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Abstract. Bias in classifiers is a severe issue of modern deep learning
methods, especially for their application in safety- and security-critical
areas. Often, the bias of a classifier is a direct consequence of a bias in the
training set, frequently caused by the co-occurrence of relevant features
and irrelevant ones. To mitigate this issue, we require learning algo-
rithms that prevent the propagation of known bias from the dataset into
the classifier. We present a novel adversarial debiasing method, which
addresses a feature of which we know that it is spuriously connected to
the labels of training images but statistically independent of the labels
for test images. The debiasing stops the classifier from falsly identify-
ing this irrelevant feature as important. Irrelevant features co-occur with
important features in a wide range of bias-related problems for many
computer vision tasks, such as automatic skin cancer detection or driver
assistance. We argue by a mathematical proof that our approach is supe-
rior to existing techniques for the abovementioned bias. Our experiments
show that our approach performs better than the state-of-the-art on a
well-known benchmark dataset with real-world images of cats and dogs.

Keywords: Adversarial Debiasing · Causality · Conditional Dependence.

1 Introduction

Deep neural networks have demonstrated impressive performances in many com-
puter vision and machine learning tasks, including safety- and security-critical
applications such as skin cancer detection [15] or predicting recidivism [4]. How-
ever, many people and domain experts advise against employing deep learning in
those applications, even if classifiers outperform human experts, as in skin lesion
classification [20]. One reason for their concerns is bias in the classifiers. Indeed,
almost all image datasets contain some kind of bias [22] and, consequently, the
performance of classifiers varies significantly across subgroups [4,13].

One major reason for bias in classifiers is dataset bias. Every dataset is a
unique slice through the visual world [19]. Therefore, an image dataset do not
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Fig. 1: In adversarial debiasing, a debiasing loss Ldb is often used to enforce
independence between the bias variable B and a representation R. In this work,
we show that it is beneficial to condition this independence on the label L.

represent the real world perfectly but contains unwanted dependencies between
meaningless features and the labels of its samples. This spurious connection can
be caused by incautious data collection or by justified concerns, if, for example,
the acquirement of particular examples is dangerous. A classifier trained on
such a dataset might pick the spuriously dependent feature to predict the label
and is, thus, biased. Mitigating such a bias is challenging even if the spurious
connection is known. To this end, it is important to understand the nature of the
spurious dependence. Therefore, we start our investigation at the data generation
process. We provide a formal description of the data generation model for a
common computer vision bias in Section 3.1. In contrast to other approaches
that do not provide a model for the data generation process and, hence, rely
solely on empirical evaluations, this allows us to investigate our proposed method
theoretically.

The main contribution of our work is a novel adversarial debiasing strategy.
The basic concept of adversarial debiasing and the idea of our improvement can
be observed in Figure 1. For adversarial debiasing, a second loss Ldb is used in
addition to the regular training loss Lcl of a neural network classifier. This second
loss penalizes the dependence between the bias variable B and an intermediate
representation R from the neural network. The main difference we propose in
this paper is replacing this dependence B 6⊥⊥ R by the conditional dependence
B 6⊥⊥ R |L with L being the label. In fact, it turns out that this conditional
dependence is better suited than the unconditional dependence for the considered
kind of bias. The motivation for this replacement, and a mathematical proof for
its suitability can be found in Section 3.2.

To use our new conditional independence criterion for adversarial debiasing,
we have to implement it as a differentiable loss. We provide three possible im-
plementations in Section 3.3. We demonstrate that these new loss functions lead
to an increase in accuracy on unbiased test sets. In Section 4, we provide results
of experiments on a synthetic dataset, a dataset with real-world images of cats
and dogs that is used by previous work to evaluate adversarial debiasing, and
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an ablation study to show that the proposed change of the criterion causes the
increase in accuracy.

2 Related Work

Traditionally, adversarial debiasing aims to learn a feature representation that is
informative for a task but independent of the bias. Hence, a second neural net-
work that should predict the bias from the feature representation is introduced
to enforce this independence. The original network for classification and this
second network are then trained in an adversarial fashion. To this end, different
loss functions for the original network are suggested to decrease the performance
of the second network for predicting the bias. Previous work aims at minimizing
the cross-entropy between bias prediction and a uniform distribution [3] or max-
imizing the mean squared error between the reconstruction and the bias [23].
Further approaches enclose the joint maximization of the cross-entropy between
the predicted and true distribution of the bias variable and the entropy of the
distribution of the predicted bias [11] or the minimization of the correlation
between the ground-truth bias and the prediction of the bias [1]. However, as
shown in another study [17], independence is too restrictive as a criterion for
determining whether a deep neural network uses a certain feature. This fact is
also reflected in the experimental results of the abovementioned papers. The re-
sulting classifiers are less biased, but this often leads to decreasing performance
on unbiased test sets. As one example, significantly less bias in an age classifier
trained on a dataset biased by gender has been reported [3], but the classifica-
tion performance on an unbiased test set decreased from 0.789 to 0.781. Our
work is fundamentally different. Instead of a different loss, we suggest a differ-
ent criterion to determine whether a neural network uses a feature. We use the
conditional independence criterion proposed by [17] rather than independence
between the representation and the bias.

While the vast majority of adversarial debiasing methods acknowledge that
bias has many forms, they rarely link the suggested solutions to the processes
that generate the biased data. Instead, they rely exclusively on empirical evalu-
ations. In contrast, we provide a specific model for a specific kind of bias as well
as a theoretical proof that our approach is better suited for this case.

3 Proposed Conditional Adversarial Debiasing Approach

In this section, we motivate our novel approach for adversarial debiasing and
introduce our novel adversarial debiasing criterion. We prove mathematically
that the new criterion fits our specific bias model. Finally, we provide three
possible implementations for loss functions that realize this criterion.

3.1 Bias Model

Different kinds of bias influence visual datasets in various ways [22]. We consider
a specific kind of bias and the corresponding model covers many relevant tasks
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Fig. 2: A graphical representation of the specific bias. Circles represent variables,
dotted circles represent unobserved variables. The label L is only dependent on a
signal S, while the input I is also dependent on some variable B. In the training
set, the signal S influences the variable B due to bias. This is indicated by the
red dashed arrow. In contrast, in the test set, the two are independent.

in computer vision. To describe this bias model, we start with a graphical model
of the underlying data generation process displayed in Figure 2.

For classification tasks, like separating cats from dogs, we assume that a sig-
nal S is contained in and can be extracted from the input I that contains the
relevant information. Following the graphical model, a labeling process generates
the label L (“cat” or “dog”) from this signal S. However, the input I is a mix-
ture of multiple signals. Besides S, another signal B influences I. In the cat/dog
example, B might relate to the furs color. Since the furs color is not meaning-
ful for distinguishing cats from dogs, B is independent of S and L during the
application of the classifier in practice, i.e., on an unbiased test set, B ⊥⊥ L. In
contrast, if taking images of dark-furred dogs would be bad luck, we might find
an unwanted dependence between the signal S and the signal B in a training
set, leading to B 6⊥⊥ L, where we call B the bias variable. This dependence can
be utilized by a classifier to reach a higher accuracy on the training set, resulting
in a biased classifier and a lower accuracy on the test set.

To better understand the direction of the arrow from S to B, we want to
emphasize, that data for a task is selected with a purpose. Images are included
in the dataset because they show cats or dogs and one will, if necessary, de-
liberately accept imbalances in variables like fur-color. In contrast, if one find
that our dataset misrepresents fur-color one would never accept a major misrep-
resentation of the ratio of cats and dogs to compensate for this problem. This
demonstrates, that S influences B through the dataset creation while B does
not influence S.

This bias model covers many, but not all, relevant situations in computer
vision. To this end, we present one example for a situations where the bias
model fits the data, and one example where it does not.

The first example is a driver assistance system that uses a camera to estimate
aquaplaning risk [9]. To train such a system, example images of safe conditions
and aquaplaning conditions are required. While the former can easily be collected
in the wild, it is dangerous to drive a car under aquaplaning conditions. Thus,
images for aquaplaning are collected in a specific facility. In this example, the
signal S is the standing water, and the bias variable B is the location that
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determines the background of the image. Because of the safety risk, they are
dependent in the training set, but not at the time of application.

The second example is a system that predicts absenteeism in the work-
place [2]. If an automated system predicts absenteeism, it should ignore preg-
nancy. Here, the bias variable B is the sex and the signal S is the chance of an
employee to be absent from work. In this situation, similar to many others in
algorithmic fairness, our bias model does not apply because the sex (B) does
also influence the chance to be absent from work (L) during the application.

3.2 Conditional Independence for Debiasing

Deep neural networks unite a feature extractor and a predictor [16]. For adver-
sarial debiasing, we separate the two at some intermediate layer. We denote the
output of the feature extractor with R. Note that it is valid to use the whole
network for feature extraction such that R contains the class predictions. Both
networks are trained using a classification loss Lcl, e.g., cross-entropy loss. Addi-
tionally, a debiasing loss Ldb is used to prevent the extraction of the bias variable
B. For a visualization, see Figure 1. Most approaches for adversarial debiasing
[3,23,1,11] aim to find a representation R of I that is independent of the bias
variable B while still being informative for the label L, i.e.,

R ⊥⊥ B ∧ R 6⊥⊥ L. (1)

In this work, we propose a novel strategy: Instead of independence, we aim for
conditional independence of R and B, given the label L, i.e.,

R ⊥⊥ B |L ∧ R 6⊥⊥ L. (2)

First, we show that our strategy agrees with state-of-the-art results in explaining
deep neural networks [17] and second, that an optimal classifier fulfills the condi-
tional independence (2) but not the independence (1). We prove this statement
for the case that all data generation processes are linear and L is scalar. Thus,
loss functions that enforce the independence (1) will decrease the classifier’s per-
formance, while loss functions that ensure the conditional independence (2) will
not.

The goal of debiasing is to prevent a deep neural network from using a biased
feature. To reach this goal, we first need to determine whether a classifier uses
a feature. So far, most approaches for adversarial debiasing use the dependence
between a feature and the classifier’s prediction to measure whether a classifier
is using a feature. In contrast, we build on previous work for understanding deep
neural networks [17]. While the independence criterion (1) obviously ensures that
a bias variable B is not used for classification, the authors of [17] reveal that
independence is too restrictive to determine whether a deep neural network uses
a certain feature. They employ the framework of causal inference [14] to show
that the ground-truth labels are a confounding variable for features of the input
and the predictions of a deep neural network. In theoretical considerations and
empirical experiments, they further demonstrate that the prediction of a neural
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network and a feature of the input can be dependent even though the feature is
not used by the network. The authors, therefore, suggest using the conditional
independence (2) to determine whether a feature is used by a classifier.

Thus, using the independence criterion (1) is too strict. Even if the deep
neural network ignores the bias, it might not satisfy (1) and, hence, not min-
imize a corresponding loss. Furthermore, minimizing such a loss based on the
independence criterion will likely result in a less accurate classifier. Therefore,
we use the conditional dependence criterion (2) for adversarial debiasing.

To corroborate this claim, we present a mathematical proof for the following
statement. If the bias can be modeled as explained in Section 3.1, the optimal
classifier, which recovers the signal and calculates the correct label for every
input image, fulfills the conditional independence (2) but not the independence
(1). In this work, we only include the proof for the linear, uni-variate case, i.e.,
all data generating processes (Φ, Ψ,Ξ) are linear and L is scalar. However, this
proof can further be extended to the nonlinear case by using a kernel space in
which the data generation processes are linear and replacing covariances with
the inner product of that space.

Theorem 1. If the bias can be modeled as described in Section 3.1, the optimal
classifier fulfills the conditional independence (2) but not the independence (1).

Proof. For this proof, we denote all variables with capital Latin letters. Capital
Greek letters are used for processes, and lower-case Greek letters for their linear
coefficients. The only exception is the optimal classifier denoted by F ∗. First, we
define all functions involved in the model. Afterward, since dependence results
in correlation in the linear case, a simple calculation proves the claim.

Let S denote the signal according to the bias model, as explained in Sec-
tion 3.1. In the linear case, the bias variable B can be split into a part that is
fully determined by S and a part that is independent of S. Let B∗ be the part
of the bias variable that is independent of S, e.g., noise. According to the bias
model, the bias variable B, the image I, and the label L are given by:

B = α1S + α2B
∗ =: Φ (S,B∗) , (3)

I =: Ψ (S,B) = Ψ (S, Φ (S,B∗)) , (4)

L = ζ1S =: Ξ (S) . (5)

Thus, the label L can be calculated from the signal S only. The optimal solution
F ∗ of the machine learning problem will recover the signal and calculate the
label. By the assumptions of the bias model, the signal can be recovered from
the input. Thus, there exists a function Ψ † such that Ψ † (Ψ (S,B)) = S holds.
Therefore, F ∗ is given by

F ∗ := ΞΨ†. (6)

Now, we have defined all functions appearing in the model. The rest of the proof
are two straightforward calculations. In the linear case, the independence of
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variables is equivalent to variables being uncorrelated. We denote the covariance
of two variables A,B with 〈A,B〉. To prove that (1) does not hold, we calculate

〈F ∗(I), B〉 =
〈
ΞΨ†Ψ (S, Φ (S,B∗)) , Φ (S,B∗)

〉
= ζ1α1 〈S, S〉 . (7)

This is equal to zero if and only if either all inputs contain an identical signal
(〈S, S〉 = 0), the dataset is unbiased (α1 = 0), or the label does not depend on
the signal (ζ1 = 0). For conditional independence, we can use partial correlation.
Using its definition we obtain

〈F ∗(I), B〉 |L =

〈
F ∗(I)− 〈F

∗(I), L〉
〈L,L〉 L,B − 〈B,L〉〈L,L〉L

〉
. (8)

We substitute L by (5) and use the properties of the inner product to arrive at

〈F ∗(I), B〉 − 〈ζ1S, ζ1S〉 〈ζ1S,B〉〈ζ1S, ζ1S〉
=
ζ1α1 〈S, S〉 − α1ζ

3
1 〈S, S〉2

ζ21 〈S, S〉
= 0. (9)

This completes the proof for the linear case. For more detailed calculations we
refer to the supplementary material.

The optimal classifier does not minimize loss criteria based on the indepen-
dence (1). Further, from (7), we see that the dependence contains ζ1, which is
the correlation between the signal S and the neural network’s prediction. Loss
functions based on that criterion aim to reduce this parameter and, hence, will
negatively affect the classifier’s performance. We demonstrate this effect using a
synthetic dataset in Section 4. In contrast, loss terms based on our new criterion
(2) are minimized by the optimal classifier. Thus, corresponding loss functions
do not reduce the accuracy to minimize bias.

3.3 Implementation Details

In practice, we are faced with the problem of integrating our criterion into the
end-to-end learning framework of deep neural networks. Hence, we provide three
possibilities to realize (2) as a loss function. Turning an independence criterion
into a loss function is not straightforward. First, the result of an independence
test is binary and, hence, non-differentiable. Second, we need to consider distri-
butions of variables to perform an independence test. However, we only see one
mini-batch at a time during the training of a deep neural network. Nevertheless,
multiple solutions exist for the unconditional case.

In this section, we describe three possible solutions, namely: mutual informa-
tion (MI), the Hilbert-Schmidt independence criterion (HSIC) and the maximum
correlation criterion (MCC). We adapt the corresponding solutions from the un-
conditional case and extend them to conditional independence criteria.

The first solution makes use of the MI of R and B as suggested in [11]. Here,
the criterion for independence is MI(R;B) = 0, and the MI is the differentiable
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loss function. In contrast, we use conditional independence. Our criterion is
MI(R;B|L) = 0, and the loss is given by the conditional MI:

MI(R;B|L) =
∑

l∈L,b∈Br∈R
pR,B,L (r, b, l) log

pL(l)pR,B,L (r, b, l)

pR,L(r, l)pB,L(b, l)
. (10)

To incorporate this loss, we need to estimate the densities pR,B , pR and pB in
every step. We use kernel density estimation on the mini-batches with a Gaussian
kernel and a variance of one fourth of the mean pairwise distance within a batch.
This setting proved best in preliminary experiments on reconstructing densities.

As a second solution, we extend the Hilbert Schmidt independence crite-
rion [8]. The variables are independent if and only if HSIC(R,B) = 0 holds
for a sufficiently large kernel space. The HSIC was extended to a conditional
independence criterion by [7]. Multiple numerical approximations exist, we use

trGRSLGBSL = 0. (11)

Here, SL is given by (I + 1/mGL)
−1

, where I is the identity matrix and GX =
HKXH with KX the kernel matrix for X ∈ {B,R,L} and Hij = δij − m−2
for δij the Kronecker-Delta and m the number of examples. For the relation to
HSIC and further explanations, we refer to [7]. We use the same kernel as above
and estimate the loss on every mini-batch independently.

The third idea we extend is the predictability criterion from [1]

max
f

Corr(f(R), B) = 0. (12)

To use this criterion within a loss function, they parametrize f by a neural
network. However, this is not an independence criterion as it can be equal to
zero, even if R and B are dependent. Therefore, it is unclear how to incorporate
the conditioning on L. As a consequence, we decided to extend the proposed
criterion in two ways. First, we use the maximum correlation coefficient (MCC)

MCC(R,B) = max
f,g

Corr(f(R), g(B)) = 0, (13)

which is equal to zero if and only if the two variables are independent [18].
Second, we use the partial correlation conditioned on the label L, which leads to

max
f,g

PC(f(R), g(B) |L) = 0. (14)

To parametrize both functions f and g, we use neural networks. The individual
effects of the two extensions can be observed through our ablation study in
Section 4.2. Note that all three implementations can be used for vector-valued
variables and, therefore, also for multiple bias variables in parallel.

3.4 Limitations

Debiasing with our method is only possible if the bias is known and a numerical
value can be assigned to each image. This is, however, true for all adversarial
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debiasing methods, e.g. the methods described in Section 2. Further, we assume
the bias model from Section 3.1. While, this not the only bias possible, it covers
many relevant situations, e.g. the one in Section 3.1.

One drawback of our method is that testing for conditional dependence is
more complicated than testing for dependence. This is less a problem of cal-
culation time and more of stability. Since the time complexity of both tests
scales with the batch size, it can be ignored compared to the time complexity of
backpropagation. However, the final data effects are stronger in the conditional
dependence tests compared to their unconditional counterparts.

4 Experiments and Results

This section contains empirical results that confirm our theoretical claims. We
first present experiments on a synthetic dataset that is designed to maximize
the difference between the independence criterion (1) and the conditional inde-
pendence criterion (2). Afterward, we report the results of an ablation study
demonstrating that the gain in performance can be credited to the change of
the independence criterion. Finally, we show that our findings also apply to a
real-world dataset. For this purpose, we present experiments on different biased
subsets of the cats and dogs dataset [12]. To evaluate our experiments, we mea-
sure the accuracy on an unbiased test set. Our debiasing approach is designed
for applications in which the training set is biased, but where the classifier is
used in an unbiased, real-world situation. Hence, the accuracy on an unbiased
test set is our goal and therefore the most precise measure in this case. Further
evaluations are included in the supplementary material.

4.1 Synthetic Data

If a feature is independent of the label for a given classification task, the indepen-
dence criterion (1) and the conditional independence criterion (2) agree. Since
we aim to maximize the difference between the two criteria, we use a dataset
with a strong dependence between the label L and the variable B. We create a
dataset of eight-by-eight pixels images that combine two signals. The first signal
S, determines the shape of high-intensity pixels in the image, either a cross or
a square, both consisting of the same number of pixels. The second signal B is
the color of the image. To maximize the dependence between the label L and
the bias variable B, every training image of a cross is green and every training
image of a square is violet. In the test set, these two signals are independent.
Example images from the training and test set can be seen in Figure 3.

For our first experiment (Setup I), we use the shape as the signal S to de-
termine the label L and the mean color of the image as the bias variable B. To
avoid any influence of shape- or color-preference of neural networks, in a second
experiment, we use the inverse setting (Setup II). For this second experiment,
we use the color as the signal S to determine the label L. Here, the bias vari-
able B is calculated as the difference between the values of pixels in the square
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Fig. 3: Example images of the synthetic dataset, left: training set, right: test set.

Table 1: Results our method and all baselines on synthetic data. For both setups,
we report mean accuracy ± standard error from 100 different random initializations
on the same train/test-split. Best results in bold

Baseline Adeli et Zhang et Zhang et Kim et Ours Ours Ours
model al. [1] al. I [23] al. II [23] al. [11] (MI) (HSIC) (MCC)

Setup I 0.819 0.747 0.736 0.747 0.771 0.840 0.846 0.854
±0.016 ±0.015 ±0.018 ±0.016 ±0.012 ±0.014 ±0.021 ±0.013

Setup II 0.791 0.776 0.837 0.750 0.767 0.871 0.868 0.867
±0.016 ±0.014 ±0.017 ±0.013 ±0.016 ±0.012 ±0.013 ±0.013

and those in the cross. We use a neural network with two convolutional layers
(each with 16 filters of size 3×3) and two dense layers (128 neurons with ReLU
activations and 2 neurons with softmax) as our backbone for classification. As a
baseline, we use this network without any debiasing method. We have reimple-
mented four existing methods listed in Table 1. Two methods are proposed by
Zhang et al. [23]. The first one called Zhang et al. I penalizes the predictability
of B from R, the second one called Zhang et al. II penalizes predictability of
B from R and L. Average accuracies of the competing approaches and from all
three implementations of our proposed criterion are shown in Table 1.

Note that hyperparameter selection influences which feature (color or shape)
the neural network uses for classifications, and we mitigate this by rigorous
hyperparameter optimization. We use grid search for hyperparameters of our
implementations as well as for general parameters like learning rates, and set
hyperparameters for competing methods to values reported in the correspond-
ing papers. We trained ten neural networks for each combination of different
hyperparameters and evaluated them on an unbiased validation set. A list of the
hyperparameters for every method is included in the supplementary material.

In Setup I, we see that differences between methods from the literature using
the unconditional independence criterion (1) and the methods using our new con-
ditional independence criterion (2) are much larger than the differences between
methods within these groups. For the first experiment, the worst method using
conditional independence performs 6.9 percentage points better than the best
method using unconditional independence. The differences between the best and
worst method within these groups is 1.4 percentage points and 3.5 percentage
points, respectively. In the second setup, the results are similar. One competing
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Table 2: The results of the ablation study. Every method is trained on a biased
training set and evaluated on an unbiased test set. We report the accuracy
averaged over 100 random initializations on the same train/test-split and the
standard error. Best results are marked in bold

Uncond. Cond. Uncond. Cond. Adeli et Uncond. Only Ours
MI MI HSIC HSIC al. [1] MCC PC (MCC)

Setup I 0.583 0.840 0.744 0.846 0.747 0.757 0.836 0.854
±0.010 ±0.014 ±0.011 ±0.021 ±0.015 ±0.016 ±0.014 ±0.013

Setup II 0.833 0.871 0.590 0.868 0.776 0.807 0.830 0.867
±0.011 ±0.012 ±0.011 ±0.013 ±0.014 ±0.015 ±0.015 ±0.013

method is surprisingly good in this experiment, but our models using conditional
debiasing still perform much better with a gain of at least 3 percentage points.

We draw two conclusions from these experiments. First, none of the existing
methods was able to improve the results of the baseline in Setup I, and only one
approach did so for Setup II. This coincides with previous observations from the
literature that adversarial debiasing methods are challenged in situations with
strong bias, and reducing bias leads to decreased accuracy [3]. It also agrees
with our findings discussed in Section 3.2. Second, we observe that all methods
that use our new debiasing criterion with conditional independence reach higher
accuracies than the baseline and, consequently, also a higher accuracies than
existing methods. Note that we were able to reach the baseline performance
for every method by allowing hyperparameters that deactivate the debiasing
completely, e.g., by setting the weight of the debiasing loss to zero. To avoid this,
we have limited the hyperparameter search to the range used in the respective
publications.

4.2 Ablation Study

In the previous experiments, debiasing with our new criterion achieved higher
accuracies than existing debiasing methods. We now conduct an ablation study
for the three implementations from Section 3.3 to show that this increase can
be attributed to our conditional independence criterion. More specifically, we
report results for a method using unconditional mutual information and for a
method using the unconditional HSIC as a loss. Furthermore, we present two
methods that investigate the gap between the method of Adeli et al. [1] and
our approach using the conditional maximal correlation coefficient. The first one
uses the unconditional maximum correlation coefficient, and the second one in-
corporates the partial correlation (PC) instead of the correlation in (12). We use
the settings and evaluation protocols of Setup I and Setup II from the previous
section. The results are presented in Table 2.

The unconditional versions of MI and HSIC perform at least 3.8 percentage
points worse than our conditional counterparts in both setups. For the third
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method, we observe that the change from the predictability criterion to the
maximum correlation coefficient (“Adeli et al. [1]” vs. “Uncond. MCC” and
“Only PC” vs. “Ours(MCC)”) increases the accuracy by at most 3.7 percentage
points. In contrast, the change from correlation to partial correlation (“Adeli et
al. [1]” vs. “Only PC” and “Uncond. MCC” vs. “Ours(MCC)”) increases the
accuracy by at least 5.4 percentage points. These observations indicate that the
improvements found in Section 4.1 can be attributed to the difference between
unconditional and conditional independence.

4.3 Real-World Data

Finally, we want to investigate whether increasing accuracies can also be ob-
served for real-world image data. To evaluate the performance of our debiasing
method, we require an unbiased test set.

Hence, we use a dataset with labels for multiple signals per image. This allows
us to introduce a bias in the training set but not in the test set. We choose the
cats and dogs dataset introduced by [12] for the same purpose. This dataset
contains images of cats and dogs that are additionally labeled as dark-furred or
light-furred. We first remove 20% of each class/fur combination as an unbiased
test set. Then, we create eleven training sets with different levels of bias. We start
with a training set that contains only light-furred dogs and only dark-furred cats.
For each of the other sets, we increase the fraction of dark-furred dogs and light-
furred cats by ten percent. Therefore, the last dataset contains only dark-furred
dogs and light-furred cats. All training sets are created to have the same size
for a fair evaluation. Hence, the number of training images is restricted by the
rarest class/fur combination, leading to only less than 2500 training images.

We use a ResNet-18 [10] as a classifier. Details about this network and the
selected hyperparameters for this experiment can be found in the supplemen-
tary material. To solely focus on the bias in our training sets, we refrain from
pretraining on ImageNet [6] because ImageNet already contains thousands of
dog images, and train from scratch instead. We only report accuracies for our
approach with HSIC because it was most robust for different hyperparameters.

The results shown in Table 3 are averaged across three runs. Since the labels
L and the bias variable B are binary, the two signals are indistinguishable for 0%
and 100% dark-furred dogs, respectively. Furthermore, we obtain an unbiased
training set for 50% dark-furred dogs. Our method reaches the highest accuracies
in seven out of the remaining eight biased scenarios and the highest overall
accuracy of 0.875 for 40% dark-furred dogs in the training set. For six out of
these seven scenarios, the baseline was outside of our method’s 95% confidence
interval. We observe that competing methods only outperform the baseline in
situations with little bias. This result supports our finding that existing methods
are not suited for the bias model described in Section 3.1.

To further investigate the effectiveness of our approach, we compare the con-
ditional and unconditional HSIC in Table 3 as well. We see that the conditional
HSIC outperforms the unconditional HSIC in all biased scenarios. The stronger
the bias, the bigger is the difference between the two methods. The correlation
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Table 3: Experimental results on the cats and dogs dataset. All methods were
trained on training sets in which p% of all dogs are dark-furred dogs and p%
of all cats are light-furred. The first column indicates the fraction p, the others
contain the accuracies on an unbiased test set. Best results in bold

Frac. Baseline Adeli et Zhang et Zhang et Uncond. Ours
p model al.[1] al. I [23] al. II [23] HSIC (HSIC)

0% 0.627 ±0.004 0.597 ±0.004 0.590 ±0.002 0.617 ±0.001 0.611 ±0.003 0.615 ±0.005

10% 0.800 ±0.001 0.774 ±0.002 0.779 ±0.005 0.785 ±0.007 0.759 ±0.012 0.801 ±0.001

20% 0.845 ±0.003 0.829 ±0.000 0.812 ±0.002 0.809 ±0.005 0.816 ±0.002 0.855 ±0.004

30% 0.852 ±0.007 0.842 ±0.003 0.837 ±0.004 0.834 ±0.003 0.834 ±0.002 0.863 ±0.002

40% 0.859 ±0.007 0.855 ±0.004 0.870 ±0.002 0.850 ±0.001 0.861 ±0.003 0.875 ±0.003

50% 0.859 ±0.006 0.866 ±0.003 0.856 ±0.001 0.853 ±0.001 0.863 ±0.004 0.860 ±0.002

60% 0.866 ±0.006 0.837 ±0.001 0.850 ±0.003 0.860 ±0.004 0.844 ±0.001 0.856 ±0.005

70% 0.844 ±0.003 0.854 ±0.003 0.835 ±0.005 0.841 ±0.005 0.835 ±0.003 0.859 ±0.000

80% 0.829 ±0.002 0.822 ±0.005 0.820 ±0.005 0.826 ±0.003 0.820 ±0.007 0.836 ±0.002

90% 0.773 ±0.010 0.743 ±0.001 0.758 ±0.001 0.731 ±0.002 0.757 ±0.003 0.791 ±0.004

100% 0.612 ±0.001 0.612 ±0.004 0.604 ±0.001 0.609 ±0.001 0.606 ±0.002 0.616 ±0.002

between the bias, measured as the absolute value between the difference of frac-
tions of dark- and light-furred dogs, and the difference in accuracy between the
conditional and unconditional HSIC method is 0.858.

5 Conclusion

In this work, we investigated a specific kind of dataset bias with a graphical
model for data generation. Our exact model formulation allowed us to provide
a mathematical proof to confirm our proposed conditional adversarial debiasing
approach. Hence, our work differs from related work on adversarial debiasing,
which solely relies on empirical evaluations. Our experimental results also sup-
port our theoretical claims. If a bias can be modeled with the investigated bias
model, our conditional independence criterion is a better choice compared to
an unconditional one. This is confirmed by our experiments. On synthetic data,
the difference between conditional and unconditional debiasing criteria has been
maximized. We further demonstrated in an ablation study that the conditional
independence criterion is the reason for an increase in accuracy on unbiased test
data, and improved accuracies have also been observed for real-world data.

In the future we aim to extend these empirical evaluations to get a bet-
ter practical understanding of the method. This includes more detailed inves-
tigations in synthetic datasets, experiments on biased real-world datasets, e.g.
HAM10000[21] or CAMELYON17[5], and experiments on unbiased datasets.
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