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Abstract. Knowledge transfer from related object categories is a key
concept to allow learning with few training examples. We present how
to use dependent Gaussian processes for transferring knowledge from
a related category in a non-parametric Bayesian way. Our method is
able to select this category automatically using efficient model selection
techniques. We show how to optionally incorporate semantic similari-
ties obtained from the hierarchical lexical database WordNet [1] into
the selection process. The framework is applied to image categorization
tasks using state-of-the-art image-based kernel functions. A large scale
evaluation shows the benefits of our approach compared to independent
learning and a SVM based approach.

1 Introduction

Learning an object category with a single example image seems to be a difficult
task for a machine learning algorithm, but an easy everyday task for the human
visual recognition system. A common hypothesis to justify the ability of the hu-
man cognition system to generalize quickly from few training examples is our use
of prior knowledge from previously learned object categories [2]. This concept
is known as interclass or knowledge transfer. In general, machine learning prob-
lems with few training examples are often highly ill-posed. Knowledge transfer
from related categories allows to use prior knowledge automatically, which can
be utilized to regularize such problems or enrich the training data set indirectly.

In the following we concentrate on knowledge transfer between binary clas-
sification tasks, which is also termed one-shot learning for the special case of a
single training example. Given a target task with few positive training exam-
ples, one tries to select a support classification task from a heterogenous set
of tasks with each having a relatively large number of training examples. These
additional examples are then used to transfer prior knowledge to the target task.

Knowledge transfer techniques for image categorization were introduced by
Fei-Fei et al. [3], who model knowledge as a prior distribution of the parame-
ters of an object part constellation model. This prior distribution is used in a
maximum-a-posteriori estimation of the target task model parameters. Tommasi
and Caputo [4] present an extension to least-squares SVM which allows to adapt
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Fig. 1. Basic outline of the proposed transfer learning approach: Semantic similarities
between categories and leave-one-out estimates are utilized to select a support task,
which is used to transfer knowledge to a target task with dependent Gaussian processes.

the SVM solution of the target task to the decision boundary of a related object
category. Our approach is based on classification and regression with Gaussian
processes (GP), which has recently developed to a widely applied and studied
machine learning technique [5] and is also used for image categorization [6].
One of the first papers investigating knowledge transfer with GP is the work of
Lawrence et al. [7]. They show that the joint optimization of hyper-parameters
using all tasks can be highly beneficial. Urtasun et al. [8] assume a shared latent
feature space across tasks which can be also modeled in a GP framework.

We use dependent Gaussian process priors, as studied in [9, 10] and show
how to utilize them for image categorization. Dependent GP priors allow us to
efficiently transfer the information contained in the training data of a support
classification task in a non-parametric way by using a combined (kernel) covari-
ance matrix. The amount of information transferred is controlled by a single
parameter estimated automatically which allows to move gradually from inde-
pendent to complete combined learning. Parallel to our work, Cao et al. [11] used
the same framework for machine learning problems, such as WiFi localization.

Additionally we handle the case of heterogenous tasks, where the set of avail-
able support tasks also includes unrelated categories, which do not contain any
valuable information for the target task. Similar to [4], we utilize efficient leave-
one-out estimates available for GP regression to select a single support classifi-
cation task. We also show how to use similarities estimated with WordNet [1] to
improve this selection. The basic steps of our approach are illustrated in Fig. 1.

The remainder of the paper is organized as follows. We will briefly review
classification and regression with Gaussian processes, which is followed by de-
scribing transfer learning with dependent Gaussian processes. The question how
to choose a valuable support task is answered in Sect. 3.1. Our choice of image-
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based kernel functions is presented in Sect. 4. Experiments in Sect. 5 show the
benefits of our approach in an image categorization application. A summary of
our findings and a discussion of future research directions conclude the paper.

2 Classification with Gaussian Process Priors

In the following we will briefly review Gaussian process regression and clas-
sification. Due to the lack of space, we concentrate only on the main model
assumptions and the resulting prediction equation. For a presentation of the full
Bayesian treatment we refer to Rasmussen and Williams [5].

Given training examples xi ∈ T , which denote feature vectors or images,
and corresponding labels yi ∈ {−1, 1} we would like to predict the label y∗ of
an unseen example x∗. The two main assumptions of Gaussian processes for
regression or classification are:

1. There is an underlying latent function f , so that labels yi are condition-
ally independent given f(xi) and described using the so called noise model
p(yi | f(xi)).

2. The function f is a sample of a Gaussian process (GP) prior
f ∼ GP(0,K(·, ·)) with zero mean and covariance or kernel function K.

The Gaussian process prior enables us e.g. to model the covariance of outputs
f(x) as a function of inputs x. With K being a kernel function describing the
similarity of two inputs, one can model the common smoothness assumption that
similar inputs should lead to similar function values and thus similar labels. The
noise model can be quite general, and for classification tasks one often uses
cumulative Gaussian or sigmoid functions [5]. In contrast, we will follow Kapoor
et al. [6] and use a Gaussian noise model with variance σ2

p(yi | f(xi)) = N (yi | f(xi), σ2) (1)

which is the standard model for GP regression. The advantage is that we do not
have to rely on approximated inference methods, such as Laplace approxima-
tion or Expectation Propagation. As we will show in Sect. 3.1, this also allows
us to compute efficient leave-one-out estimates, which can be used for model
selection. The treatment of the classification problem as a regression problem,
which regards yi as real-valued function values instead of discrete labels, can be
seen as a clear disadvantage. Nevertheless, as shown in Nickisch et al. [12] the
performance of this method is often comparable with Laplace approximation for
classification tasks and is computationally much more efficient.

The GP regression model assumptions lead to analytical solutions for the
prediction of the label y∗. Let K be the kernel matrix with pairwise kernel
values of the training examples Kij = K(xi,xj) and k∗ be kernel values (k∗)i =
K(xi,x∗) corresponding to a test example x∗. The GP model for regression leads
to the following equation for the prediction ȳ∗:

ȳ∗(x∗) = kT
∗ (K + σ2I)−1y . (2)
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3 Transfer Learning with Dependent Gaussian Processes

We now consider the case that two binary classification tasks are given: a so
called support task with a large amount of training data T S and a target task
with only few training examples T T . This setting is different from the scenario
of multi-task learning in which one wants to train classifiers for multiple binary
classification tasks in combination. In our case, we do not want to improve the
classifier for the support task. This scenario for knowledge transfer is known as
the concept of domain adaptation [4] or one-shot learning [3].

Our use of dependent Gaussian processes for transfer learning is based on
the model proposed by Chai et al. [9]. For each task j we now have a latent
function f j which is assumed to be sampled from a GP prior. The key idea is
that these functions are not assumed to be independent samples which allows us
to transfer knowledge between latent functions. Thus, we use a combined latent
function f((j,x)) = f j(x) which is a single sample of a GP prior with a suitable
kernel function modeled by:

K((j,x), (j′,x′)) =

{
Kx(x,x′) j = j′

ρ Kx(x,x′) j 6= j′
, (3)

with Kx being a base kernel function measuring the similarities of input exam-
ples. The hyper-parameter ρ of the extended kernel function with 0 ≤ ρ ≤ 1
controls the correlation of the tasks: ρ = 0 corresponds to the case of indepen-
dent learning whereas ρ = 1 assumes that the tasks are highly related. It should
be noted that this type of knowledge transfer can also be motivated theoreti-
cally with a decomposition of the latent function into an average latent function
shared by all tasks and an independent latent function [13].

We use only one single support classification task which is automatically
selected using the techniques described in Sect. 3.1. In comparison to the single
task GP model in equation (2), only the kernel function changes. Therefore, the
label prediction of an unseen example x∗ can be calculated as follows:

ȳ∗(x∗) = kT
∗ (K(ρ) + σ2I)−1y

=
(

kT∗
ρkS∗

)T ((
KTT ρKTS

ρKT
TS KSS

)
+ σ2I

)−1(
yT

yS

)
, (4)

with yT and yS denoting the binary labels for the target and the support task
respectively. The matrix KT S contains the pairwise kernel values of the target
task and the support task. The same type of notational convention is used for
KSS ,KT T , kS∗ and kT ∗.

Shared Background Category In the context of image categorization, one
often has one single background and multiple object categories [14]. Thus, binary
classification tasks share the background category. In this case T S and T T are
not disjoint, which leads to an ill-conditioned kernel matrix K(ρ). We solve this
problem by restricting the support training set only to examples of the object
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category. Therefore the label vector yS is always a vector of ones. Please note
that due to our zero mean assumption of the GP prior this leads to a valid
classifier model and for the case of independent learning (ρ = 0) to an one-class
GP classifier for the support task.

3.1 Selection of a Support Task using Leave-One-Out Estimates

The optimization of the hyper-parameter ρ and the selection of an appropriate
support task can be handled as a combined model selection problem. To solve
this problem, we use leave-one-out estimates similar to [4]. In the context of
Gaussian process regression, the posterior of the label of a training example xi

conditioned on all other training examples can be computed in closed form [5]

log p(y |
(
T T ∪ T S

)
\ {xi},y, ρ) = −1

2
log η2

i −
(y − µi)2

2η2
i

− 1
2

log 2π , (5)

with η2
i being the variance of the leave-one-out estimate µi:

η2
i = 1/

(
K(ρ)−1

)
ii

and µi = yi −
(
K(ρ)−1y

)
i
η2

i . (6)

The estimates µi offer to use a wide range of model selection criteria, such as
leave-one-out log predictive probability [5] or squashed and weighted variants
[4]. A common measure to assess the performance of a binary classification task
is average precision [15]. Therefore, we use the calculation of the average pre-
cision directly using the estimates µi and ground truth labels yi. This decision
is additionally justified by experiments in the last paragraph of Sect. 5.2, which
compares average precision to multiple model selection criteria embedded in
our approach. Those experiments will also show that the conditional likelihood
p(yT | yS , T S , T T ) is a non-appropriate model selection criterion in our setting.

We optimize the average precision with respect to ρ, which is a simple one-
dimensional optimization, with golden section search [16] for each task of the set
of given support tasks. The task and corresponding ρ value which yield the best
average precision are chosen to build the final classifier according to equation (4).

3.2 Automatic Pre-Selection using WordNet

Selecting a support classification task among a large set of available tasks using
only a single example is itself a very difficult problem, and the selection method
described above, might not be able to transfer beneficial information. A solution
is the use of prior knowledge from other information sources to pre-select tasks
which are likely to be related.

We optionally use WordNet, which is a hierarchical lexical database of the
English language, and the textual label of each object category. The usefulness
of this information source has been demonstrated recently in the context of
attribute based knowledge transfer [17] and hierarchical classification [18]. A
possible assumption would be that semantically related object categories are also
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visual similar. Thus the support task could be selected by semantic similarity
measures such as the Reznik measure [1]. Whereas this assumption might hold
for e.g. animal hierarchies, it might not hold in all cases and prevents important
knowledge transfer from only visual similar tasks. Therefore we use WordNet in
advance to leave-one-out selection and pre-select the K most related tasks among
all available tasks based on their semantic similarity. For K = 1, WordNet selects
the support task using the semantic of the category name and the leave-one-out
method only optimizes ρ. If K equals the number of available support tasks,
WordNet pre-selection does not influence transfer learning and the selection is
based on visual similarity only. The importance of the combination of visual and
semantic similarities for the selection will be analyzed empirically in Sect. 5.2.

4 Categorization Using Image-Based Kernels

One of the state-of-the-art feature extraction approaches for image categoriza-
tion is the bag-of-features (BoF) idea. A quantization of local features which
is often called a codebook, is computed at the time of training. We use Oppo-
nentSIFT [15] descriptors calculated on a dense grid and the method of Moos-
mann et al. [19] as the clustering method. For each image a histogram is cal-
culated which counts for each codebook entry the number of matching local
features. A standard way to apply the BoF idea to kernel-based classifiers is to
use the calculated histograms as feature vectors and apply a traditional kernel
function such as the radial basis function kernel.

In contrast, we define the kernel function directly on images. The spatial
pyramid matching kernel as proposed by Lazebnik et al. [20] extends the BoF
idea and divides the image recursively into cells (e.g. 2×2). In each cell the BoF
histogram is calculated and the kernel value is computed using a weighted com-
bination of histogram intersection kernels corresponding to each cell. In addition
we use the gray-value based PHoG (pyramid histogram of oriented gradients)
kernel [21] to compare our results directly to [4] in Sect. 5.1.

5 Experiments

Experiments are performed using all 101 object categories of Caltech 101 and a
subset of the Caltech 256 database [3]. Both databases contain a large number
of challenging object categories and a suitable background category. In each
experiment a target task and corresponding few training images are selected.
Training and testing is done for each target task 100 times with a random split
of the data, which yields mean performance measure values. In our experiments
we empirically support the following hypotheses:
1. Our transfer learning approach improves the mean performance compared to

independent learning even with a large heterogenous set of available support
classification tasks.

2. By using WordNet pre-selection, one can achieve a performance gain for
nearly all classification tasks.
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Fig. 2. Caltech 256 results for our transfer learning approach, independent learning and
Adapted LS-SVM [4] (which performs a manual selection of adequate object images in
advance): (Left) using related classification tasks, (Right) using unrelated tasks.

3. With a given set of related classification tasks, our method achieves higher
recognition rates than Adapted LS-SVM [4].

4. Using the average precision of leave-one-out estimates as described in Sect. 3.1
yields the best performance among several other model selection criteria.

In contrast to multi-task learning with a shared training set [10], a non-zero
noise variance σ is not essential to transfer knowledge. For this reason, we
choose the noise variance σ2 adaptively. We iteratively increase the value of σ2

(0, 10−8, 10−7, 10−6, . . .) until the Cholesky decomposition of the kernel matrix
can be calculated ensuring its positive-definiteness.

5.1 Experiments with Caltech 256

We compare our approach to Adapted LS-SVM as proposed by [4] and tried
to use an equivalent experimental setting. Two sets of classification tasks are
chosen to study the cases of transferring knowledge using only related support
classification tasks (car, fire-truck and motorbike) and using a heterogenous set
of classification tasks (school-bus, dog and duck). Training and testing is done
with a variable number of training images for the target object category and 18
training images for the background and support categories. It is important to
note that in contrast to [4] we did not perform a manual selection of images,
where the object is clearly visible without occlusion. To compare our results to
[4] (values were extracted from Fig 1(a) and Fig 2(a) in the paper) we used the
mean recognition rate of all tasks as a performance measure. A pre-selection of
classification tasks using WordNet is not applied in this experiment.

Evaluation The results are shown in Fig. 2. First of all, it is clearly visible that
learning benefits from knowledge transfer using our approach even in the “unre-
lated case” (Hypothesis 1, page 6 ). The same plots also validate that we are able
to improve the results of [4] in the “related case” even by using images with oc-
cluded objects and different view points (Hypothesis 3 ). In the “unrelated case”
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Fig. 3. (Left) Mean average precision of all tasks with a varying number of training
examples. (Right) Different peaks of the one-shot learning performance for a vary-
ing number of support classes K pre-selected using WordNet: Mean average precision
of tasks, which did not benefit from knowledge transfer without WordNet, and perfor-
mance values of the kangaroo task for different values of K. The results of the kangaroo
task highlights the importance of the combination of WordNet and our model-selection.

this unconstrained setting yields to lower results for independent learning, which
makes transfer learning more important and leads to a significant performance
gain even by using unrelated tasks. Our approach also improves [4] for the case
of one-shot learning and when more than 7 training images are used.

5.2 Experiments with Caltech 101

In these experiments we use all 101 object categories as available support tasks
and a subset of possible target tasks (listed in Fig. 4). As a performance measure
for each binary classification task we use average precision as used in the Pascal
VOC challenges [15]. Training and testing is done with a variable number of
training images for the target object category, 30 training images for the support
object categories and 200 background images.

Evaluation As to be seen in the left plot of Fig. 3 our transfer learning approach
without WordNet pre-selection improves the mean average precision compared
to independent learning when using few training examples and converges to it
with more than 10 training examples (Hypothesis 1 ).

The detailed results for each task using a single training example are included
in the left plot of Fig. 4 and deliver additional insight into the methods behavior:
Transfer learning improves the average precision for some tasks significantly, e.g.
task “gerenuk” with a performance gain of more than 11%, but also fails for some
tasks like “okapi”. This is due to a wrong selection of the support task using
leave-one-out estimates and can be handled in almost all cases by using the
WordNet pre-selection method (Hypothesis 2 ). Our transfer learning method
fails for the task “watch”, because there seems to be no related task in general.
The right plot in Fig. 3 shows the benefit of WordNet for those cases by varying
the number K of pre-selected support tasks. The same plot also highlights that
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Fig. 4. (Left) Caltech 101 results for our transfer learning approach with and without
pre-selection of support classification tasks using WordNet and for independent learning
using a single training example. (Right) Mean average precision of all tasks using a
single training example without pre-selection and different model selection criteria.

severe pre-filtering with WordNet (K < 10) leads to worse results for the task
“kangaroo”. The same holds for the mean average precision of all tasks which
is lower for a strict pre-selection (with K = 3) compared to a pre-selection of
only 10 support tasks (cf. left plot of Fig. 3). Therefore, only a combination
of WordNet pre-selection with a selection based on leave-one-out estimates is
reasonable when confronted with a new task.

We additionally evaluated our approach with different model selection cri-
teria: average precision and area under the ROC curve using leave-one-out es-
timates, leave-one-out predictive probability [5] with squashed variants [4] and
the conditional likelihood of the target task training set [11]. The results are
shown in the right plot of Fig. 4, justifying our choice of average precision using
leave-one-out estimates (Hypothesis 4 ).

6 Conclusions and Further Work

We presented an approach to transfer learning using dependent Gaussian pro-
cesses, which is able to significantly improve the classification performance of
one-shot learning and learning with few examples. Dependent Gaussian processes
allowed us to express transfer learning in terms of a combined latent function
with a suitable kernel function. Our method chooses a highly related classifica-
tion task automatically by using the average precision achieved by leave-one-out
estimates. We also studied the influence of the number of available tasks on the
performance of the selection and demonstrated that an optional pre-selection of
tasks using semantic similarities obtained from WordNet can be beneficial.

Further research has to be done to develop a more efficient model selection
method to robustly estimate multiple hyper-parameters of the combined covari-
ance function. For example, a combination of performance measures based on
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leave-one-out estimates and standard maximum likelihood estimation might be
suitable. Additionally, dependent Gaussian processes can also be used in conjunc-
tion with approximation methods for GP classification rather than regression.
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