
Pedestrian Detection by Probabilistic

Component Assembly

Martin Rapus1,2, Stefan Munder1, Gregory Baratoff1, and Joachim Denzler2

1 Continental AG, ADC Automotive Distance Control Systems GmbH
Kemptener Str. 99, 88131 Lindau, Germany

{martin.rapus,stefan.munder,gregory.baratoff}@continental-corporation.com
2 Chair for Computer Vision, Friedrich Schiller University of Jena

Ernst-Abbe-Platz 2, 07743 Jena, Germany
joachim.denzler@uni-jena.de

Abstract. We present a novel pedestrian detection system based on
probabilistic component assembly. A part-based model is proposed which
uses three parts consisting of head-shoulder, torso and legs of a pedes-
trian. Components are detected using histograms of oriented gradients
and Support Vector Machines (SVM). Optimal features are selected from
a large feature pool by boosting techniques, in order to calculate a com-
pact representation suitable for SVM. A Bayesian approach is used for
the component grouping, consisting of an appearance model and a spa-
tial model. The probabilistic grouping integrates the results, scale and
position of the components. To distinguish both classes, pedestrian and
non-pedestrian, a spatial model is trained for each class. Below miss
rates of 8% our approach outperforms state of the art detectors. Above,
performance is similar.

1 Introduction

Pedestrian recognition is one of the main research topics in computer vision with
applications ranging from security problems, where e.g. humans are observed or
counted, to automotive safety area, for vulnerable road user protection. The
varying challenges are given by appearance of pedestrians, due to clothing and
posture, and occlusions, for example pedestrians walking in groups or behind
car hoods. For automotive safety applications the real-time performance needs
to be combined with high accuracy and low false positive rate.

Earlier approaches employed full-body classification. Most popular: Papageor-
giou et al. [12] applies Haar-wavelets with SVM [15]. Instead of SVM, a cascade
based on AdaBoost [6] is used by Viola and Jones [16], to achieve real-time
performance. An extensive experimental evaluation of histograms of oriented
gradients (HOG) for pedestrian recognition is made by Dalal and Triggs [2]. In
place of the constant histogram selection [2], Zhu et al. [19] use a variable selec-
tion made by an AdaBoost cascade, which achieves better results. Gavrila and
Munder [7] recognize pedestrians with local receptive fields and several neural
networks.
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The achieved performance with full-body classification is still not good enough
to handle the big variability in human posture. To achieve better performance,
part-based approaches are used. These approaches are more robust against par-
tial occlusions. Part-based approaches often consist of two steps, the first one
detects components, mostly by classification approaches, while the second step
groups them to pedestrians. One possible way to group components is to use clas-
sification techniques. Mohan et al. [11] use the approach proposed in [12] for the
component detection. The best results per component are classified by a SVM
into pedestrian and non-pedestrian. In Dalal’s thesis [3], the HOG-approach [2]
is used for the component detectors. A spatial histogram for each component
weighted by the results is classified by a SVM. Felzenszwalb et al. [5] determine
the component model parameters (size and position) in the training process. For
the pedestrian classification the HOG component feature vectors and geometrical
parameters (scale and position) are used as input for a linear SVM.

The fixed ROI configuration used in these approaches puts a limit on the
variability of part configurations they can handle. To overcome this limitation,
spatial models that explicitly describe the arrangement of components were in-
troduced. In general, these approaches incorporate an appearance model and a
spatial model. One of the first approaches is from Mikolajczyk et al. [10]. The
components are detected by SIFT-like features and AdaBoost. An iterative pro-
cess with thresholding is used to generate the global result via a probabilistic
assembly of the components, using the geometric relations: distance vector and
scale ratio between two parts, modeled by a Gaussian. Wu and Nevatia [18] use
a component hierarchy with 12 parts and the full-body as root-component. The
component detection is done by edgelet features [17] and Boosting [14]. For the
probabilistic grouping the position, scale and a visibility value is incorporated.
Only the inter-occlusion of pedestrians is considered. The Maximum-A-Posteriori
(MAP) configuration is computed by the Hungarian algorithm. All results above
a threshold are regarded as pedestrian. Bergtholdt et al. [1] use all possible re-
lations between 13 components. For the component detection SIFT and color
features are classified through randomized classification trees. The MAP config-
uration is computed with A*-search. A great number of parts is used by the last
two approaches for robustness against partial occlusions. The computation time
for the probabilistic grouping grows non-linearly with the number of components
used, and with the number of component detection results. As a consequence
these probabilistic based methods have no real-time performance on an actual
desktop PC.

Our approach is part-based. For real-time purpose our pedestrian detector is
divided into the three parts, head-shoulder, torso, legs and for better classifica-
tion performance we distinguish between frontal/rear and side view. HOGs [2]
are used as component features. We make use of a variable histogram selection
by AdaBoost. The selected histograms are classified through a linear SVM. Be-
cause similar histograms are selected with weighted fisher discriminant analysis
(wFDA) [9] in comparison to a linear SVM, but in less training time, we ap-
ply wFDA as weak classifier. A Bayesian-based approach is used for component
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grouping. To reduce the number of component detections thresholding is applied,
keeping 99% true positive component detection rate. Our probabilistic grouping
approach consists of an image matching and a spatial matching of the compo-
nents. To use the component results for the image matching they are converted
into probabilistic values. Invariance against scale and translation is achieved by
using the distance vector, normalized through scale, and the scale ratio between
two components. In comparison to existing approaches the spatial distributions
are not approximated, instead the distribution histograms are used directly. We
also differentiate component arrangements by class. Below miss rates of 8% our
approach outperforms state of the art detectors. Above, performance is similar.

The paper is organized as follows. Sect. 2 describes the component detec-
tion step, followed by the component grouping through a probabilistic model in
Sect. 3. The results for the component detection and grouping step are discussed
in Sect. 4. The conclusion forms Sect. 5 and the paper ends with an outlook in
Sect. 6.

2 Component Detection

HOG features were proven best in [2], and thus adopted here for the component
detection. The averaged gradient magnitude and HOG images for our compo-
nents, derived through the INRIA Person dataset [2], are visualized in Fig. 1 and
Fig. 2. Instead of the histograms the corresponding edges with weighted edge
length are shown. Pedestrian contours are well preserved in the average edge im-
ages, while irrelevant edges are suppressed. A (slight) difference can be seen in the
head component. In the frontal view, the whole contour is preserved and in the
side view it is only the head contour, while the shoulder contour is blurred. Two
different methods for the histogram selection are examined. One is a constant
selection [2]: the image is divided into non-overlapping histograms, followed by
an extraction of normalized blocks neighboring histograms. The other approach
is similar to [19] and uses variable selection. The best histogram blocks (vary-
ing size and position) are selected using AdaBoost. We use the weighted Fisher
discriminant analysis [9] as weak classifier. The classification of the generated
feature vector is done by a linear SVM.

3 Probabilistic Component Assembly

This step builds the global pedestrian detections out of the detected components
V = {vHS , vT , vL}, where the superscripts HS, T and L stand for head-shoulder,
torso and legs respectively, by applying the appearance and the spatial relation-
ship.

The probability P (L|I) to find a pedestrian, consisting of the mentioned com-
ponents, with configuration L = {lHS, lT, lL} in the actual image I, with li as
position and scale for the ith component, is given by Bayes rule:

P (L|I) ∝ P (I|L) · P (L) . (1)
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Fig. 1. Average gradient magnitudes and average HOGs for the frontal/rear view com-
ponents (head, torso and legs) - INRIA Person dataset

Fig. 2. Average gradient magnitudes and average HOGs for the side view components
(head, torso and legs) - INRIA Person dataset

The first factor P (I|L) is the detection probability of the components, at the
position and scale given by L. The second factor P (L) represents the prior prob-
ability of a positive pedestrian component arrangement. Every Head-Shoulder
detection is used as start point to find the corresponding MAP configuration by
greedy search. In the following sections we will go further into detail.

3.1 Probabilistic Appearance Model

To compute P (I|L) the component results of the detection step are used. For
this purpose the SVM results f(x) are converted into probabilistic values. From
the many choices available, we preferred an approximation of the a posteriori
curve P (y = 1|f(x)), that for a specific SVM result f(x) a pedestrian component
y = 1 is given, because the best fit was achieved by this model. By using Bayes
rule with the priors P (y = −1) and P (y = 1), and class-conditional densities
p(f(x)|y = −1) and p(f(x)|y = 1), we get:

P (y = 1|f(x)) =
p(f(x)|y = 1)P (y = 1)

∑

i=−1,1

p(f(x)|y = i)P (y = i)
. (2)

The resulting a posteriori values for the frontal legs training set are shown in
Fig. 3(b), derived with the class-conditional densities, which can be seen in
Fig. 3(a). A sigmoid function s(z = f(x)) = 1

1+exp(Az+B) is used to approximate
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Fig. 3. (a) Distribution histograms and (b) the approximated a posterior curve by a
sigmoid function for the frontal legs

the posterior. The parameters for s(z) are determined by the Maximum Likeli-
hood method proposed by Platt [13], using the Levenberg-Marquardt method.
To compute the sigmoid parameters, training sets for each component and view
are used. Fig. 3(b) shows the approximated curve for the frontal legs.

By assuming independence between the detectors for each component vi,
P (I|L) is given by:

P (I|L) =
∏

vi∈V

P (y = 1|fi(xi)) (3)

with xi as the extracted feature vector and fi as the result of the ith component.

3.2 Probabilistic Geometric Model

Besides the appearance likelihood value P (I|L), for component configuration L,
the probability for the spatial arrangement P (L) has to be computed. Invariance
against scale and translation is achieved by using the relative distance vector dij

and the scale ratio Δsij = si

sj
between two components i and j:

dij =
(

dxij

dyij

)

=
1
si

·
(

xj − xi

yj − yi

)

. (4)

As in common literature [4] the model is expressed as a graph G = (V, E), with
the components vi as vertices and the possible relations as edges eij between
component i and j. Our model regard all possible component relations, except
those between the same component in different views. Every edge eij gets a
weight wij ∈ [0, 1], to account that component pairs of the same view appear
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more likely, than component pairs of different views. The weights are generated
from the component training sets.

With the priors P (li, lj) = P (dij, Δsij) the probability of the component
arrangement L is given as:

P (L) =
∏

eij∈E

wijP (li, lj) =
∏

eij∈E

wijP (dij, Δsij) . (5)

The generated distribution histograms for the geometrical parameters dij and
Δsij are used for the priors P (li, lj). To distinguish between a pedestrian-like
and non-pedestrian-like component arrangement, two spatial distributions are
generated, one for the positive Pp(L) and one for the negative class Pn(L). Dis-
tribution histograms are also used for the negative class. The distributions are
computed as follows: First the positive spatial distribution histograms are com-
puted from training data. Afterwards, the spatial distributions for the negative
class are generated, using only the hard ones, i.e. those lying in the distribu-
tion histogram range for the positive class. As final spatial result the difference
between the positive and negative spatial result is used.

4 Experiments

The INRIA Person dataset [2] is used for our experiments. This dataset con-
tains a training set with 2416 pedestrian labels and 1218 images without any
pedestrians and a test set with 1132 pedestrian images and 453 images not con-
taining any pedestrians. Both sets have only global labels. For the component
evaluation, part labels are needed, so in a first step we applied our component
labels: head-shoulder, torso and legs, in front/rear and side view. In a second
step the average label sizes were determined, see Table 1. Smaller labels were
resized to the size given in Table 1. The number of positive training samples and
test samples, for every component and view, are listed in Table 1. Some images
have no component training labels because of occlusions.

In a first experiment the component detection was evaluated, followed by
testing the proposed probabilistic model from Sect. 3. Finally, the probabilistic
method is compared to state of the art detectors. Receiver Operating Character-
istic (ROC) curves in loglog scale are used for the experimental evaluation of the
miss rate

(
FalseNeg

TruePos+FalseNeg

)
against the false-positive rate. Matching criteria

is 75% overlap between detection and corresponding label.

4.1 Component Detection

The proposed component detection in Sect. 2 is evaluated. ”Unsigned” gradients,
9 orientation bins and a block size of 2x2 histogram cells are used as parameters
for the HOG features. In this test the constant histogram selection is compared
against a variable selection, as described in Sect. 2. The block sizes for the
constant selection are: 16x16 pixels for the frontal torso and 12x12 pixels for
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Table 1. Component sizes and the number of positive training/test samples

Part View Width Height # pos. Training-Samples # pos. Test-Samples

head front 32 32 1726 870
side 32 32 678 262

torso front 40 45 1668 846
side 32 45 646 286

legs front 34 55 1400 756
side 34 55 668 376

the remaining components/views. For the variable selection, block size range
is 8x8 to maximum, not limited to a specific scale. The negative training set
was created by using the bootstrapping method given in [2]. The generation
of regions of interest (ROI) is done by a sliding window approach. ROI’s are
generated in different scales. The factor 1.2 is used between two scales. In all
scales the step size is 4 pixel in both directions. For the SVM classifier training
we use SVMlight [8].

The ROC-curves for the component detection are shown in Fig. 4 and Fig. 5,
divided into frontal/rear and side views. It confirms that variable selection (solid
lines) yields better results than constant selection (dotted lines), except for the
frontal head-component. The results for the frontal/rear head with constant
selection are slightly better as those with variable selection. An interesting ob-
servation is the obvious difference between the head and leg results, which is
stronger in the frontal/rear view than the side view. The leg component pro-
duces at 10% miss rate three times fewer false positives than the head. In the
frontal view, similar results are recieved by head and torso. The ROC-curves of
the side torso and side legs intersect at 10% miss rate. Below 10% miss rate,
fewer false positives are produced by the torso and above 10% miss rate the legs
generate less false positives.

The computation time per component ROI is in average 0.025 ms, on a 1.8
GHz dual core PC, using only one core. At a resolution of 320x240 pixels, 20000
search windows are generated in average per component and view. The compo-
nent detection at this resolution with full search takes about 3.1 seconds.

4.2 Probabilistic Component Assembly

The proposed Bayesian approach to component assembly from Sect. 3 is evalu-
ated here. In a first step the probabilistic approach is tested with and without
the use of spatial distribution histograms for the negative class, and afterwards
compared against state of the art detectors. These detectors are the one from
Dalal [2] and the cascade from Viola and Jones [16]. Again the INRIA Person
dataset is used as test set.

First the probabilistic approach is evaluated. The results are given in Fig. 6.
By using spatial distribution histograms from both classes we achieve better
results. The difference between both curves is greater at higher false positive
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Fig. 4. Front/Rear component results
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Fig. 5. Side component results
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Fig. 6. Probabilistic grouping results
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Fig. 7. State of the art detectors in com-
parison to our approach (blue line)

rates. At low miss rates the extra usage of spatial distributions for the negative
class reduce the number of false positives compared to the common approach. In
the following experiment the probabilistic approach is compared against state of
the art detectors. Fig. 7 shows the best probabilistic detector in comparison to
the mentioned standard detectors and the best component result (frontal/rear
legs). The results of our part-based approach are slightly better as the best state
of the art detector. Below 8% miss rate our probabilistic method outperforms
the state of the art detectors. Note that Dalal’s detector takes a larger margin
around a person, so in comparison to our approach more contextual information
is incorporated. Fig. 8 shows some typical results of our approach.

At a resolution of 320x240 pixels, after applying thresholding to the compo-
nent detection results, we get on average about 400 detections per component
and view. For this resolution, our probabilistic grouping approach takes 190
milliseconds in average on a 1.8 GHz PC.
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Fig. 8. Some detection results (white - full body, black - head, green - torso, cyan -
legs). No post-processing was applied to the images.

5 Conclusion

In this paper a Bayesian component-based approach for pedestrian recognition
in single frames was proposed. Our pedestrian detector is composed of the head-
shoulder, torso and legs, divided into front/rear and side view for better recogni-
tion. For the component detection a variable selection of histograms of oriented
gradients and SVM classification is applied. In the next step, the components are
grouped by a Bayes-based approach. To shrink the number of candidates for the
probabilistic grouping, thresholding is applied to all component results, so that
99% true positive component detection rate remains. Invariance against scale and
translation is achieved by using the relative distance vector and scale ratio between
the components. To make a better separation into positive and negative spatial
component arrangements, distributions for both classes are generated. Instead of
approximating these distributions, for example by a Gaussian, the computed dis-
tribution histograms are used directly. The results confirm the positive benefit of
using distributions for both classes and not only for one. Below miss rates of 8% our
approach outperforms state of the art detectors. Above, performance is similar.

6 Future Work

One main drawback of our approach is computation time, mainly of the com-
ponent detection. Using a cascaded classifier would make the component detec-
tion faster. To improve the performance of our approach the narrow field of a
pedestrian can be included as contextual information. First experiments show
promising results. The performance of the front/rear views is much better than
for the side views. To overcome this, left and right side views could be separated.
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