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UNDERSTANDING PREDICTORS USING CAUSAL INFERENCE

USING CAUSAL INFERENCE TO GLOBALLY
UNDERSTAND BLACK BOX PREDICTORS BEYOND
SALIENCY MAPS

Christian Reimers!'?, Jakob Runge?, Joachim Denzler'?

Abstract—State-of-the-art machine learning methods,
especially deep neural networks, have reached impressive
results in many prediction and classification tasks. Rising
complexity and automatic feature selection make the
resulting learned models hard to interpret and turns them
into black boxes. Advances into feature visualization have
mitigated this problem but some shortcomings still exist.
For example, methods only work locally, meaning they
only explain the behavior for single inputs, and they only
identify important parts of the input. In this work, we
propose a method that is also able to decide whether
a feature calculated from the input to an estimator is
globally useful. Since the question about explanatory
power is a causal one, we frame this approach with causal
inference methods.

I. INTRODUCTION

State-of-the-art machine learning methods, especially
deep neural networks, have reached impressive results
in many prediction and classification tasks in computer
vision and beyond. The benefit of these algorithms
for many tasks in Earth system science have been
discussed in [1]. One of the main challenges that
arises when applying these methods is interpretability.
Improved prediction performance comes at the cost of
high complexity. Together with automatic feature selec-
tion introduced by deep learning makes the resulting
estimators difficult to interpret largely rendering them
black boxes.

However, for many applications it is important to
identify the features used in a prediction or classifica-
tion task. This is especially true for applications that are
safety and security relevant, for example in medicine
or autonomous transportation, and for applications in
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which predictions can not be easily verified and, there-
fore, we need domain experts to determine whether
a predicted values makes sense, for example, climate
science.

We will discuss some works that aim to make deep
learning more explainable in section II. Most of those
methods have at least one of the following drawbacks.
First, they only give a local explanation of the estimator,
meaning an explanation that is true for a specific input
and inputs very close to it. In contrast to that, we aim to
produce explanations, that are not only true for single
inputs but global explanations, that are able to explain
most inputs.

Second, they can only assign saliency to parts of the
input. They can not be used to identify whether features,
for example the variance of the input, that are aggregate
functions of the input are used. In most real-world
problems, not the inputs directly are important, but
aggregate functions. If our input is, for example, a grid
of sea surface temperatures in many different positions,
we do not expect a single value to be important towards
a prediction task but an aggregate function such as the
mean or the variance of the whole grid.

Third, they do not handle confounding. They can
identify features of the input that are correlated to the
output of the classifier but they do not check for a causal
link between the input feature and the output. Imagine a
classifier that distinguishes two classes, one consisting
of red circles and one consisting of green squares. If
the classifier only recognizes the shape of the object,
there will still be a high correlation between the color of
the object and the output of the classifier. Our method
respects the label of the input as a confounder.

To understand an estimator, we need to be able
to reason about it. These are questions of causality
studied in the field of causal inference [2] that has
many applications in Earth system science [3]. Methods
from this field allow us to understand which features are
causing estimations on a global scale. These features do
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not have to be part of the input. Our method does not
require any information on the estimator but treats it as
a black box estimator. Hence, it can also be used in a
black box setting, if the estimator is non-differentiable
or if the inner workings of the estimator are completely
unknown.

After we introduce some existing solutions for the
problem of identifying relevant features for an auto-
mated estimator. Afterwards, we introduce the basic
concepts and notations from both, machine learning
and causal inference that we are using throughout this
work. In the fourth section, we describe how a machine
learning approach can be phrased as an SCM and
explain how we can use this to identify features that
are causing the estimation of the function resulting from
the machine learning approach. In the fifth section, we
demonstrate our approach in a toy example. Finally we
discuss open questions and problems of our approach
in the final chapter.

II. RELATED WORK

In this section we introduce existing methods that are
used to explain which features are used by automatic
estimators.

In feature visualization, the goal is to create an input
image that evokes a maximal response from a specific
neuron. If we select this neuron to be in the output layer,
we can find the input that is classified maximally as a
specific class. This input can be understood as a proto-
type of the class. This technique was demonstrated in
[4], [5] . Feature visualization, however, only visualizes
the maximum of the function represented by the Estima-
tor. Since the function can be non-concave and multiple
maxima might exist, feature visualization is a local
explanation around this maximum, while the method
presented in this work is a global method explaining
all estimations. Further, to apply feature visualization,
information on the gradient of the estimator is needed.
In contrast, our method can be applied in the black box
setting where only input-output pairs are known for the
estimator.

The goal of saliency maps is to highlight parts of the
input that have a high influence on the output. There are
multiple ways to derive the saliency of an input. The
first and most straightforward approach is to use the
gradient of the loss function depending on every input
value or some approximation of this gradient. See [6],
[71, [8] for examples of this approach. A slightly more
advanced approach is to Taylor-approximate the learned
function. A first order Taylor-approximation is demon-
strated in [9], [10]. Higher order Taylor-approximations

are used in [11], [9]. A third way to generate saliency
that can also be used for non-differentiable estimators is
substituting parts of the input with a neutral alternative
and record the change in the output as demonstrated for
example in [12]. The problem of this approach is to find
a neutral substitute, since many inputs, for example a
black box in an image might already indicate a certain
class in a classification problem.

Since they only highlight the important parts in one
input, saliency maps are a local explanation method.
The method presented in this work is a global ex-
planation method. Furthermore, the method presented
in this work can not only identify important parts
of the input but also important features that are a
aggregate function of these features. Many algorithms
that calculate saliency maps need information on the
inner workings of the estimator, such as the gradient.
The method presented in this work can be applied to
black-box estimators.

III. BASICS AND NOTATION
A. Machine Learning

Machine learning algorithms are algorithms that can
preform tasks without being explicitly programmed but
instead are presented with examples and learn from
these examples. Machine learning algorithms are mostly
used to train functions that preform either regression or
classification tasks. For this work we focus on neural
networks, even though the method presented here does
not make any assumption on the estimator and can
be applied to any estimator. Deep neural networks
can perform regression and classification. Classification
is performed by regressing the probability for every
class and then using the maximum likelihood classifier,
classifying the input as the most likely class. Therefore,
we focus on the regression task as it is implicitly also
covering the classification task.

We define a machine learning approach as a pair
(T, F) of two functions. The training function 7" maps
a set of labeled training examples {(5,Ys)} onto a set
of weights W

T:P(SxR)— R™
{(5,Ys)} » W
and the inference function F' maps an input example D
and a set of weights W onto a prediction P
F:SxR™ =R
(D,W) +— P.

If, for example, the machine learning method is a linear
estimator, the function 7' is the optimization process

(D
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that maps the training examples on the optimal coef-
ficients and the function F' multiplies the coefficients
with the inputs D. If the machine learning method
is a k-nearest-neighbor approach, the function T is
the identity, such that the set of weights is also the
labeled training set and the function F' is the function
that identifies the k-nearest-neighbors of D in W and
combines their labels into a single prediction for D.

B. Causal Inference

In this work we only use one task of causal infer-
ence. We want to determine, whether one variable is
causing another variable, given all other causal relation
between variables are known. To achieve this we take
the following assumptions.

A structural causal model (SCM) [2] is a triplet
(U,V, E) of exogenous variables U, endogenous vari-
ables V' and a set of functions F. The endogenous
variables often represent the observed variables, the
exogenous variables represent noise in the system and
the functions in F represent the causal mechanisms.

From the functions in F, a directed graph is derived.
The vertices in the graph are the endogenous variables
V' and the graph contains a directed edge from v; € V
to vo € V if vy is used as the input to the function
defining vy. To be able to evaluate the functions, the
graph needs to be a directed acyclic graph (DAG).

Our goal is to identify, whether a certain link in
the DAG exists. Even if all other links in the DAG
are known, we need to employ two assumptions to
be able to determine whether a specific link exists.
The conditional Markov assumption states that two
endogenous variables X,Y are independent given a
subset G C V if G d-separates {X} and {Y} in
the DAG. The faithfulness assumption states that two
processes are only independent given a subset G C V'
if G d-separates {X} and {Y'} in the DAG. Both of
these assumptions are common in the causal inference
literature. Together they give a one-to-one connection
between independence and d-separation in the DAG.
Even though common, these assumptions are violated
in many real applications. We discuss these problems
in Section VI

IV. METHOD

The goal of this work is to identify whether a specific
feature X is used by a black box machine learning
method (7', F) for its prediction P.

We proceed by, first, showing that the machine learn-
ing approach can be modeled by an SCM and construct

Fig. 1: The DAG of the machine learning approach. In
case the Feature X is used by the black box machine
learning method (7, F') to generate the prediction P,
the red link exists.

a possible DAG for the machine learning approach. The
resulting DAG is displayed in Figure 1.

The endogenous variables we look at are the ground
truth G'I" for the prediction, the labeled training set 7',
the set of weights W of the machine learning approach,
the feature X for which we want to identify whether
it is causing the prediction P, the set X of all features
independent of X given G7T', and the prediction P.

We identify the edges of the DAG from the processes
used in the machine learning approach, namely the data
generation and sampling processes used to create the
training set T'S called S and the features X and X
called Sy and the functions F' and 1" described in (2)
and (1).

These processes are represented as edges in the DAG.
The process St is represented as an edge from G7' to
T'S. The process S is represented as an edge from GI’
to X and as an edge from GT to X. An edge from T'S
to W represents T and two edges from X to P and
from W to P represent F'.

The only remaining question is, therefore, whether
an edge between X and P exists. We know that the
prediction can not cause the input feature. If a causal
link between the feature X and the prediction P exists,
it is directed from X to P.

Since we made the causal Markov assumption and
the faithfulness assumption we know that conditional
independence corresponds to d-separation in the DAG.
In the graph we see that {GT'} d-separates { X} and
{P} in the case where X does not cause P and does
not d-separate { X } and { P} in the case where X does
cause P . Hence, to identify whether the feature X is
important for the prediction P of the black-box F', we
check whether

X L P|GT or X L P|GT 3)

holds.
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TABLE I: Results of the experiment for all three esti-
mators used. The p-values that indicate independence
at a confidence level of 0.01 are marked in bold.

Name MSE  p-value A p-value S
F 0.0026 0.5137 0.0014
F 0.0153 0.4576 0.0091
F3 0.0840 0.0052 0.3710
Fy 0 0.05912 0.0728

V. EXPERIMENTS
A. Experimental Setup

To demonstrate that the method is able to identify
features that are used by the black-box predictor for its
prediction we use the following toy data set.

Let o and 8 be independent latent variables that
influence a field A = (ai;); jeq1,.. 8y Of observables
through
“)

Here, ¢; ; ~ N (0, 1) are independent standard normally
distributed and independent of o and 3. The task is to
recover o from A. Note that this task is easy if we know
the data creation mechanism but might be non-trivial if
we are just presented with the data A and the label «.
For the feature X we test in this toy example two
different features. The first is the sample mean

ajj = - i+ f.

- 1
A= N E aj; )
Z?J
and the second is the sample standard deviation
(6)

_ 1 .
S=\w Z(ai,j —4)
2Y)

We compare four estimators. The first estimator F}
is the sample standard deviation estimator

Fi(A)=5. 7

The second estimator F5 is a fully convolutional neural
network. The network consists of three convolutional
layers with 4, 16 and 64 kernels of size 2 x 2 and
stride 2 x 2 followed by one convolutional layer with
one kernel of size 1 x 1. All but the last layer have
ReLU activations. We trained the neural network using
Tensorflow [13] with gradient descent for 200000 steps
using a learning rate of 0.00003. The third estimator Fj
is a linear estimator. To optimize F» and F3 we used
a training set of 20000 labeled examples. The fourth
estimator F} is the oracle estimator that just reports the
ground truth data .

For our experiment we used an 8 x 8 array for A.
The variables o and 3 are sampled from a uniform dis-
tribution. We evaluated every estimator on an identical
set of 10000 examples not used for optimizing F» and
F35. The results can be observed in Table I. We report
for every estimator the mean squared error between the
true value of o and the estimated value, the confidence
value “p-value S” for the event

F(A) L S|a ®)

and the confidence value “p-value A” for the event

F(A) L Aa. )

To calculate this p-values we used the fast conditional
independence test presented in [14].

B. Results

For the optimal estimator F7, the mean squared error
is small. For this estimator, we know that the only used
feature is the sample standard deviation. Our method
is able to correctly identify that the feature S is used
by I} and the feature A is not used by Fy. Further
for the linear estimator F3 we know that it can not
use the non-linear standard deviation estimate. We find,
the linear estimator does not use the sample standard
deviation, but the sample mean as a feature. It also
has the highest mean squared error. For the deep neural
network estimator F5 we observe that the mean squared
error is low, and the sample standard deviation is used
as a feature. For the oracle F; we observe that none of
the two features of the input is used for the estimation.
This is correct, since the oracle reports the correct value
independent of the input.

C. Comparison to Baseline-Methods

For comparison, in Figure 2 we display the output of
the methods described in Section II. We display for all
four estimators described in Section V-A the gradient
of the output depending on each input (2a), the product
of the gradient and the input (2b) and the change of
the input if we replace one input by the mean of the
other inputs (2c). In our oppinion, it is not possible to
infere which features are used by the estimator from
this methods. The only exception is estimator F; wich
is can be identifyed as independent of the inputs.

VI. DISCUSSION AND OUTLOOK

The toy example showcases two use cases that we
imagine for the approach presented in this work. The
fist use case is to understand fail cases of estimators.
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(a) The gradient of the estimator de- (b) The product of gradient of the (c) The difference of the output of

pending on the inputs.

estimator and the value of the input. the estimater when replacing one of

the inputs by the mean of the other
inputs.

Fig. 2: In every subfigure the results of one baseline method is displayed. In the top line of every subfigure shows
the results for estimators F; and F5, in the second line the results for estimators F3 and F}. Since the oracle
classifier F; does not depend on the inputs, the results for F} is always zero for all inputs.

In the case of the estimator F3, the method helps us to
understand why it failed and might warn us that it will
fail even more for examples with a very different mean.
The second use case is to better understand the task at
hand. If we have trained an estimator of high quality
like Fy or F5, we can use the method to identify features
that are relevant to solve the task. The experiment on
the estimator F; demonstrates that conditioning on the
ground truth is important and leads to more information
than simply checking for independence. The method
was able to correctly identify that no feature was used
by the estimator F};, even though the feature S is highly
dependent with the output of the estimator.

The results on the toy data are very promising. Still,
we think that a lot of future work is needed to make
this method applicable to a wider range of data and to
use it effectively on real-world data.

We assume that the data generation is caused by the
ground truth and no further confounding, mechanism in
the data generation exists. To use this method we need
to be able to condition on the data generation process.
We assume this drawback can be tackled using the
work described in [15], [16], [17] but we leave this for
future work. Further we rely on the causal Markov and
the faithfulness assumption. These assuptions can be
violated even in simple situations such as an XOR-gate,
a trivial function or effects that cancel out. Furthermore,
they are very high level assumptions that are hard to
validate from other properties of the SCM. Hence, it is
difficult to know whether the method of this paper can
be used for a given black box predictor. Testing continu-
ous variables for conditional independence, using only
samples, is also a hard problem and often additional

assumptions have to be made to solve it. Some of
the drawbacks of the conditional independence test we
used can be found in [14]. When using the approach
presented here, one should spend time to decide on an
appropriate conditional independence test based on the
data used. In this work we only demonstrated a toy
example with independent noise. To apply this method
to real-world situations in climate science it has to
handle dynamic noise and work on sparse data. We
leave this for future work. A further drawback of the
method is that it has to be presented with candidate
features and does not generate features itself. We think,
however, that this method can still help in situations
in which, due to prior domain knowledge, candidate
features already exist or can be generated using other
methods.

Througout this work we use the notation of causality
defined by the SCM. One has to be careful when linking
this concept to the colloquial concept of “causes”.

Despite these drawbacks making the method not
applicable in some situations, it is still very useful in
situations where it can be applied. Its main advantages
are that it can provide global explanation for features
that are not directly part of the input. Since climate
science estimations often depend on features calculated
from multiple measurements distributed in space and
time and rarely single measurements cause an estima-
tion, these advantages are needed in the field of climate
science.

REFERENCES

[1] M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Den-
zler, N. Carvalhais, et al., “Deep learning and process un-



REIMERS ET AL.

9th International Workshop on Climate Informatics
October 02-04, 2019

@

Hosted by Ecole Normale Supérieure, Paris, France

(2]
(3]

(4]

(5]

(6]

(71

(8]

(91

(10]

(11]

[12]

[13]

[14]

[15]

(16]

derstanding for data-driven earth system science,” Nature,
vol. 566, no. 7743, p. 195, 2019.

J. Pearl et al., “Causal inference in statistics: An overview,’
Statistics surveys, vol. 3, pp. 96-146, 2009.

J. Runge, S. Bathiany, E. Bollt, G. Camps-Valls, D. Coumou,
E. Deyle, C. Glymour, M. Kretschmer, M. D. Mahecha,
J. Muioz-Mari, et al., “Inferring causation from time series in
earth system sciences,” Nature communications, vol. 10, no. 1,
p. 2553, 2019.

C. Olah, A. Mordvintsev, and L. Schubert, “Feature vi-
sualization,” Distill, 2017.  https://distill.pub/2017/feature-
visualization.

D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visual-
izing higher-layer features of a deep network,” University of
Montreal, vol. 1341, no. 3, p. 1, 2009.

K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside
convolutional networks: Visualising image classification mod-
els and saliency maps,” ICLR 2014 workshop submission,
December 2013.

M. D. Zeiler and R. Fergus, “Visualizing and understanding
convolutional networks,” in European conference on computer
vision, pp. 818-833, Springer, 2014.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh,
and D. Batra, “Grad-cam: Visual explanations from deep net-
works via gradient-based localization,” in Proceedings of the
IEEE International Conference on Computer Vision, pp. 618—
626, 2017.

S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Miiller,
and W. Samek, “On pixel-wise explanations for non-linear
classifier decisions by layer-wise relevance propagation,” PloS
one, vol. 10, no. 7, p. e0130140, 2015.

K. R. Mopuri, U. Garg, and R. V. Babu, “Cnn fixations:
an unraveling approach to visualize the discriminative image
regions,” IEEE Transactions on Image Processing, vol. 28,
no. 5, pp. 2116-2125, 2018.

G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and
K.-R. Miiller, “Explaining nonlinear classification decisions
with deep taylor decomposition,” Pattern Recognition, vol. 65,
pp. 211-222, 2017.

L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling, “Vi-
sualizing deep neural network decisions: Prediction difference
analysis,” arXiv preprint arXiv:1702.04595, 2017.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, 1. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Leven-
berg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, 1. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015. Software available from tensorflow.org.

K. Chalupka, P. Perona, and F. Eberhardt, “Fast conditional
independence test for vector variables with large sample sizes,”
arXiv preprint arXiv:1804.02747, 2018.

C. Louizos, U. Shalit, J. M. Mooij, D. Sontag, R. Zemel, and
M. Welling, “Causal effect inference with deep latent-variable
models,” in Advances in Neural Information Processing Sys-
tems, pp. 6446-6456, 2017.

V. T. Trifunov, M. Shadaydeh, J. Runge, V. Eyring, M. Re-
ichstein, and J. Denzler, “Nonlinear causal link estimation
under hidden confounding with an application to time-series
anomaly detection,” in German Conference on Pattern Recog-
nition (GCPR), 2019.

[17] V. T. Trifunov, M. Shadaydeh, J. Runge, V. Eyring, M. Re-

ichstein, and J. Denzler, “Causal link estimation under hidden
confounding in ecological time series,” in Climate Informatics
Workshop, 2019.



