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Abstract

We present an approach to generic object recognition with range information obtained using a Time-of-
Flight camera and colour images from a visual sensor. Multiple sensor information is fused with Bayesian
kernel combination using Gaussian processes (GP) and hyper-parameter optimisation. We study the
suitability of approximate GP classification methods for such tasks and present and evaluate different
image kernel functions for range and colour images. Experiments show that our approach significantly
outperforms previous work on a challenging dataset which boosts the recognition rate from 78% to 88%.
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1 Introduction

In the last decade, research in machine learning
and computer vision mainly concentrated on image
categorisation using a single visual sensor or photos
from the web [1]. Despite the great success of
those methods, the importance of depth informa-
tion for reliable generic object recognition is mostly
ignored.

In the following work we present an approach to
generic object recognition using the combined in-
formation of a visual sensor and range information
obtained from a Time-of-Flight (ToF) camera [2].
A ToF camera offers real-time depth images ob-
tained by modulating an outgoing beam with a
carrier signal and measuring the phase shift of that
carrier when received back at the ToF sensor. In-
corporating the advantages of this new camera tech-
nology into computer vision systems is current re-
search and is successfully applied to 3d reconstruc-
tion tasks [3] or marker-less human body motion
capture [4].

We use a ToF camera together with a CCD camera
to solve generic object recognition problems. To
combine the information of our two sensors, we
utilise Gaussian process classification [5], which al-
lows efficient hyperparameter estimation and integ-
ration of multiple sensor information using kernel
combination in a Bayesian framework. In con-
trast to previous work [6], which used GP regres-
sion to approximate the underlying discrete clas-
sification problem, we also study Laplace approx-

imation (LA) which directly tackles the discrete
nature of the categorisation problem. Hyperpara-
meter estimation is done by extending multi-task
techniques for GP regression [7, 6] to LA. Addi-
tionally, we show how to compute image based
kernel functions using range images by applying
the framework of Spatial Pyramid Matching Ker-
nels [8] (SPMK) to different kinds of local range
features. Figure 1 presents an overview of the
proposed approach and the main steps involved.

The main contributions of this paper are as follows:

1. We present multiple kernel learning with
Gaussian process classification for sensor data
fusion (previous papers are limited to visual
sensors only [6]).

2. Different noise models of GP classification
are studied for image categorisation and sensor
data fusion (previous papers are limited to
Gaussian noise and GP regression [6]).

3. Our method yields a significant improvement
in terms of recognition performance compared
to the current state-of-the-art of object re-
cognition with Time-of-Flight range images [9].

The remainder of the paper is organised as follows.
Section 2 gives an overview about related work in
the area of image categorisation with range images
and applications of GP classification. We briefly
review classification and regression with Gaussian
processes in Sect. 3, followed by presenting our
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Figure 1: An overview of the proposed approach: colour and range images are captured using a CCD camera

and a Time-of-Flight camera (PMD Vision Technologies 19k); Local features are extracted from the data of both

sensors and “kernelized” using Spatial Pyramid Matching, yielding different kernel functions.

choice of local range features (Sect. 4) and their
use for Pyramid Matching Kernels (Sect. 5) Ex-
periments in Sect. 6 study the different parts of
our approach and evaluates them with a public
available dataset. A summary of our findings and
a discussion of future research directions conclude
the paper.

2 Related Work

One of the earlier works on local features computed
on range images is the work of Hetzel et al. [10].
They present different feature types and similar-
ity measures for histograms which can be used for
nearest neighbour classification. Toldo et al. [11]
propose a preliminary segmentation of complete
3d models and a description of the resulting parts
utilising the Bag-of-Features idea. Classification
is done with multiple equally weighted histogram
intersection kernels and support vector machines.
The suitability of SIFT features for image match-
ing is studied by Zhang et al. [12], who propose
to compute SIFT features on normal texture and
shape index images [10]. In contrast, Lo et al.
[13] present an extension to SIFT features espe-
cially suitable for range images. Special feature
types for Time-of-Flight cameras are studied by
Haker et al. [14]. A key idea of their work is the
non-equidistant Fourier transformation to repres-
ent range images.

Our method for feature computation is mainly based
on Spatial Pyramid Matching as presented by
Lazebnik et al. [8] for standard image categorisa-
tion and utilised by Li et al. [15] for range images.
Similar to our previous work [9, 16] we concentrate
on the combination of colour or texture informa-
tion obtained from a standard CCD camera and
range information from a Time-of-Flight camera.
A beneficial combination of these two information
sources with kernel-based methods requires an ef-
ficient method for hyperparameter optimisation,

which is available in Bayesian frameworks, such as
Gaussian process classification [5]. As shown in
Kapoor et al. [6] regression with Gaussian process
priors can be successfully integrated in an image
categorisation setting and can handle multiple ker-
nels.

3 Multi-Kernel Classification
with Gaussian Processes

In the following section, we briefly review Gaus-
sian process regression and binary classification.
We also explain multi-class classification with GP
priors and efficient kernel combination by hyper-
parameter estimation.

3.1 Bayesian Estimation with Gaussian
Process Priors

We first give some initial motivation before describ-
ing the use of GP priors in more mathematical
terms: Machine learning can often be described
as estimating the relation between inputs x and
outputs or labels y. This relation is often described
using a regression function f and a noise term ε,
e.g. y = f(x) + ε. The idea of Bayesian estima-
tion is now that instead of searching for a specific
function f , one can regard f as a latent random
variable which can be marginalised out. Gaussian
processes allow to nicely model the prior distribu-
tion of regression functions f by defining a suitable
covariance function controlling the smoothness of
the function samples.

Let X be the space of all possible input data (fea-
ture vectors or images). Given n training examples
xi ∈ XT ⊂ X and corresponding binary labels
yi ∈ {−1, 1} (multi-class classification is explained
in subsequent sections), we would like to predict
the label y∗ of an unseen example x∗ ∈ X . The
two main assumptions of Gaussian processes for
regression or classification are:



1. There is an underlying latent function f :
X → R, so that labels yi are conditionally
independent from the input xi given f(xi).
Thus, the labels are distributed according to
the so called noise model p(yi | f(xi)).

2. The function f is a sample of a Gaussian pro-
cess (GP) prior and represents itself a ran-
dom variable: f |X ∼ GP(0,K(X ,X )) with
zero mean and covariance or kernel function
K : X × X → R.

The Gaussian process prior enables to model the
covariance of outputs f(x∗) as a function of inputs
x∗. With K being a kernel function describing
the similarity of two inputs, the common smooth-
ness assumption that similar inputs should lead
to similar function values (and similar labels) can
be modelled. Incorporating our assumptions into
a Bayesian framework and marginalising over the
latent function values, we have the following equa-
tions for the inference of the label y∗ of an unseen
example x∗:

p(y∗|x∗,y,XT ) =

∫
R
p(y∗|f∗) p(f∗|x∗,y,XT )df∗

(1)
where we marginalise the latent function value f∗ =
f(x∗) corresponding to x. The conditional distri-
bution of f∗ is also available with marginalisation
of all latent function values f = (f(xi))

n
i=1 of the

training set XT :

p(f∗|x∗,y,XT ) =

∫
Rn

p(f∗|x∗,f)p(f |y,XT )df (2)

Finally, the incorporation of the noise model and
our assumption of independent training examples
leads to:

p(f | y,XT ) =
p(f | XT )

p(y | XT )

(∏
i

p(yi | fi)

)
(3)

The distribution p(f | XT ) is a n-dimensional nor-
mal distribution with zero mean and covariance
matrix K = (K(xi,xj))i,j , which is often called
kernel matrix. The noise model can take various
forms depending on the nature of the labels yi,
which leads to the distinction between Gaussian
process regression and classification.

3.2 Regression with
Gaussian Process Priors

Gaussian process regression uses a Gaussian noise
model

p(yi | fi) = N (yi | fi, σ2) (4)

with variance σ2. The advantage of this model is
that we do not have to use approximated inference

methods to handle the involved marginalisation in
equation (1) and (2). A given binary classification
problem is solved as a regression problem which
regards yi as real-valued function values instead of
discrete labels. The GP regression model assump-
tions lead to analytical solutions of the integrals
and allow to directly predict the label y∗. Let k∗ be
the kernel values (k∗)i = K(xi,x∗) corresponding
to a test example x∗. The GP model for regression
leads to the following equation for the prediction
ȳ∗ [5]:

ȳ∗(x∗) = kT∗ (K + σ2I)−1y (5)

with I denoting the identity matrix.

3.3 Classification with GP Priors and
Laplace Approximation

To incorporate knowledge about the discrete nature
of the labels, we can use noise models such as the
cumulative Gaussian

p(yi | fi) =
1

2

(
erf

(
`
yifi

2

)
+ 1

)
(6)

with length-scale parameter `. Exact inference with
this model is intractable and approximation meth-
ods are required. One common efficient approx-
imation method is Laplace approximation [5]. The
key idea to handle the integral in equation (2) is to
approximate p(f |XT ,y) with a Gaussian distribu-
tion. This can be done by finding the mode f̂ with
nonlinear optimisation techniques and approximat-
ing the covariance matrix by utilising the Hessian
at f̂ . An important advantage of the cumulative
Gaussian noise model is the availability of analyt-
ical solutions for the marginalisation involved in
equation (1). For implementation details we refer
the reader to the excellent text book of Rasmussen
and Williams [5].

3.4 Kernel Combination for Classifica-
tion with Multiple Sensors

Let us assume m kernel functions Ki(·, ·) are given.
In the multi-sensor setting, these kernel functions
can be computed from different data modalities.
To use the information of all kernels, they can be
combined by a single kernel function K, e.g. in a
linear fashion with exponential weights α ∈ Rm:

Kα(x,x′) =

m∑
i=1

exp (αi) Ki(x,x′) (7)

For binary classification this relates to an equi-
valent representation of the latent function f as
a linear sum f =

∑m
i=1 exp (αi)f

i of independ-

ent latent functions f i sampled from GP priors
GP(0,Ki). Another combination technique we ex-
perimented with, is to plug the linear combination



into an exponential kernel [17] which leads to a sim-
ilar classification performance. The parameters αi

are hyperparameters of the kernel function and can
be optimised using GP model selection techniques,
such as likelihood optimisation. The negative log-
likelihood of all training examples for the binary
GP regression model is given by [5]:

− log p(y | XT ,α) =
1

2
yT
(
Kα + σ2I

)−1
y (8)

+
1

2
log |Kα + σ2I|+ n

2
log 2π

with Kα being the parameterised kernel matrix
according to equation (7). Further details regard-
ing the likelihood of the Laplace Approximation
and its gradients can be found in [5]. Maxim-
isation of the likelihood can be done with iter-
ative nonlinear optimisation methods. To reduce
over-fitting problems, [18] propose to choose the
parameter according to the minimum leave-one-
out error among the parameters calculated in each
iteration of the likelihood optimisation. However,
we did not observed a performance gain using this
technique.

3.5 Multi-Class Classification and
Model Selection

So far, we presented GP classification with binary
labels. However, our image categorisation applic-
ation requires to solve a multi-class classification
problem. Rasmussen and Williams [5] present an
extension of the Laplace Approximation for multi-
class classification tasks with y ∈ {1, . . . ,M} = Ω.
This method requires MCMC techniques and is
thus computationally demanding.

We follow Kapoor et al. [6] by utilising the one-
vs-all technique. For each class i ∈ Ω a binary
classifier is trained which uses all images of i as pos-
itive examples and remaining images as a negative
training set. Classification is done by returning
the class with the highest probability estimated by
the corresponding binary classifier. The one-vs-
all approach also offers to perform efficient model
selection by joint optimisation of hyperparameters
for all involved binary problems [7]. The objective
function is simply the sum of all binary negative
log-likelihoods as given in equation (8) for GP re-
gression. An equivalent idea can be applied to
Laplace approximation.

4 Local Features for ToF Range
Images and Colour Images

In the following we present local features which
can be calculated using range images from a Time-
of-Flight camera. The extraction process is per-
formed in two steps: (1) preprocessing and sampling

of regions and (2) the calculation of local feature
descriptors. Figure 2 gives an overview of the pro-
posed processing pipeline and guides through the
following two sections.

4.1 Preprocessing and Sampling

The range data obtained with the ToF camera (in
our case a Photonic Mixer Device) suffer from severe
statistical noise. In order to filter this noise and
smooth the range data, a median filter of size 5×5
is applied. One idea to select appropriate regions
for local features is to use an interest detector [16].
However, due to the low resolution of the intensity
image provided by the ToF camera this often leads
to uninformative interest points and a small num-
ber of local features. Therefore, we compute local
features on a predefined grid as suggested by [9].

Dense sampling has shown to be beneficial also for
image categorisation tasks using colour images [17].
Thus, the same sampling strategy is applied to col-
our images of the visual sensor and we extract local
descriptors at a predefined grid with a horizontal
and vertical pixel spacing of 10 pixels.

4.2 Local Range Features

Range images have the advantage of providing dir-
ect information about the shape of objects. There-
fore, it is beneficial to give preference to features
that capture different shape aspects. Local shape
descriptors are preferable as they provide some ro-
bustness to clutter and occlusion. Hetzel et al. [10]
introduce and use three shape-specific local fea-
ture histograms (pixel depth, surface normals and
curvature) for the task of free-form specific 3d ob-
ject recognition. The main advantages of these
features are the robustness to viewpoint changes
and the discriminative information they contain
for specific 3d object recognition [10] and generic
object recognition [16].

Pixel Depth A local histogram of depth values
is the simplest available feature. All values are
naturally invariant with respect to image plane
translations and rotations and provide a rough rep-
resentation of the object shape. As pointed out
by [10], depth histograms can be misleading in
scenarios with a large amount of background clut-
ter and the presence of multiple objects. In this
paper, a histogram of 64 bins of pixel distances is
calculated and used.

Surface Normals A histogram of surface nor-
mals represented as a pair of two angles (φ, θ) in
sphere coordinates provides a first-order statistic
of the local object shape. Surface normals can
be easily derived from approximating the gradient



ToF Range Images Local Features Clustering using Random Forests BoF Histograms for SPMK

Figure 2: Local features for range images are computed on a grid without using interest point detectors. All local

features are clustered with a Random Forest and used to compute Bag-of-Features (BoF) histograms for each cell.

Only one level of the pyramid is shown in this figure.

with finite differences. We use a two dimensional
histogram with 8× 8 bins.

Curvature Representing the curvature can be done
by using the shape index introduced in [19] and
utilized in [10]:

S(p) =
1

2
− 1

π
arctan

(
kmax(p) + kmin(p)

kmax(p)− kmin(p)

)
(9)

where kmax(p) and kmin(p) denote the principle
curvatures computed at point p. The principal
curvatures are proportional to the eigenvalues of
the structure matrix [20]. Therefore, the second
derivatives have to be computed in order to calcu-
late the shape index. The histogram calculated of
all S values consists of 64 bins.

4.3 Local Colour Features

Many papers have been published about compar-
ing different local descriptors of colour images for
image categorisation tasks. The most recent work
is the comparison of local colour feature descriptors
by Van de Sande et al. [17]. We use Opponent-
SIFT1 features which was among the best discrim-
inative descriptors in the evaluation of [17].

5 Image-Based Kernel Functions

In the following section we show how to compute
image-based kernel functions using the local fea-
tures types presented in the last section.

One of the state-of-the-art feature extraction ap-
proaches for image categorisation is the Bag-of-
Features (BoF) idea. A quantisation of local fea-
tures which is often called a codebook, is com-
puted at the time of training. We use the su-
pervised method of Moosmann et al. [21] for clus-
tering which provides discriminative codebook ele-
ments. For each image a histogram is calculated
which counts the number of matching local features
for each codebook entry. On the one hand, the
intuition behind this idea is that the clustering

1We used the software provided by Koen van de Sande
at http://www.colordescriptors.com.

corresponds to an automatic decomposition of ob-
jects into corresponding parts. Thus, the histo-
gram counts the occurrence of several latent object
parts in an image, which results in a highly dis-
criminative descriptor. On the other hand, current
local features are often unable to describe highly
complex object parts. In these cases the global
descriptor contains sophisticated statistics about
the image content.

A standard way to apply the BoF idea to kernel-
based classifiers is to use the calculated histogram
as a feature vector and apply a traditional kernel
function such as the radial basis function kernel.
In contrast, we define the kernel function directly
on images. The Spatial Pyramid Matching Kernel
as proposed by Lazebnik et al. [8] extends the BoF
idea and divides the image recursively into cells
(e.g. 2×2 cells). In each cell the BoF histogram is
calculated and the kernel value is computed using
a weighted combination of histogram intersection
kernels corresponding to each cell. Each of the
four local feature types presented in Sect. 4 yields
a different kernel, which can be combined with GP
model selection as explained in Sect. 3.4.

6 Experiments

In the following we empirically support the follow-
ing hypotheses:

1. Our method significantly outperforms our pre-
vious approach [9] (Sect. 6.3).

2. GP regression outperforms Laplace approx-
imation (Sect. 6.3).

3. Generic object recognition benefits from range
information (Sect. 6.2).

4. Combining only range image kernels by GP
likelihood optimisation leads to better results
than fixed equal kernel weights. However,
weight optimisation is not beneficial when all
kernels and few training examples are used
(Sect. 6.2).

5. Local range features computed using surface
normals lead to the best recognition perform-
ance (Sect. 6.1).

http://www.colordescriptors.com
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Figure 3: Some examples of image pairs included in

the dataset of [16] with images obtained from a ToF

camera and a visual sensor. From top to bottom: cars,

animals, cups, fruits and toys. The dataset includes

high intraclass variabilities (animals, fruits, toys) and

small interclass distance (animals and toys).

We used the object category dataset presented in
[16] in all evaluation experiments. Note that this
database is the only available dataset for generic
object recognition that provides both Time-of-Flight
camera images and images from a CCD camera.

The database of [16] consists of a large set of 2d/3d
images obtained from a CCD camera and a Time-
of-Flight camera [2], which is a PMD Vision 19k
with a resolution of 160 × 120 pixels. Examples
can be found in Figure 3. The images belong to five
different generic object categories (cars, toys, cups,
fruits and animals). Each category consists of
seven object instances with 32 image pairs. Images
can contain multiple instances of the same class,
large viewpoint and orientation variations, partial
occlusion (e.g. by other objects), truncation (e.g.
by the image boundaries) as well as background
clutter.

In contrast to our previous work [16], which use a
predefined split into a training set with 100 images
and a test set of 60 images for each category, we
evaluate our approach using a varying number g of
object instances for training (32g image pairs) and
the remaining images of the dataset for testing. As
a performance measure we use the mean of the av-
erage recognition rate obtained from 50 evaluations
with a random selection of training instances.

6.1 Evaluation of Range Feature Types

First of all, we compare the performance for all
local range features presented in Sect. 4.2. Clas-

sification is done with GP regression and without
additional hyperparameters. The results are shown
in Figure 4 (a) for different numbers of object in-
stances used for training. The performance rank-
ing of the respective methods is clearly visible and
local features calculated using surface normals res-
ult in the best average recognition rate.

6.2 Evaluation of GP Classification and
Kernel Combination

Let us have a look on the performance of GP re-
gression compared to approximate GP classifica-
tion with Laplace approximation (LA). Figure 4 (c)
shows the performance of both methods using the
image kernel function of the CCD camera. GP
regression significantly outperforms LA, which is
a surprising result because of the theoretical suit-
ability of LA for classification problems. We also
tested LA with hyperparameter optimisation of the
length-scale ` included in the noise model and de-
fined by equation (6). This additional hyperpara-
meter optimisation leads to a small performance
gain, but is still inferior to GP regression.

Figure 4 (b) shows that by combining multiple
range kernels, the categorisation performance in-
creases compared to single range kernel functions.
The best method is GP regression with weights
optimised by likelihood optimisation as presented
in Sect. 3.4. As also observed in the previous ex-
periment, LA does not lead to a performance gain,
even with hyperparameter optimisation.

The results for combined image kernels of both
sensors are shown in Figure 4 (d). Combining
range data from the ToF sensor and images of
the visual sensor leads to a superior categorisation
performance (76.3% using 1 instance) compared to
the best results using a single sensor (71% with
1 instance). The performance gain due to sensor
combination is most prevalent for few training ex-
amples or object instances. An interesting fact is
that in this case we do not benefit from weight
optimisation for kernel combination. This is likely
due to over-fitting in the presence of the highly
discriminative colour kernel. Therefore, one should
prefer to use equal weights in those scenarios.

6.3 Comparison with Previous Work

We also compared our method with our previous
approach [16] and its extension using dense sampling
[9]. Note that these works are the only ones provid-
ing methods for ToF-based categorisation. In this
experiment the same number of training examples
is used to allow direct comparison of the recog-
nition rates. The results are shown in Table 1.
Our approach utilising GP regression and hyper-
parameter optimisation significantly outperforms
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Figure 4: Evaluation of (a) different types of range features; (b) GP methods with multiple range features; (c)

GP methods with colour features; (d) and combined features from the CCD camera and the ToF camera. 32

image pairs corresponds to one object instance or type.

Table 1: Comparison of our GP based approach

to previous work with an equal number of training

examples. (s) denotes range features computed on

interest points only.

Ref. Method Features
Recog.
Rate

[16] Boosting range feat. (s) 39.8 %
[9] Boosting range features 62.8 %

Ours GP Reg. range features 79.2 %

[16] Boosting comb. feat. (s) 64.2 %
[9] Boosting combined feat. 78.4 %

Ours GP Reg. combined feat. 88.1 %

their approach for single sensor data from the ToF
camera and combined information of both sensors.
Even by using range features only we achieve 79.2%
average recognition rate which is superior to the
overall classification system of [9] with a recogni-
tion rate of 78.4%. The confusion matrix in Fig-
ure 5 highlights the still existing classification dif-
ficulties.

7 Conclusions and Further Work

We present an approach to generic object recogni-
tion using combined information obtained from a
CCD camera and a Time-of-Flight camera. Our
method is based on Gaussian process (GP) classi-
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Figure 5: Results of our GP approach represented as a

confusion matrix. Only values above 3% are displayed

and highlight difficult cases.

fication and kernel functions computed using differ-
ent types of local features. This framework allows
us to study various aspects of image categorisation
with GP and lead to interesting results such as the
superiority of GP regression compared to Laplace
approximation. We also observe that Bayesian ker-
nel combination does not always lead to better
results compared to equally weighted kernels espe-
cially for few training examples and with a single
highly discriminative kernel.

An interesting direction for future research would



be to incorporate the variable sensor uncertainty
of time-of-flight sensors directly into the problem
of kernel combination. This uncertainty is directly
available for each pixel of those cameras and might
give hints about whether to trust the range-based
kernel in situations where range estimation is not
reliable (such as black surfaces).
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