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Abstract. Achieving or even surpassing human-level accuracy became recently
possible in a variety of application scenarios due to the rise of convolutional neu-
ral networks (CNNs) trained from large datasets. However, solving supervised
visual recognition tasks by discriminating among known categories is only one
side of the coin. In contrast to this, novelty detection is still an unsolved task
where instances of yet unknown categories need to be identified. Therefore, we
propose to leverage the powerful discriminative nature of CNNs to novelty detec-
tion tasks by investigating class-specific activation patterns. More precisely, we
assume that a semantic category can be described by its extreme value signature,
that specifies which dimensions of deep neural activations have largest values.
By following this intuition, we show that already a small number of high-valued
dimensions allows to separate known from unknown categories. Our approach is
simple, intuitive, and can be easily put on top of CNNs trained for vanilla clas-
sification tasks. We empirically validate the benefits of our approach in terms of
accuracy and speed by comparing it against established methods in a variety of
novelty detection tasks derived from ImageNet. Finally, we show that visualizing
extreme value signatures allows to inspect class-specific patterns learned during
training which may ultimately help to better understand CNN models.

1 Introduction

The availability of large annotated datasets and efficient training algorithms for su-
pervised deep learning lead the path to a striking increase in performance of current
visual recognition systems [20]. For several applications, however, training discrimi-
native models is not sufficient or even not possible since classes are either not known
in advance, or not completely covered by a fixed training dataset. Due to this reason,
algorithms are needed that not only discriminate among known categories but which
additionally detect instances of yet unknown categories. This important task is known
as novelty detection [22,14,15,5,27,4] or open-set recognition [21,2,3] and we present
a simple method for this task.
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Fig. 1. Shown are neural activation patterns of two test images obtained by a CNN. For the
known class, the mean vector of activations which serves as class prototype is sorted by value in
descending order and shown in blue. Neural activations of two test images are ordered according
to this permutation and are shown in red. For an example of the same category (left), the distribu-
tion of activation strength follows roughly the same trend as the class prototype. In contrast, the
image of a novel category (right) has strong activations in a different set of dimensions.

Our approach is based on characterizing known classes with extreme value signa-
tures (EVS) computed for neural activation vectors. Extreme value signatures specify
which dimensions of deep neural activations have largest values. Previous work has
shown that a surprisingly large fraction of the original image signal can be recovered
from the high-scored activations [16]. We go one step further and show that the signa-
tures even capture discriminative information not only with respect to known but also
with respect to unknown classes. EVS are therefore suited for novelty detection as vi-
sualized in Fig. 1. For an efficient realization, we follow a prototype-based approach,
where each known class is encoded by the EVS of the class-mean activation vector. In
summary, we found that our extreme value signatures are compact, effective for novelty
detection, and a promising representation for further improvements of the terra incog-
nita of open-set recognition.

2 Related Work

In the following, we review related techniques for novelty detection which are most
relevant for our approach. For an extensive overview far beyond the current scope, the
interested reader is referred to the overview article by Pimentel et al. [19].

One-class Classification Presumably the most popular approach for novelty detec-
tion is the one-class SVM by Schoelkopf et al. [22]. Similar to its two-class pendant, a
hyperplane is computed which separates all examples of one class from the origin of the
feature space with maximal margin. For certain choices of the kernel function, this is
identical to the equally popular Support Vector Data Description by Tax and Duin [26],
which estimates an enclosing hypersphere of smallest radius. As a third popular tech-
nique, the work of Kemmler et al. shows how to apply Gaussian processes regression
models to one-class classification [14]. Although all techniques are well established,
they miss a sound formulation for multi-class scenarios where more than one category
is known.
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Multi-Class Novelty Detection To overcome the one-class limitation, several ap-
proaches have been introduced recently. Vinokurow et al. propose to rely on an ensem-
ble of binary classifiers to detect novel classes [27] . Each binary classifier is trained
to discriminate between the raw novelty score of a test sample and the average raw
novelty score of a known class. These raw scores involve confidence values which can
be obtained from any multi-class classification algorithm. A different approach was
proposed by Kenk et al. [15] based on calculating a novelty score from the Hellinger
distance between color histograms. Jumutc and Suykens [13] proposed three extensions
of their earlier work on Supervised Novelty Detection (SND) [12] for multi-class nov-
elty detection. Bodesheim et al. introduced the Kernel Null Foley-Sammon Transform
(KNFST) for multi-class novelty detection [5]. The learned transformation maps all
examples from a single class to a unique point in the null space. Thereby, novelty of
unseen instances can be estimated by the minimal distance to all available class points
in the null space. The authors extended their approach in [4] using local learning. KN-
FST models are learned for each test sample separately using only the K most similar
training examples which leads to exemplar-specific novelty detection models. Although
these approaches come with their own benefits, they require time-consuming training
of the novelty detection model. Furthermore, they do not take the nature of underlying
representations into account. In contrast, we exploit that CNNs can act as a joint model
for representation and classification and leverage this idea to skip additional training of
novelty detection models.

Open-set Recognition The idea of open-set risk for open set recognition was pre-
sented by Scheirer et al. [21]. Their formulation results in a special kind of one-class
SVM, referred to as 1-vs-set machine. The idea of open set risk was further refined by
Bendale and Boult [2]. The authors present the nearest-non-outlier algorithm, which
is an extension of the nearest-class-mean algorithm for open-set scenarios. Similar in
spirit is the openmax-approach by the same authors [3]. They propose to replace the
commonly used softmax layer in CNNs with an openmax layer which classifies
into known categories or “unknown”. We follow their approaches by re-using existing
classification CNNs as-is, but aim at predicting novelty based on neural activations of
arbitrary layers.

Binarizing CNN Activations A technique which is conceptually similar to EVS
was proposed by Li et al. [16] for learning with few examples. They propose to bi-
narize CNN activations using the K largest values and conclude that “discriminative
information within CNN activation is mostly embedded in the dimension indices of the
K largest magnitudes”. A similar analysis has been done in [8] with the goal of recon-
structing original images from given CNN activations. Finally, a similar transformation
of activations was used in [17] for regularizing autoencoders and in [11] for stochas-
tic pooling. We follow their path by using EVS for image encoding and show how to
analyze them to predict novelty in multi-class scenarios.
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3 Extreme Value Signatures

Neural Activations for Novelty Detection Many popular approaches in machine vi-
sion use activations of pre-trained CNNs as off-the-shelf image representations [7,23].
Our current understanding is that the majority of trainable layers in CNNs (especially
convolutional layers) becomes sensitive to the specific characteristics that are common
in natural images when fed with millions of training images. In particular, it has been
shown that filter masks of convolutional layers become sensitive to visual “elements”
that can be commonly found in natural images [28]. Whereas these elements mainly
correspond to low-level texture patterns for lower layers, they can be related to se-
mantically meaningful object parts in higher layers [24]. This data-driven approach to
representation learning is obviously appealing in several aspects, especially when large
amounts of data are available [20]. Although the respective CNNs have originally been
trained for discriminating among known categories, we show that their extreme value
statistics can also be used to detect instances of novel categories.

Extreme Value Signatures for Individual Images Let x ∈ RD be the activation
extracted at a chosen layer when applying a given CNN to a single image. Babenko et
al. showed in [1] that this representation still maintains a large amount of discriminative
information after binarization with a fixed threshold τ . Hence, the binary vector b:

b (x, τ) = (δ (x [d] > τ))
D
d=1 (1)

can serve as a substitute for x when the threshold τ is chosen appropriately since it
translates x into a binary representation. Note that for the ease of readability, x [d]
denotes the dth dimension of x and the function δ (v) maps to 1 or 0 if v is true or false,
respectively.

Despite the successful application of binarized neural activations in [1], relying on
a constant threshold might be too restrictive for the complexity of visual recognition
tasks. In a more general setting, we can replace this constant threshold by a threshold
function T (·) which returns a threshold specifically tailored to each example x:

b (x, T (x)) = (δ (x [d] > T (x)))
D
d=1 . (2)

Our extreme value signature follows this general concept. Let us therefore denote πx

the permutation that brings x into descending order:

∀
i,j∈{1,...,D},i<j

: x [πx [i]] ≥ x [πx [j]] . (3)

Thereby, we obtain a threshold Trank K (x) for each x using the K-highest activation:

Trank K (x) = x [πx [K]] . (4)

The resulting binary vector b (x, Trank K(x)) can therefore be seen as an indicator for
the K highest values of x, which we refer to as the EVS of x. When thinking of visual
recognition scenarios, we expect that two images that contain similar visual concepts
also lead to a similar set of extreme dimensions in the resulting neural activations.
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Hence, their binarized codes based on Trank K should be close as well. Therefore, we
can apply the inner product

γ(x′,x) = 1− b(x′, Trank K (x′))T b(x, Trank K (x))

K
(5)

to estimate the novelty of a test example x′ with respect to a known example x. Note
that the normalization 1− ·

K is only required to transform the score into [0, 1] such that
large scores indicate novelty.

Novel Class Detection with Extreme Value Signatures The previous derivations
only focused on the difference of a novel example x′ and a known example x with
respect to their extreme value signatures. In multi-class scenarios, we can additionally
exploit the class label which is associated with every training example. To obtain an
extreme value signature for an entire known class, we have a variety of options to choose
from. We empirically found that computing the mean vector µ of activations from all
examples within a class and determining the K-highest dimensions thereof is simple,
easy to implement, and works well in practice. The implicit assumption is that the K-
highest dimensions correspond to specific patterns of a known class. Hence, if a test
image shows a similar extreme-value signature, it is likely to contain similar visual
patterns.

For multiple known classes, we follow [5] and take the minimum over all class
distances as measured in Eq. (5) as resulting novelty score. Thereby, a test example
will only be considered as novel if it is different from the extreme-value signatures
of all known categories M . Hence, our final multi-class novelty score γMC(x

′) can be
expressed as:

γMC(x
′) = min

1≤m≤M
γ(x′,µm) . (6)

Novelty Detection Based on Permutation Distances Comparing theK-highest fea-
ture dimensions, as introduced in Eq. (6), does not take the ranking of the K-highest
dimensions into account. In consequence, the score can be extremely sensitive to the
choice of K. Intuitively, small Ks would not cover all dimensions which are relevant
for a category, whereas large Ks would also include irrelevant dimensions. Thereby,
already marginal reordering among the highest-valued dimensions could lead to over-
estimating novelty in the first case. In contrast to this, an underestimation of novelty
or a wrong assignment to a known class could happen in the latter case. To overcome
these issues, we propose to consider the ranking among the K-highest dimensions by
comparing the highest activations based on the Spearman footrule distance [6].

The Spearman footrule distance allows for calculating distances between two D-
dimensional permutations π1 and π2:

dSpearman(π1,π2) =

D∑
k=1

D∑
j=1

δπ2[j],π1[k] · |k − j| , (7)

where the Kronecker delta δπ2[j],π1[k] filters relevant indices since it has value 1 only
if the values of π2 [j] and π1 [k] are equal, otherwise it has value 0. The difference
between j and k measures then the absolute displacement in the two permutations. To



6 A. Schultheiss, C. Käding, A. Freytag, J. Denzler

estimate the novelty of a test example x′ with respect to a known example x, we can
now apply the footrule distance on the permutations πx′ and πx as defined in Eq. (3)
which re-arranges in descending order the values of x′ and x, respectively. As in Eq. (6),
this can finally be transferred to the multi-class scenario by minimizing distance over
all M class mean vectors:

γSpearman(x
′) = min

1≤m≤M

K∑
k=1

D∑
j=1

δπx′ [j],πµm [k] · |k − j| . (8)

Note that the Spearman footrule distance originally suggests to compare the ranking
of all dimensions. Instead, we propose to only compare the ranking of the K highest
activations in x′ with their ranking in each class prototype µm.

4 Experiments

We investigated our approach for multi-class novelty detection both quantitatively in
comparison with state-of-the-art techniques (Sections 4.2 to 4.4) and qualitatively (Sec-
tion 4.5). As benchmarking set, we chose the popular ImageNet dataset from ILSVRC’12
[20] and derived novelty detection tasks of varying difficulty. In all experiments, we en-
code images with neural activations of a AlexNet-Places365-CNN [29] without any
fine-tuning. Thereby, none of the involved classes was already observed during model
training1. We experimented with activations from layers CONV4 to FC8 with and with-
out RELU and feature normalization to unit length. In the following, we only show
results for FC6 which lead to highest overall accuracy, but provide evaluations for all
layers in the supplementary material (S.1).

4.1 Baseline Methods

Besides our two introduced approaches based on extreme value signatures (denoted
as K-extremes and Spearman), we chose several techniques for comparison as
reviewed in Section 2. The presumably simplest baseline is to transfer the nearest-class
mean approach [18] from classification to novelty detection. In this spirit, the euclidean
distance to the closest class mean serves as novelty score (NCM(Euclid)). Modeling
each class by a Gaussian distribution is similarly simple [10]. Computing the negative
log-likelihood for each class and returning the largest value thereof serves as a simple
estimate of novelty (Maximum-likelihood). Alternatively, one-class SVMs [22]
can be trained for each class. Distances to all M decision boundaries are maximum-
pooled as suggested in [4] (1-SVM). Modeling the entire training data by a Gaussian
process regression [14] allows for computing the predictive variance for unseen data
(GP-VAR). Exemplar-specific novelty detection models are obtained by local KNFST

1 We assume that fine-tuning networks for known classes would further improve the overall
accuracy since activation patterns are expected to become specific for known classes. However,
fine-tuning networks for all evaluated tasks and splits would be too time consuming. Therefore,
the used Places-CNN ensures a fair comparison since it was not trained with any involved
ImageNet class.
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as introduced in [4] (Local-KNFST). Finally, we compare against K-extremes-
value which is inspired by our extreme value signatures but directly uses the negative
sum of the K largest activations as an indicator for novelty instead of their ranking. If
not specified otherwise, we follow the setup described in [4] regarding the choice of
hyperparameters.

4.2 Multi-class Novelty Detection on ImageNet Subsets

We first put a focus on accuracy rather than scalability. Hence, we start with an evalua-
tion on ILSVRC’12 data with small and medium sized splits.

Setup We follow Bodesheim et al. [4] and use the setup initially described in [5].
Therefore, we randomly select different subsets of the ILSVRC’12 classes and split
them into known and novel categories. For now, we consider all split sizes which were
used in [4]. This results in scenarios with ratios of 10:10 (i.e., 10 known and 10 novel
classes) up to 50:50. For each known class, a random training set of 100 samples is
drawn. From the remaining images as well as from all elements of the novel classes, 50
samples per class are randomly drawn to serve as test set. We average results over 20
random splits for each task to allow for statistically valid conclusions. To allow for di-
rect comparison, we use the same class splits and selected samples as in [4]. Accuracy is
measured by AUC [9]. The size of the neighborhood for each split for Local-KNFST
is set to best performing values according to [4]. For K-extremes, Spearman, and
K-extremes-value, we exhaustively tested K over a broad range and report the
best results here (K = D · 0.1 for K-extremes and Spearman, K = D · 0.7
for K-extremes-value). Furthermore, we evaluated neural activations of different
layers with or without passing them through RELUs and with or without normalization
to unit length. Here, we only report the best results for each combination of method,
encoding, and parameter setting. For the sake of completeness and reproducibility, we
provide results obtained with all settings in the supplementary material (S.1).

Results In the first columns of Table 1, results for baseline methods in comparison
with our approaches are shown2. As a general trend, we observe that the accuracy of all
methods drops with an increasing number of known and unknown classes. This behav-
ior is not surprising, since random chance for miss-classification increases with more
available classes. In addition, we find that the difference in the resulting accuracies of
the tested methods is only marginal on the 10:10 split. The only notable exceptions
are 1-SVM and Maximum-likelihood which are clearly inferior to the remain-
ing methods. This pattern becomes even more dominant for an increasing number of
classes. To check for statistical significance of the small but observable differences in
accuracy, we performed a Wilcoxon signed rank test. Due to the matter of space, the
results can be found in the supplementary (S.4). The analysis can be summarized as
follows: there are no significant differences on small splits, but significant differences
on large splits slightly in favor of our proposed extreme value signatures.

The results also reveal that summing up values of dimensions with largest values
(K-extremes-value) is not superior to simply considering the indices of the di-

2 Note that the reported results for Local-KNFST differ from [4] since we use CNN features
instead of dense SIFT features which results in improved performance.
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Table 1. Results from different tasks for multi-class novelty detection using FC6 features and
best parameter settings per method (averaged over 20 splits per task).

Method 10:10 20:20 30:30 40:40 50:50 500:500

NCM(Euclid) 71.70 % 67.17 % 65.14 % 62.37 % 62.45 % 53.99 %
Maximum-likelihood 63.84 % 61.07 % 60.13 % 58.77 % 58.18 % -
Local-KNFST [4] 71.38 % 68.16 % 65.79 % 64.16 % 61.56 % -
GP-VAR [14] 71.67 % 67.19 % 65.19 % 62.33 % 62.51 % -
1-SVM [22] 64.75 % 60.72 % 59.54 % 57.26 % 57.52 % -
K-extremes-value 71.60 % 68.01 % 65.98 % 63.77 % 62.33 % -
K-extremes (ours) 71.72 % 68.04 % 66.21 % 64.38 % 63.05 % 54.56 %
Spearman (ours) 71.87 % 68.14 % 66.25 % 64.24 % 63.06 % 54.44 %

mensions themselves. Therefore, we can conclude that the actual values of neural acti-
vations can be ignored when their relative order is known. The results also imply that
Spearman is not clearly advantageous in comparison to the vanilla K-extremes
method. However, this is not surprising when we consider that the main advantage of
Spearman is the robustness towards wrong choices of K. Since Table 1 only shows
the configuration of each method which lead to highest accuracy, the proper selection
K is neglected. The overview of results from all settings in the supplementary material
(S.1) underlines Spearman’s robustness regarding the choice ofK. As a final note, the
supplementary also contains a qualitative result showing most and least novel images
(S.3).

4.3 Computation Time Analysis

Besides accuracy, computation time is one of the most critical aspects of algorithms.
Therefore, we investigate the execution times of testing a single image for each of the
evaluated novelty detection methods.

Setup We conduct a computation time analysis on a desktop computer with an In-
tel Core 2 Quad CPU with 2.4 GHz and 8 GB of system RAM. For Local-KNFST,
GP-VAR and 1-SVM, we use the MATLAB code provided by [4]. All remaining meth-
ods are implemented in python. Computation times of each method are evaluated on a
10:10 split and a 50:50 split and averaged over all test examples in each split.

Results In Fig. 2, we show the relationship between accuracy and computation time.
The observable relation is not unexpected: NCM(Euclid) is the fastest baseline since
it only requires simple distance calculations. On the other side of the spectrum, Local-
KNFST is an order of magnitude slower due to the necessity of training a model specif-
ically for each test sample. The remaining techniques are roughly equally fast with
∼ 10ms per evaluation. However, K-extremes and Spearman are slowest wrt.
to absolute numbers. We attribute this to the explicit sorting of feature vectors in our
non-optimized implementation and assume that an optimized implementation involving
bit-level operations could reduce the required computation time.
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Fig. 2. Comparison of all approaches on the 10:10 split (left) and the 50:50 split (right) taking
accuracy and computation time into account (computation times averaged over all examples in
each split).

4.4 Large-scale Multi-class Novelty Detection on ImageNet

The results presented so far in Section 4.2 imply that the accuracy of all methods drops
the more classes are involved. Hence, we were interested in conducting a large scale
analysis for further investigation.

Setup We split the available classes of the ILSVRC’12 data randomly in half which
results in 500 known and 500 unknown classes. The remaining setup is kept identical
to Section 4.2 and we present an exhaustive evaluation of all investigated settings in
the supplementary material (S.2). Note that Local-KNFST would not be applicable
in this scenario in terms of computation time as shown in Section 4.3. Additionally,
kernel dimensions are also too large for our available implementation of GP-VAR and
1-SVM. Therefore, we only compare the proposed Spearman and K-extremes
criterion with the remaining (and best performing) baseline NCM(Euclid).

Results Results are shown in the last column of Table 1. As expected, the overall ac-
curacy drops in comparison to the setup in Section 4.2. The proposed K-extremes
performs best closely followed by Spearman. Both methods are able to outperform
NCM(Euclid) by a small but significant margin. The supplementary material con-
tains a significance analysis (S.4) as well as further evidence for the robustness of
Spearman towards the choice of K (S.2). Although we conclude that our proposed
novelty detection methods can be successfully applied in large scale scenarios, our best-
performing method improves over random guessing by only less than 5%. Hence, nov-
elty detection in large-scale scenarios still remains an unsolved problem which sorely
needs increased attention.

4.5 Visualizing Class-indicative Image Parts With EVS

In addition to the quantitative estimation of novelty as presented so far, we can further
exploit the comparison of EVS to assess which parts of a novel image are indicative for
a known category. A visualization is shown in Fig. 3.

Setup We compute gradient maps as suggested by [25] using the FC6 layer of a
Places205-CNN [30] 3. To visually inspect class-indicative image parts, we set all en-
tries to 1 which correspond to theK-highest feature dimension of classm (K = 0.1·D).

3 Due to implementation constraints we applied a different network as in Sections 4.2 to 4.4.



10 A. Schultheiss, C. Käding, A. Freytag, J. Denzler

Fig. 3. Which parts of a novel image are characteristic for known classes? Saliency maps obtained
from comparing extreme value signatures allow for visual analysis.

All remaining values are set to 0 and the derivative of this target vector wrt. the input
image is computed using backprop. The generated gradient map is then smoothed for
better visualization with a Gaussian kernel (size 20× 20 pixels, σ = 5). After resizing
of the smoothed map to the original image size and normalization4, we threshold all val-
ues against 1/3 and consider all pixels above this value as relevant. Irrelevant pixels are
blacked out. Visualizations for different values of K are provided in the supplementary
material (S.5).

Results Using this visualization heuristic, it can be seen that only few image parts
would be indicative for the category pretzel. On the contrary, the class tie is sup-
ported by image regions from foreground and background making it a vague indicator
as well. Only for the (correct) category Sussex spaniel, the indicative image re-
gions are entirely in the foreground and closely align with the object boundary. Hence,
we conclude that EVS are indeed indicative for class-specific image parts and allow for
visual inspection of classification decisions.

5 Conclusion

In this paper, we proposed to exploit the discriminative nature of CNNs to tackle the
challenging task of multi-class novelty detection. Our approach is inspired by the sensi-
tivity of internal nodes of neural networks to class-specific patterns when trained in a su-
pervised manner. We empirically found that simple statistics regarding which nodes are
most heavily activated allow for discriminating between known and unknown classes.
Since these extreme value signatures are intuitive and easy to implement on top of exist-
ing models, they allow to “upgrade” arbitrary classification networks to jointly estimate
novelty and class membership. An analysis on different subsets of the ILSVRC’12 data
shows performance benefits in terms of accuracy, computation time, and scalability of
our approach in comparison with established baselines. To gain further insights, we
finally investigated class-indicative image parts which can be obtained by visualizing
extreme value signatures. Besides the positive aspects, however, our results also under-
line clearly that multi-class novelty detection is far from being solved when more than
a handful of classes are involved.

4 Gradient maps are normalized individually for better visualization, hence, the scaling can not
be compared directly. Results of uniformly normalized maps are similar.
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