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Abstract. The human ability to learn difficult object categories from
just a few views is often explained by an extensive use of knowledge from
related classes. In this work we study the use of feature relevance as prior
information from similar binary classification tasks. An approach is pre-
sented which is capable to use this information to increase the recognition
performance for learning with few examples on a new binary classifica-
tion task. Feature relevance probabilities are estimated by a randomized
decision forest of a related task and used as a prior distribution in the
construction of a new forest. Experiments in an image categorization
scenario show a significant performance gain in the case of few training
examples.

1 Introduction

What is the minimum number of training examples to build robust classification
systems? As a human just a single view of one object instance is sufficient in most
cases; a machine with current state-of-the-art methods often needs hundreds and
thousands of samples.

One possible reason for this gap could be the inability of current systems to
determine relevant features of a large pool of generic features from few examples.
Another reason is suggested by psychological studies [1] which argue that a
key concept of the human ability to recognize from few examples is mainly the
concept of interclass or knowledge transfer. It states that prior knowledge from
previously learned categories is the most important additional information source
when learning object models from weak representations or few examples [2].

The goal of this paper is to improve the recognition performance of an object
recognition system for the case of few training examples using the idea of both
explanations. We argue that transferring the relevance of features from related
tasks can be very helpful to increase the generalization performance. Feature
relevance can be roughly defined as the usefulness of a feature value to predict
the class of an object instance mostly defined in terms of mutual information [3].
To give an illustrative example of our transfer idea, consider the recognition of a
new animal class. With the aid of prior knowledge from related animal classes,
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Fig. 1. Illustration of the general principle of our approach: Feature relevance is esti-
mated from a support task and used to regularize the feature selection in the training
process (randomized decision forest) of a target task with few training examples. The
probabilities and feature visualizations are directly obtained from our image catego-
rization task.

such as the importance of typical body parts like hooves, legs and head, the
separation to other categories becomes much easier.

We concentrate on knowledge transfer between two binary classification tasks.
A related or support task with a relative large number of training examples and
a target task with few training examples is given. We assume that support task
and target task share a common set of relevant features. Therefore probabilities
of feature relevance for a support task are estimated in a preliminary step. This
estimation can use a large number of training examples and thus yields more
accurate results than an estimation using just few training examples of the tar-
get task. The estimated distribution of feature relevance can then be utilized
in the construction process of a randomized decision forest [4]. In contrast to
other work [5] which uses a uniform feature distribution, the prior information
increases the probability of a relevant feature to be selected for the target task.
Fig. 1 provides an overview of this idea.

The remainder of the paper is organized as follows. First of all, we will briefly
review related work on object recognition using prior knowledge from related
tasks. In Sect. 3 our method is described by first outlining the relationship to
Bayesian model averaging. It shows the relationship of our method to the defi-
nition of a prior distribution on hypotheses. An estimation technique of feature
relevance using a randomized decision forest follows in Sect. 4. Experiments in
Sect. 5 show the benefits of our approach in an image categorization task. A
summary of our findings and a discussion of future research directions conclude
the paper.
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2 Related Work

Previous work using the interclass transfer varies significantly in the type of
information transferred from related object classes. An intuitive assumption is
that similar classes share common geometric intraclass transformations. The
Congealing approach of Miller et al. [6] therefore tries to estimate those trans-
formations and use them to increase the amount of training data of a target class.
For example, a single training image of a letter in a text recognition setting can
be transformed using typical rotations estimated from other letters. Another
idea is to assume shared structures in feature space and estimate a metric or
transformation from support classes [7, 8]. This leads to methods similar to lin-
ear discriminant analysis. Alternatively, Fei-Fei et al. [9] develop a generative
framework with maximum-a-posteriori estimation (MAP) of model parameters
using a prior distribution estimated from support classes.

The approach of Rodner and Denzler [5] utilizes MAP estimation in a sim-
ilar sense and re-estimates leaf probabilities of decision trees. As opposed to
the approach presented in this paper which builds new decision trees from the
scratch, their approach is based on a fixed pre-built decision tree and a fixed set
of features not weighted due to their relevancy.

Shared relevant features and class boundaries are exploited in the work of
Torralba et al. [10]. They develop a boosting technique that jointly learns several
binary classification tasks similar to the combined boosting idea of [11]. Lee
et al. [12] transfer feature relevance as a prior distribution on a weight vector
in a generalized linear model. Our work is similar to their underlying idea of
transfering feature relevance. In contrast prior knowledge in our work is defined
using the probability of a feature to be relevant instead of a prior distribution on
a specific model parameter. We will show that our approach additionally allows
to use a state-of-the-art classifier in form of randomized decision trees [4].

3 Transfer of Feature Relevance (TFR)

Given few training examples a learner tends to overfit and a classification decision
is often based on irrelevant or approximately irrelevant features [3]. The goal of
our approach is to reduce this overfitting by incorporating a prior distribution
β on relevant features.

To describe this more precisely, let us first define some simple notations
used in the remainder of this paper. Let T S = (xi, yi)ni=1 be a set of training
examples of a given supporting binary classification task with yi ∈ {0, 1} and
object instances xi ∈ I (such as an image in an image categorization scenario
or an arbitrary multi-dimensional oberservation I ⊆ Rm). Furthermore let F
be an application-specific set of features f : I → R that can be calculated
on a given object instance. A feature f is said to be relevant for a specific
task iff ∃(x, y) ∈ I × {0, 1} : p(f(x), y|x) 6= p(f(x)|x) p(y|x) and thus retains
information about y given x.

Our approach to transfer learning relies on the assumption, that support task
and target task share a set R ⊆ F of relevant features. We therefore transfer
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the probability βi of a feature fi to be relevant using the training examples T S
of the related task:

p(R̃ | F) = p(R̃ | F , T S) =
∏
fi∈R̃

p(fi ∈ R | F , T S)︸ ︷︷ ︸
βi

. (1)

The last reformulation in (1) assumes that the relevance of features is indepen-
dently distributed. While we delay the estimation of β to Sect. 4, the following
section shows that β can be used as a prior distribution on the set of possible
hypotheses or models for the target task. This also highlights that our prior
knowledge can be easily integrated in the concept of randomized classifier en-
sembles and specially the randomized decision tree approach of [4].

3.1 Incorporation of TFR into Randomized Classifier Ensembles

We will now describe the randomized forest approach of Geurts et al. [4] in
a theoretical framework related to Bayesian model averaging. This allows to
motivate the transfer of feature relevance as a Bayesian approach of defining a
prior distribution on models or hypotheses.

The final goal is to estimate the probability of the event Ω that a previously
unseen object instance x belongs to class y = 1 conditioned on the set of few
training examples of the target task T T and the set of all possible features F .
As a classification model we will use an ensemble of base models h (in our case
non-randomized single decision trees) in the following sense:

p(Ω | x, T T ,F) =
∫
h

p(Ω | x, h) p(h | T T ,F) dh . (2)

The model h is often assumed to be deterministic for a given training and feature
set, but there are multiple ways to sample from those sets and thus generate
multiple models. One idea is the concept of bagging [13] which uses random
subsets of the training data. As proposed in [13] and [4] another possibility is to
use random subsets of all features. This approach can be regarded as Bayesian
model averaging and reflects our uncertainty about the setR of relevant features:

p(h | T T ,F) =
∑
R̃⊆F

p(h | T T , R̃) p(R̃ | F) . (3)

The distribution p(R̃ | F) describes the probability that R̃ is the set of relevant
features. A base model h is deterministic given a training set and the set of
relevant features: p(h | T T , R̃) = δ(h − h(T T , R̃)). Combining all equations
yields the final classification model:

p(Ω | x, T T ,F) =
∑
R̃⊆F

p(Ω | x, h(T T , R̃)) p(R̃ | F) . (4)
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This sum can not be computed efficiently for large feature spaces, therefore we
can approximate it by simple Monte Carlo estimation:

p(Ω | x, T T ,F) =
1
M

M∑
i=1

p(Ω | x, h(T T ,Ri)) . (5)

Feature subsetsRi are sampled from p(R̃ | F). This distribution is often assumed
to be uniform and samples of only a fixed number of training instances |R̃| = m
are used [4]. This assumes that we have a prior estimate of |R| or the integral
of (4) can be nevertheless approximated by a subspace of the power set of F .

We now apply the idea of our transfer learning technique that was described
at the beginning of Sect. 3. Instead of using a uniform distribution p(R̃ | F) one
can use the probabilities βi = p(fi ∈ R | F , T S) obtained from the related class.
This prior information reduces the uncertainty of the learner about the optimal
set of relevant features.

In the following section we will briefly outline the special characteristics of
randomized decision trees and the connection to the previous description of
general randomized ensembles.

3.2 Randomized Decision Trees

As we use randomized decision trees [4] our base models are decision tree clas-
sifiers. Those classifiers are binary trees with two types of nodes. Each inner
node represents a weak classifier, a feature f and a threshold, which defines a
hyperplane in feature space and thus determines the traversal of a new example
in the tree. The traversal ends in a leaf node n. Each of those nodes is associated
with a posterior distribution p(Ω | n), which is an estimation of the probability
of the object class given that this specific leaf is reached. Building a tree is done
by iteratively splitting the training set with the most informative weak classifier.
The selection of a weak classifier is done by choosing the weak classifier with the
highest gain in information from a random fraction of features R and possible
thresholds.

Note that in contrast to the theoretical explanation in Sect. 3.1, the selection
of a random subset of features is performed in each node rather than a single
time for the whole decision tree. This fact is also highlighted by the illustration
in Fig. 1. Relevant features are sampled from the distribution β in each split
node during the training process.

Using just few training examples leads to decision trees of small depth. Due
to the model averaging technique described in the previous section and by using
the idea of bagging [13] they still allow to build robust classifiers.

4 Estimating Feature Relevance using Randomized
Decision Forests

As pointed out by Rogers and Gunn [14], the use of ensembles of decision trees
allows to provide robust estimates of feature relevance that also incorporates
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dependence between features. Our technique is similar to their method which
uses a modified average mutual information between a feature and the class
variable y in each inner node.

The first step to estimate underlying feature relevance of the supporting
task is the training of a randomized decision forest with all training examples.
Afterwards we count the number of times ci a feature fi is used in a split node.
A feature with a high occurrence ci is likely to be relevant for this task. We did
not directly use the mutual information associated with a split node because our
goal is to estimate a well defined distribution rather than a relevance ranking.

To obtain the final vector β of feature relevance, we use maximum-a-posteriori
estimation:

βMAP = arg max
β

p(T S | β) p(β | α) = arg max
β

(∏
i

βci
i

)
p(β | α) (6)

with α being the hyperparameter of a Dirichlet prior p(β) and ∀i : αi = α.
Without this prior distribution, the optimal β is the normalized vector c of
all counts. The prior distribution can be thought of as a smoothing term, that
prevents zero probability of relevance for some features. This is theoretically
important if there is a feature fi that is completely irrelevant for the supporting
tasks, but with discriminative power in the target class.

In Sect. 5.2 we evaluate the influence of parameter α. Surprisingly it turns
out that in our experimental setting a flat prior distribution (α = 1) is sufficient.

5 Experiments

We experimentally evaluated our approach to illustrate the benefits of transfer-
ring feature relevance from related tasks. In the following we empirically validate
the following hypotheses:

1. Transferring feature relevance (TFR) from related tasks helps to improve
recognition performance in the case of few examples.

2. The benefit is most prevalent, if the supporting task is visually similar to
the target task.

3. A smoothing of feature relevance is not necessary (α = 1).

We use image data from the Caltech 101 dataset [9] to show the applicability
to image categorization tasks. Three classes were used to conduct binary classi-
fication tasks: Okapi, Gerenuk and Chair vs. the Caltech background class with
200 training images (cf. Fig. 2).

To use the transfer of feature relevance supporting task and target task should
use a common feature representation. In our experiments we used a bag-of-
features representation as described in Sect. 5.1. Therefore a bag-of-features
codebook of the supporting class is used to calculate features of the target class.

Measuring the performance of the binary classification tasks is done by the
area under the ROC curve (AUC). Unless additionally specified we obtain a
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Fig. 2. Example images of all three classes from the Caltech 101 database [9] which
are used for evaluation: Okapi, Gerenuk and Chair.

statistically meaningful estimate of the performance by calculating the average
of 10 runs with a random subset of the training data. Due to the behavior of
randomized decision trees for each of those subsets the classifier is trained and
tested 50 times and the performance values are also averaged. This results in
500 runs in total which produce the final AUC value for a specific setting.

5.1 Feature Extraction

A standard approach to image categorization is the bag-of-features idea. A quan-
tization of local features, which is often called a codebook, is computed at the
time of training. For each image a histogram can then be calculated which counts
for each codebook entry the number of matching local features.

The method of [15], which utilizes a randomized decision forest as a clustering
mechanism, is used to construct the codebook This codebook generation proce-
dure showed superior results compared to standard k-Means in all experiments.
It also allows to create large codebooks in a few seconds on a standard PC. Local
features are extracted for each image by dense sampling of feature points with
a horizontal/vertical pixel spacing of 10 pixels. Descriptors are calculated using
Opponent-SIFT [16].

5.2 Dirichlet Parameter

In a first experiment we evaluate the influence of the generic prior distribution
in equation (6). This data-independent prior distribution serves as a smoothing
term for the estimation of relevant features. We build a randomized decision
forest using a fixed set of 30 examples of the Okapi class and 200 examples of
the background class. From this randomized decision forest we estimate feature
relevance as described in Sect. 4 with a varying Dirichlet parameter α. These
estimates are used afterwards to classify a set of one training example from the
Gerenuk class and the same background images used before. Average perfor-
mance values and standard deviation of 50 runs are illustrated in Fig. 3(a).

It can be seen that with an increasing value of α the performance drops and
the optimal value remains at α = 1. For this reason we fix α to this value,
which corresponds to maximum likelihood estimation of β. This highlights that
the complete removal of features which are irrelevant for the supporting task
(p(fi ∈ R) = 0) is beneficial. This may be not the case in situations with a
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Fig. 3. (a) Evaluation of the hyper-parameter α of the Dirichlet distribution, which is
used to smooth the probabilities of feature relevance. (b) Influence of the number of
decision trees in the forest.

smaller feature set and features, that are completely irrelevant for the supporting
task but essential for a target task.

5.3 Influence of the Ensemble Size

We analyzed the influence of the number of base learners in the ensemble. The
the same experiment as in Sect. 5.2 is performed with a varying size of the
ensemble. The results are illustrated in Fig. 3(b).

The performance obviously increases with an increasing number of base learn-
ers in the ensemble which was also proven theoretically and empirically in [13].
Another interesting effect is that the performance benefit of transferring feature
relevance is most prevalent when a small number of base learners are used. For
all other experiments we utilized randomized decision forests with 200 trees.

5.4 TFR Improves Learning with Few Examples

We analyzed the performance of the binary classification task Okapi class vs.
background class with different types of knowledge transfer: transfer of feature
relevance using the support classes Gerenuk or Chair; using only the codebook
of the supporting class; no knowledge transfer of other tasks at all. Note that
no knowledge transfer means that a codebook is generated only from training
examples of the target task. Fig. 4(a) illustrates the resulting recognition rates.
Additionally Fig. 4(b) shows the same results for the class Gerenuk with prior
information learned also from the Okapi task.

At first it can be seen that transferring feature relevance from related tasks
really improves the recognition performance compared to a method which uses
no knowledge transfer at all. This performance benefit is most prevalent with a
visually similar class such as the related animal class. Using prior knowledge the
chair class is sometimes also beneficial. It is most likely that this is due to the
learning of natural generic prior knowledge, which also showed in other work to
improve recognition performance [9].
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Fig. 4. Experiments with the target task 4(a) “Okapi” and 4(b) “Gerenuk” vs. back-
ground and several types of support tasks with a varying number of training examples
of the target task.

Transferring only the codebook from the supporting task also increases the
performance. The difference between TFR and this method in Fig. 4(b) for one
training example might seem to be minor at first glance and insignificant due to
a standard deviation of about 1% in the previous experiment (Fig. 3(a)). But
using a paired t-test and the corresponding average results of all 10 training and
test runs, we are able to show significance with a level of p < 0.003.

6 Conclusion

We presented a classification approach that transfers knowledge from related
classification tasks to improve the recognition performance on a task with few
training examples. The key concept of our method is the transfer of feature rel-
evance. We use probabilities of feature relevance, which are estimated using a
randomized decision forest of a related task. Those probabilities form a distri-
bution that is used to select a random subset of features during the building
process of a randomized decision forest for the target class with few examples.
The relationship of our method to Bayesian model averaging was outlined. It
shows that the technique indirectly uses a prior distribution of hypotheses to
regularize the training of a target classification task.

Experiments on an image categorization task show a significant performance
gain. This performance benefit is most striking if the supporting binary classifi-
cation task is visually related to the task with few training examples.

7 Further Work

The presented method can be applied to arbitrary machine learning problems
and is not restricted to generic image categorization. For this reason we plan
to apply the classification technique to other application areas, such as object
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localization. An interesting open question is, whether the general idea to transfer
feature relevance can be applied to other classifier techniques such as support
vector machines. Additionally our method of feature relevance estimation should
be compared to other methods of feature selection.
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