as follows.

1. For the transformed weight-error correlation matrix de�ned in Eq. (5.19)

we have

(
p;qi1;j1;i2;j2
)2 � 
p;pi1;j1;i1;j1

:
q;qi2;j2;i2;j2
: (5.21)

Therefore, it is suÆcient to analyse the stability of the diagonal terms of

the matrix equation (5.20). Note that, as for the BMSE evaluation (see Eq.

(5.16)), we are only interested in the diagonal terms since

tr(RKi;j;i;j) = tr(��i;j;i;j) =
N2�1X
p=0


p;pi;j;i;j�p: (5.22)

2. If 
p;pi+1;j+1;i+1;j+1 will reach a limit value, say 
p;p0 , as i + j ! 1, then this

implies that

lim
i+j!1


p;pi+1;j;i+1;j = lim
i+j!1


p;pi;j+1;i;j+1 = 
p;p0 : (5.23)

3. Similarly, if 
p;pi+1;j;i;j+1 will reach a limit value, say 
p;p1 , as i+ j !1, then

lim
i+j!1


p;pi+1;j;i;j+1 = lim
i+j!1


p;pi;j+1;i+1;j = 
p;p1 : (5.24)
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Accordingly, for the steady state, the diagonal terms of the matrix equation (5.20)

should obey the equality

2

�
fhfv + (�hfh + �vfv)�p �

(K2 + 1)(�h
2 + �v

2)

2K2
�2p

�

p;p0

�2
�
fhfv � (�hfv + �vfh)�p +

�h�v
K2

�2p

�

p;p1

�
(�h

2 + �v
2)�p

K2

 
N2�1X
u=0


u;u0 �u + �2
"

!
= 0;

p = 0; � � � ; N2 � 1: (5.25)

There is a need for another set of equations in the unknowns 
p;p0 and 
p;p1 . If

we apply the same way of analysis to evaluate the matrix �i+1;j;i;j+1, we can �nd

that for the steady state, i.e. i + j ! 1, the diagonal terms of the correlation

matrix �i+1;j;i;j+1 should obey the equality�
fhfv � (�hfv + �vfh)�p +

�h�v(K
2 + 1)

K2
�2p

�

p;p0

+

�
�2fhfv � 2(�hfh + �vfv)�p +

�h
2 + �v

2

K2
�2p

�

p;p1

+
�
fhfv � (�hfv + �vfh)�p +

�h�v
K2

�2p

�

p;p2

+
�h�v
K2

�p

 
N2�1X
u=0


u;u0 �u + �2
"

!
= 0;

p = 0; � � � ; N2 � 1 (5.26)

where


p;p2 = lim
i+j!1


p;pi+1;j�1;i�1;j+1:

If we continue in similar way evaluating the steady state values of the weight-error

correlation matrices for higher diagonal spatial lags, i. e.

lim
i+j!1

�i+1;j+1�k;i+1�k;j+1=[
p;qk ]; k = 3; 4; � � � ;
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at each stage k (k = 0; 1; � � �), we will have a set of (k + 1) � N2 equations in

(k + 2)� N2 unknowns, namely, 
p;pl ; 0 � l � k + 1; 0 � p � N2 � 1. However,

under the white Gaussian assumption for the input vector Xm;n and the error

signal "(m;n), we can assume that for suÆciently large spatial lags, i.e. k � 1,

the correlation coeÆcients 
p;pk+1 can be approximated with zero; therefore the

available (k+ 1)�N2 equations can be solved for the (k+ 1)�N2 unknowns to

obtain 
p;p0 ; p = 0; � � � ; N2 � 1. The solution of these (k + 1)� N2 simultaneous

equations can be obtained for the general case using software package for algebraic

computation such as Mathematica. In the following section we will discuss in

more detail the steady state analysis for the simple case when the input signal is

white Gaussian noise.

5.4 Steady State MSE Analysis withWhite Gaus-

sian Input Data

For the mathematically simplest case where the input signal is white Gaussian

with variance �2
x, fh = fv = 0:5, and �h = �v = �, we have 
0;00 = 
1;10 =

� � � ; 
N
2�1;N2�1

0 = 
0. Therefore, if we set 
p;p2 , p = 0; � � � ; N2 � 1 to zero in

Eq.(5.26), and solve the two sets of linear equations (5.25) and (5.26) for the

weight-error covariance coeÆcient 
0, we obtain Eq. (5.27), which appears at the

bottom of this page,


0 =

�
�2
"
�2

�2
x
(0:25K2

�K2� + (1 +K2 +N2)�2)

�
�

�
0:375K4

�K4� +K2(1 + 1:5N2
� 0:5K2)�2 +K2(4 + 2N2 + 2K2)�3 � 2(1 +K2 +N2)�4

0:125K4 + 3K4� �K2(3 + 1:5N2
� 0:5K2)�2 �K2(4 + 2N2 + 2K2)�3 + 2(1 +N2 +K2)�4

�

(5.27)
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with

� = ��2
x: (5.28)

Note that, for block size K=1, Eq. (5.27) reduces to the weight-error covariance

coeÆcient 
0 for the 2-D LMS [30].

5.4.1 Bounds on the Step Size Parameter �

Now, since the weight-error covariance coeÆcient 
0 should be positive and �nite,

the range of the step size � that ensures the convergence of the BMSE can be

determined by the following condition

0 � 
0 <1: (5.29)

For this simpli�ed case, analysis of Eq. (5.27) reveals that in this equation, the

�rst term is always positive for 0 � � < 1 (the range of the step size � that ensures

the convergence of the mean), and that for any value of N � 1, the denominator

of the second term has only one real positive root, say �1, in the range 0 � � < 1,

where the sign of 
0 changes from positive to negative. Thus, we can deduce that

the upper bound on the step size value that ensures �nite variance is given by

0 � ��2
x < �1: (5.30)

Fig. 5.3 shows the values of the root �1 for di�erent values of the �lter order N

with block size K = N . The values of �1 for the 2-D LMS [30] are also illustrated

in the same �gure. From this �gure, it is clear that �1 < 1 for any �lter order
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N > 1. Hence, the condition required for the convergence in the BMSE sense, as

given in Eq. (5.30), decreases signi�cantly the convergence region of the 2DDI-

BLMS algorithm when comparing to the condition necessary for the convergence

of the mean, 0 � ��2
x < 1, given by Eq. (5.15). On the other hand, we can observe

that the choice of the step size parameter � for the 2DDI-BLMS is less critical

than for the 2-D LMS. This indicates that the 2DDI-BLMS is more stable than

the 2-D LMS. Such result is expected since the 2DDI-BLMS uses more accurate

estimate of the gradient of the mean squared output error.

5.4.2 Adaptation Accuracy

A commonly used measure of the adaptation accuracy is the misadjustment,

de�ned as

MB =
1

�2
"

lim
i+j!1

tr(RKi;j;i;j) =
1

�2
"

N2�1X
p=0


p;p0 �p: (5.31)

A comparison between the misadjustment of the 2DDI-BLMS, MB, and the mis-

adjustment of the 2-D LMS, M can be achieved numerically since Eq. (5.27) is

too complicated to derive a simple relation between the misadjustment of those

two algorithms. For the case where the block size K = N , numerical results have

shown that

M

MB

� K2: (5.32)

That is, the 2DDI-BLMS o�ers improvement in the misadjustment upon the 2-D

LMS proportional to the used block size. However, this improvement comes along

with slower convergence rate. In the following section we give one representative

example that supports the convergence results presented in this section.
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Table 5.1: Summary of experimental results
Algorithm 2-D LMS [19] 2DDI-BLMS
Exper. misadjustment 0.1661 0.0152
Theor. misadjustment 0.1545 0.0148

5.5 Experimental Results and Discussion

In this experiment, both the 2DDI-BLMS and the 2-D LMS were realized in 2-D

system identi�cation form. The following 3 by 3, 2-D FIR �lter was used for the

unknown system:

H(z�11 ; z�12 ) = 0:914 + 0:926z�11 + 0:338z�21 + 0:494z�12 + 0:677z�11 z�12

�0:843z�11 z�22 + 0:894z�21 � 0:517z�21 z�12 � 0:777z�21 z�22 :

(5.33)

A 2-D white Gaussian sequence with variance �2
x = 1 was used for the input

signal x(m;n), and a 2-D white Gaussian sequence with variance �2
" = 0:49 was

used for the error signal "(m;n). The step size parameter � was set to 0:05 for

both algorithms, and we used block size K = N for the 2DDI-BLMS.

Table 5.1 shows the theoretical and experimental misadjustment of the 2DDI-

BLMS and the 2-D LMS. The theoretical misadjustment was calculated using

Eqs. (5.27) and (5.31).

Fig. 5.4 shows 1-D learning curves of the 2DDI-BLMS and the 2-D LMS
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Figure 5.3: The value of the root �1 vs. �lter order N .

which were obtained using the following 1-D error function

err(k) =
1

2(k + 1)

kX
l=0

fe(l; k)2 + e(k; l)2g; 0 � k � M � 1: (5.34)

These experimental results are in good agreement with the theoretical analysis

presented in the previous section.
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runs), step size � = 0:05.

5.6 Summary

In this chapter we have proposed the 2-D doubly indexed block LMS adaptive

�ltering algorithm. The weights update process is carried out along both the

vertical and horizontal directions as a doubly-indexed dynamical system in ac-

cordance with the 2-D LMS[19] such that the correlation information of the im-

age pixel can be eÆciently exploited in both directions. Convergence analysis
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has been presented, and bounds upon the convergence parameters that guaran-

tee convergence of the proposed algorithm in the mean and the variance have

been also derived. Theoretical comparison with 2-D LMS [19], has revealed that

both algorithms require similar bounds on the step size parameters to guarantee

convergence of the mean; however, the 2DDI-BLMS has improved variance per-

formance over the 2-D LMS. Experimental results that support the validity of

the obtained convergence analysis results have been also presented.



Chapter 6

Conclusions and Suggestions for

Future Work

6.1 Conclusions

The main goal of this thesis is the development and analysis of the convergence

behaviour of some 2-D adaptive �ltering algorithms. The contributions of this

thesis can be summarized as follows.

In Chapter 3, we have proposed the bias removal algorithm for 2-D equa-

tion error adaptive IIR �lters with separable denominator function. The �lter

structure in the proposed algorithm is based on the concept of backpropagating

the desired signal through a cascade of the denominator vertical and horizontal

sections. To handle the bias problem, the proposed algorithm uses a scaled value

of the output error of each of the cascade sections to counteract the e�ect of the

measurement noise embedded in the regressor of the update procedure of that

section. I/O stability analysis has been carried out. It has been shown that the

proposed algorithm remains stable and the e�ect of the measurement noise can

be signi�cantly suppressed under general conditions imposed on the values of the

113
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used step sizes and scaling factors. The performance of the proposed algorithm

was compared with that of the family of hyperstable adaptive IIR Filtering algo-

rithms [40] and the algorithm [15]. Image enhancement experiment results have

been presented to show the faster convergence rate and better performance of the

proposed 2DBRA algorithm.

In Chapter 4, we have discussed the the steady state MSE analysis for 2-D

LMS algorithm in which the �lter's weights are updated as doubly indexed dy-

namical system. The MSE analysis have been studied using the independence

assumption. We have shown that the MSE analysis, essentially, the calculation

of the weight-error covariance matrix for doubly-indexed 2-D LMS algorithm calls

for stability analysis of a set of second-order coupled 2-D di�erence equations in

the coeÆcients of the WECM, which is very diÆcult to handle mathematically.

Then we have shown that for the steady state, this problem can be transformed

to the problem of solving sets of linear equations in the weight-error correla-

tion coeÆcients at di�erent spatial lags. As a results of our analysis, we have

shown that the convergence in the MSE sense occurs for step size range that

is signi�cantly smaller than the one necessary for the convergence of the mean.

Simulation examples were also presented to support the analytical results and

to show that the analysis using the independence assumption does provide good

insight to the performance of the 2-D doubly indexed LMS algorithm even when

the input signal is colored.

In Chapter 5, we have developed the block LMS adaptive �ltering algorithm

in which the weights update process is carried out along both the vertical and
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horizontal directions as a doubly-indexed dynamical system in accordance with

the 2-D LMS [19] such that the correlation information of the image pixel can be

eÆciently exploited in both directions. We have then considered the convergence

analysis for this algorithm following a way of analysis similar to the one adopted

in Chapter 3 for the doubly indexed LMS.

Theoretical comparison with 2-D doubly indexed LMS has revealed that both

algorithms require similar bounds on the step size parameters to guarantee con-

vergence of the mean; however, the 2DDI-BLMS o�er improvement in the misad-

justment proportional to the used block size. Experimental results that support

the validity of the obtained convergence analysis results have been also presented.

6.2 Suggestions for Future Work

1. For the bias removal algorithm presented in Chapter 3, the stability of the

cascade structure can be improved if the scaling factor of the output error of

each of the cascaded section can be selected such that it takes into account

not only the power of the output error of the corresponding section but also

the power of the output error of all other sections in the cascade structure.

2. The steady state MSE analysis for 2-D LMS adaptive FIR �lters has been

considered in this thesis using the independence assumption. However, as

it has been shown in Chapter 4, for large step size values as well as for

highly colored input signals, the error in estimating the misadjustment of

the adaptive algorithm is very large. For future work it is worth to work

on the extension of the iterative steady state analysis approach proposed
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by Butterweck [5] to the 2-D case for the doubly indexed LMS. The ap-

proximation method for the weight-error correlation matrix that has been

proposed in Chapter 4 can be used as initial solution.

3. For the 2-D doubly indexed block LMS adaptive �ltering algorithm pro-

posed in Chapter 5, one may try to search for an optimal choice of the

scalar parameters fh and fv and the step size parameters �h and �v based

on the value of vertical and horizontal variances of each of the input blocks.



Appendix A

2-D Signals and Systems Review

In this appendix we review some of the fundamental concepts of 2-D discrete

signals and 2-D digital �lters. The materials given in this appendix is adopted

mostly from reference [1].

A.1 2-D Signals

Most signals can be classi�ed into three categories [1]:

1. Analog signals: are continuous in both space and amplitude. Examples of

such signals are: images, seismic, radar, and speech signals.

2. Discrete-space signals: are discrete in space and continuous in amplitude.

A common way to generate discrete-space signals is by sampling analog

signals. All the signals used in this thesis are discrete space signals.

A 2-D discrete-space signal will be represented by a function whose two

arguments are integers. For example, a 2-D discrete-space signal x(m;n)

denotes a sequence which is de�ned for all integer values of m and n that
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m

x(m,n)  
n

(0,0)

(0,1)

(1,0)(-1,0)

(-1,-1) (0,-1)

(1,1)

(1,-1)

(-1,1)

Figure A.1: 2-D discrete-space signals x(m;n).

propagate in the horizontal and vertical directions, respectively. The se-

quence x(m;n) is sketched in Figure A.1. In the �gure, the height at (m;n)

represents the amplitude at (m;n).

3. Digital signals: are discrete in both space and amplitude. One way in which

digital signals are created is by amplitude quantization of discrete-space

signals. An example of 2-D digital signals is digital images.

A digital image, which can be denoted by x(m;n) is typically obtained by

sampling an analog image, for example, an image on �lm. The amplitude of

digital images are often quantized to 256 levels (which can be represented by
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Figure A.2: Digital image of 256 � 256 pixels quantized at 8 bits/pixel.

eight bits). Each level is commonly denoted by integer, with 0 corresponding

the darkest level and 255 to the highest. Each point (m;n) is called a

pixel. Fig. A.2 shows a digital image of 256 � 256 pixels with each pixel

represented by eight bits.



A.2. 2-D DIGITAL SYSTEMS 120

A.2 2-D Digital Systems

A 2-D system T [�] can be de�ned as an operator that transforms an input discrete

sequence x(m;n) to an output sequence y(m;n). That is,

y(m;n) = T [x(m;n)]: (A.1)

where m and n are two integer indices

A.2.1 Linear and Shift-Invariant Systems

A 2-D system T [�] is said to be linear if it obeys the principle of superposition,

that is

T [ax1(m;n) + bx2(m;n)] = ay1(m;n) + by2(m;n) (A.2)

where y1(m;n) = T [x1(m;n)], y2(m;n) = T [x2(m;n)], and a, b, are arbitrary

constants.

A 2-D system T [�] is shift-invariant if it satis�es the following condition

T [x(i� p1; j � p2)] = y(i� p1; j � p2); (A.3)

where p1 and p2 are any integer values.

A.2.2 Causal Systems

If the impulse response h(m;n) satis�es the condition

h(m;n) = 0 for i < 0 or j < 0; (A.4)

the 2-D digital system is said to be a causal system. If some independent variable

of the signal to be processed corresponds to time, the causality is an important
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constraint which should be imposed on 2-D digital system for real-time signal

processing.

The relation between input x(m;n) and output y(m;n) of a causal 2-D digital

�lter can be simpli�ed as

y(m;n) =
1X

k1=0

1X
k2=0

h(k1; k2)x(m� k1; n� k2) (A.5)

A.3 Di�erence Equation Representation of 2-D

Systems

A linear shift invariant 2-D digital �lter can be represented by the constant coef-

�cient di�erence equation as follows:

y(m;n) =
N1X
i=0

N2X
j=0

(i;j)6=(0;0)

b(i; j)y(m� i1; n� j) +
PX
i=0

QX
j=0

a(i; j)x(m� i; n� j) (A.6)

where N1 and N2 denote the horizontal and vertical �lter order, respectively,

a(i; j) and b(i; j) are constant coeÆcients.

If b(0; 0) 6= 0, we can normalize the coeÆcient array a and b by dividing both

sides of equation (A.6) by b(0; 0). This de�nes new coeÆcients arrays a and b,

allowing us to assume that b(0; 0) = 1 without loss of generality.

For the general case where N1 � 1; N2 � 1, the di�erence equation (A.6)

corresponds to the class of 2-D in�nite impulse response (IIR) �lters. The di�er-

ence equation represents an algorithm for computing the sample of y at (m;n)

under the assumptions that the required samples of the input are available and

that those samples of y which appear on the right hand side of Eq. (A.6) have
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Figure A.3: Output of a 2-D IIR digital �lter.

either been previously computed or have been speci�ed as initial conditions. This

equation is interpreted graphically in Fig. A:3.

The class of di�erence equation for which b(i; j) = 1 for i = 0; j = 0 and

b(i; j) = 0 otherwise, is the special important case that corresponds to 2-D �nite

impulse response (FIR) �lters. For this case, the di�erence equation (A.6) reduces

to

y(m;n) =
PX
i=0

QX
j=0

a(i; j)x(m� i; n� j) (A.7)

Equation is interpreted graphically in Fig. A:4.

A.4 Transfer Function Representation of 2-D Sys-

tems

The transfer function of a system speci�ed by a di�erence equation is the ratio

of the z-transforms of the coeÆcient arrays a(i; j) and b(i; j). Since each of these
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Figure A.4: 2-D FIR digital �lter.

arrays has a �nite area of support, their z-transforms are polynomials. For a

system given by the di�erence equation (A.6), the transfer function is given by

H(z1; z2) =
Y (z1; z2)

U(z1; z2)
(A.8)

=

PX
i=0

QX
j=0

a(i; j)z�i1 z�j2

1�
PX
i=0

QX
j=0

(i;j)6=(0;0)

b(i; j)z�i1 z�j2

: (A.9)

A.5 Stability of 2-D Systems

A system is considered to be stable in the bounded-input-bounded-output sense

if and only if a bounded input always leads to bounded output. For linear shift

invariant system, a necessary and suÆcient condition for the system to be stable
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is that its impulse response h(l; k) be absolutely summable:

1X
l=�1

1X
k=�1

jh(l; k)j � 1: (A.10)

Although this condition is a straightforward extension of the 1-D results, the

2-D case di�ers signi�cantly from the 1-D case with regards to stability. In a

typical 1-D stability problem we are given the system functionH(z) = A(z)=B(z).

Since a 1-D polynomial B(z) can be always factorized as a product of �rst-order

polynomials, we can easily determine the poles of H(z). The stability of the

causal system is equivalent to having all the poles inside the unit circle.

The above approach can not be used in testing the stability of 2-D system.

That approach requires the speci�c location of all poles to be determined. Partly

because a 2-D polynomials B(z1; z2) cannot in general be factored as a product of

lower-order polynomials, its extremely diÆcult to determine all the pole surfaces

of H(z1; z2) and the approach based on explicit determination of all pole surfaces

has not led to successful practical procedures for testing the system stability.

Here, we present one representative stability theorem for 2-D systems which is

called Shank 's theorem.

Shank's Theorem. Let H(z1; z2) = 1=B(z1; z2) be a �rst quadrant recursive

�lter. This �lter is stable if and only if B(z1; z2) 6= 0 for every point (z1; z2) such

that jz1j � 1 and jz2j � 1.
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A.6 2-D Separable Denominator Digital Filters

Consider a stable and causal 2-D digital �lter with the following transfer function:

H(z1; z2) =
A(z1; z2)

B1(z1)B2(z2)
(A.11)

=

PP
k1=0

PQ
k2=0 ak1k2z

�k1
1 z�k22

(1�
PP

k1=1 b
(k1)
1 z�k11 )(1�

PQ
k2
b(k2)2 z�k22 )

(A.12)

The transfer function H(z1; z2) can be viewed as the cascade of 2-D nonseparable

FIR �lter A(z1; z2) and a 2-D separable all-pole IIR �lter 1=B1(z1)B2(z2) This

class of separable denominator IIR �lters retains much of the 
exibility of nonsep-

arable �lters and yet o�er implementation advantages of separable IIR �lters. If

we neglect the numerator, which may be implemented separately as an FIR �lter,

then the remaining part of the �lter is a separable �lter. The implementation of

this part of the �lter can be structured as a set of 1-D convolutions on the rows of

the signal array followed by another set of 1-D convolution on the columns of the

resulting signal array. The entire implementation of the separable denominator

�lter is shown in Fig. A.5.

x(m,n) f(m,n) s(m,n) y(m,n)A(ω1
ω2, ) B(ω1) B(ω2)

Figure A.5: Cascade implementation of separable denominator IIR �lter.



Appendix B

Probability Review

This appendix summarizes the fundamentals of random process which are nec-

essary in understanding the convergence analysis of the adaptive algorithms pre-

sented in this thesis. The materials given in this appendix is adopted mostly from

reference [1].

B.1 Random Variables

A real random variable x is a variable that takes on real values at random, for

instance, from the outcome of 
ipping a coin. It is completely characterized by

its probability density function px(x0). The subscript x in px(x0) denotes the

random variable x, and x0 is a dummy variable that denotes a speci�c value of

x. The probability that x will lie between a and b is given by

Prob[a � x � b] =

Z b

x0=a

px(x0)dx0: (B.1)

Since an event that is certain to occur is assumed to have a probability of 1,

Prob[�1 � x � 1] =

Z 1

x0=�1

px(x0)dx0 = 1: (B.2)

126



B.1. RANDOM VARIABLES 127

The expectation of a function of a random variable x, Eff(x)g, is de�ned by

Eff(x)g =

Z 1

x0=�1

f(x0)px(x0)dx0: (B.3)

The expectation de�ned above is a linear operator and satis�es

Eff(x) + g(x)g = Eff(x)g+ Efg(x)g (B.4)

Efcf(x)g = c Eff(x)g (B.5)

where c is a scalar constant.

The nth moment of a random variable x, Efxng, is de�ned by

Efxng =

Z 1

x0=�1

xn0px(x0)dx0: (B.6)

The �rst moment of x is called the mean or average of x. From (B.6),

Efxg =

Z 1

x0=�1

x0px(x0)dx0: (B.7)

The variance of X, varfxg, is de�ned by

varfxg = Ef(x� [Efxg]2)g = Efx2g � E2fxg: (B.8)

The standard deviation of x, �x is de�ned by

�x = (varfxg)1=2 (B.9)

Two random variables x and y, are completely characterized by their joint prob-

ability density function px;y(x0; y0). They are said to be statistically independent

if they satisfy

px;y(x0; y0) = px(x0)py(y0) for all(x0; y0): (B.10)
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The expectation of a function of two random variables, Eff(x; y)g, is de�ned by

Eff(x; y)g =

Z 1

x0=�1

Z 1

y0=�1

f(x0; y0)px(x0)py(y0)dx0dy0: (B.11)

Two random variables x and y, are said to be linearly independent if

Efx yg = EfxgEfyg: (B.12)

Statistical independence implies linear independence, but linear independence

does not imply statistical independence.

The probability density function of a random variable x given (conditioned

on) another random variable y is denoted by pxjy(x0jy0), and is de�ned by

pxjy(x0jy0) = px;y(x0; y0)jpy(y0) (B.13)

If x and y are statistically independent, knowing y does not tell us anything about

x, and pxjy(x0jy0) reduces to px(x0).

B.2 Random Processes

A collection of an in�nite number of random variables is called a random process.

If the random variables are real, the collection is called a real random process.

Let us denote an in�nite number of real random variables by x(n1; n2), where

x(n1; n2), for a particular (n1; n2) is a real random variable. The random process

x(n1; n2) is completely characterized by the joint probability density function of

all the random variable. If we obtain one sample, or realization, of the random

process x(n1; n2), the result will be a 2-D sequence. We will refer to this 2-D

sequence as a random signal and we will denote it also by x(n1; n2).
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The auto-correlation function, or for short, the correlation function of the

random process x(n1; n2) , Rx(n1; n2; k1; k2) is de�ned by

Rx(n1; n2; k1; k2) = Efx(n1; n2)x(k1; k2)g: (B.14)

The correlation is the expectation of the product of two random variables, x(n1; n2)

and x�(k1; k2). The auto-covariance function, or the covariance function, for

short, of x(n1; n2); 
x(n1; n2; k1; k2), is de�ned by


x(n1; n2; k1; k2) = Ef[x(n1; n2)� E(x(n1; n2))][x(k1; k2)� E(x(k1; k2))]g

= Efx(n1; n2)x(k1; k2)g � Efx(k1; k2)gEfx(k1; k2)g (B.15)

= Rx(n1; n2; k1; k2)� Efx(n1; n2)gEfx(k1; k2)g: (B.16)

A random process x(n1; n2) is called a zero-mean process if

Efx(n1; n2)g = 0 for all (n1; n2): (B.17)

For a zero-mean random process,

Rx(n1; n2; k1; k2) = 
x(n1; n2; k1; k2): (B.18)

A random process x(n1; n2) with nonzero mean can always be transformed to a

zero-mean random process by subtracting Efx(n1; n2)g form x(n1; n2). Unless

speci�ed otherwise, we will assume that x(n1; n2) is a zero-mean process and

(B.18) is valid.

A random process x(n1; n2) is said to be stationary or homogeneous in the

strict sense if the joint probability density function does not depend on the origin
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of the index (n1; n2):

Px(n0

1
;n0

2
);x(n00

1
;n00

2
);:::(x1; x2; : : : ) = Px(n0

1
+k+1;n0

2
+k2);x(n00

1
+k1;n00

2
+k2);:::(x1; x2; : : : )

(B.19)

For any �xed k1 and k2. For a stationary random process x(n1; n2); Efx(n1; n2)g

is a constant independent of n1 and n2, and Rx(n1; n2; k1; k2) is a function of only

n1 � k1 and n2 � k2:

Efx(n1; n2)g = mx for all (n1; n2) (B.20)

Rx(n1; n2; k1; k2) = Rx(n1 � k1; n2 � k2; 0; 0) (B.21)

= Efx(n1 � k1; n2 � k2)x(0; 0)g:

Rewriting (B.21), we obtain

Rx(n1; n2) = Efx(k1; k2)x(k1 � n1; k2 � n2)g for all (k1; k2) (B.22)

Note that the arguments n1 and n2 in Rx(n1; n2) in (B.22) are k1�n1 subtracted

from k1 and k2 � n2 subtracted from k2.

A stationary random process x(n1; n2) is said to be ergodic if the time (or

space) average equals the ensemble average. Suppose we wish to estimate mx =

E[x(n1; n2)] from realization, or samples, of a stationary x(n1; n2). Since mx

represents an ensemble average, we need an ensemble (an entire collection of all

possible outcomes) of x(n1; x2) for any particular (n1; n2). If the random process

is ergodic, them mx can be computed from one realization of x(n1; n2) by

mx = Efx(n1; n2)g = lim
N!1

1

(2N + 1)2

NX
n1=�N

NX
n2=�N

x(n1; n2): (B.23)
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Similarly, for an ergodic process,

Rx(n1; n2) = Efx(k1; k2)x(k1 � n1; k2 � n2)g

= lim
N!1

1

(2N + 1)2

NX
k1=�N

NX
k2=�N

x(k1; k2)x(k1 � n1; k2 � n2):

(B.24)

Equations (B.23) and (B.24) allow us to determine mx or Rx(n1; n2) from one

realization of x(n1; n2). Note that ergodicity implies stationary (in the wide

sense), but stationarity does not imply ergodicity.

The power spectrum of a stationary random process x(n1; n2); Px(n1; n2), is

de�ned by

Px(!1; !2) = F [Rx(n1; n2)] =
1X

n1=�1

1X
n2=�1

Rx(n1; n2)e
�j!1n1e�j!2n2: (B.25)

From (B.22) and (B.25),

Rx(0; 0) = �2
x = E[x(n1; n2)x(n1; n2)] (B.26)

=
1

(2�)2

Z �

!1=��

Z �

!2=��

Px(!1; !2)d!2d!2:

It can also be shown that

Rx(0; 0) � jRx(n1; n2)j for all (n1; n2): (B.27)

The value �2
x is called the average power of the random process x(n1; n2).

A random process is called a white noise process if

Rx(n1; n2; k1; k2) = Efx(n1; n2)x(k1; k2)g (B.28)

=

�
�2
x(n1; n2); n1 = k1; n1 = k1

0 otherwise:
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For a stationary white noise process, then,

Rx(n1; n2) = Efx(k1; k2)x(k1 � n1; k2 � n2)g (B.29)

= �2
xÆ(n1; n2)

From (B.25) and (B.29), the power spectrum of a stationary white noise process

is given by

Px(!1; !2) = �2
x for all (!1; !2): (B.30)

The power spectrum is constant for all frequencies; hence the term \white."

For stationary process x(n1; n2) and y(n1; n2),

Rxy(n1; n2) = Efx(k1; k2)y(k1 � n1; k2 � n2)g independent of (k1; k2): (B.31)

For ergodic processes x(n1; n2) and y(n1; n2),

Rxy(n1; n2) = Efx(k1; k2)y(k1 � n1; k2 � n2)g (B.32)

= lim
N!1

1

(2N + 1)2

NX
k1=�N

NX
k2=�N

x(k1; k2)y(k1 � n1; k2 � n2):
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