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ABSTRACT

Human interpretability of deep neural networks’ decisions is crucial, especially in domains where
these directly affect human lives. Counterfactual explanations of already trained neural networks
can be generated by perturbing input features and attributing importance according to the change
in the classifier’s outcome after perturbation. Perturbation can be done by replacing features using
heuristic or generative in-filling methods. The choice of in-filling function significantly impacts the
number of artifacts, i.e., false-positive attributions. Heuristic methods result in false-positive artifacts
because the image after the perturbation is far from the original data distribution. Generative in-filling
methods reduce artifacts by producing in-filling values that respect the original data distribution.
However, current generative in-filling methods may also increase false-negatives due to the high
correlation of in-filling values with the original data. In this paper, we propose to alleviate this by
generating in-fillings with the statistically-grounded Knockoffs framework, which was developed
by Barber and Candès in 2015 as a tool for variable selection with controllable false discovery rate.
Knockoffs are statistically null-variables as decorrelated as possible from the original data, which can
be swapped with the originals without changing the underlying data distribution. A comparison of
different in-filling methods indicates that in-filling with knockoffs can reveal explanations in a more
causal sense while still maintaining the compactness of the explanations.

1 Introduction

Human interpretability of predictive models’ decisions is crucial for model validation, especially in critical domains such
as medicine, where these decisions directly impact human lives. Decisions can be explained with post-hoc attribution
methods, which reveal how much each feature contributes to an already trained model’s decision [1]. Post-hoc methods
are local interpretability methods, i.e., they explain the decision of the network for one sample and can be split
into perturbation-based and gradient-based. Perturbation-based methods inspect the effect of changing or removing
input features on the output. They pose a "what-if" question to the predictive model, thus generating counterfactuals.
Gradient-based methods answer a "why" question using the gradients of the output with respect to the input features.

Counterfactual generation approaches differ in the way the feature is perturbed. Given that neural networks cannot
handle missing values, a feature cannot be removed entirely. Therefore, perturbation aims to simulate its absence by
replacing it with a reference value computed with an in-filling function. In-filling functions have been categorized into
heuristic and generative, and it has been shown that the choice of function significantly impacts the number of artifacts,
i.e., false-positive attributions, in the explanations [2]. Heuristic reference values generate more artifacts because the
perturbed images are far from the original data distribution and thus bias the classifier. Generative in-filling methods
reduce these artifacts using strong generative models to fill-in missing values according to the initial data distribution
[2]. However, generative in-filling methods may also increase false-negatives due to the high correlation of in-filling
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values with the original data. Such generative models can also predict redundant features and hence those features do
not get attributed importance, which imposes a regularization effect. While this regularization considerably reduces
the number of artifacts, the effect might also hold for less redundant features. This can lead to false-negatives, i.e.,
fewer pixels being signalized than would belong to the causal counterfactual. Therefore, we are interested in generating
in-filling values as decorrelated as possible from the original data while keeping the perturbed image in-distribution.

In this paper, we propose to use another theoretically-grounded approach, the Knockoffs framework [3, 4], to reference
value generation. This approach was developed for variable selection problem using conditional independence testing
with controllable false discovery rate [3], which pursues the same goal as attribution methods: to explain which features
are important for the outcome. Knockoffs are statistical null variables, i.e., they do not introduce any new information
to the model. They are designed to be as decorrelated as possible from the original data but still belong to the original
data distribution. They can therefore be swapped with the original variables without introducing additional bias to the
model. In the original framework, they are used to compare the coefficients of the original variables and knockoffs
when doing regression: a larger coefficient for the knockoff indicates that the variable is not predictive. Knockoffs work
for multiple data distributions [3], and with arbitrary models [5].

Our contribution is the exploration of knockoffs as generative in-filling values. We present a comparison of in-filling
with knockoffs, heuristic, and generative methods. We also compare the generated counterfactual explanations with
three gradient-based explanations. We generate these explanations for convolutional neural networks (CNNs) trained to
do classification tasks on hand-written digits using the MNIST dataset [6]. We show that knockoffs have the potential
to deliver counterfactual explanations in a more causal sense, indicating which regions should be changed to transform
one sample into a sample of another class while still keeping the explanations as compact as possible.

2 Related Work

2.1 Attribution Methods

Perturbation-based methods attribute importance by inspecting the changes in the network’s output when the input
features have different values [7]. This is usually approached as an optimization problem where the objective is to find
the region that affects the classifier output maximally. This objective is formulated by [8] as finding the following two
regions:

– Smallest Deletion Region (SDR): the smallest region that, when removed, prevents confident classification;

– Smallest Supporting Region (SSR): the smallest region that can alone allows a confident classification.

This objective translates into finding a binary mask that describes which pixels to perturb to change or support the
model’s decision. This mask can be found either by directly optimizing the mask [9] or by formulating an alternative
objective. One work trains a model to learn masks [8], while [2] formulate the objective as doing per-pixel dropout and
optimizing dropout probabilities.

Perturbations are done through replacement with a reference value obtained from an in-filling function, which can be
heuristic or generative [2]. A well-known heuristic method is pixel occlusion [10]. Other heuristics were proposed in
[9] to generate reference values closer to the initial input values, e.g., by using a blurred version of the image or by
adding Gaussian noise to initial pixel values. It has been shown in [2] that the images after perturbation with heuristics
are far from the original data distribution and thus bias the classifier and, implicitly, the explanation. To alleviate
this problem, Chang et al. [2] proposes an in-filling function using a conditional generative model, in the form of a
variational auto-encoder (VAE) [11] or a generative adversarial network (GAN) [12]. These learn to replace masked-out
pixels in the image according to the original data distribution.

Back-propagation methods measure the classifier’s sensitivity to small perturbations in the input using the partial
derivative of the network’s output with respect to the input features. Their main advantage over perturbation-based
methods is faster computation, but the resulting explanations are noisy and vary with other features that are not of
interest [1]. However, methods have been further developed to improve the stability of the gradients. Gradient × Input
multiplies gradients with the input features, while Integrated Gradients [13], Layer-wise Relevance Propagation (LRP)
[14], or DeepLIFT [15] average over gradients between the input and a baseline. SmoothGrad [16] samples a larger
region around the input feature by adding Gaussian noise and can be used with any of the methods mentioned above.
Class activation maps (CAM) explore which higher-level features, extracted by the last layers of the neural network, are
important by computing the gradients of the output layers with respect to the weights of the last convolutional feature
layer [17, 18].
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2.2 Knockoffs

Given a set of observed variables, a response variable, and a predictive model, variable selection defines which subset
of variables is important for the response. It is, therefore, similar in concept to global interpretability methods, which
explain decisions by finding relevant variables for the decision over the entire dataset. Often, observed variables are
marginally dependent and might become independent if some other variable is already observed. For example, income
and health status are strongly correlated, and it might suffice to know one of the variables for the outcome. This
scenario often occurs in high-dimensional datasets. In such cases, the Knockoffs framework can be used to test for
conditional independence, i.e., whether a variable adds more information than what is already known from the already
used variables [4].

Knockoffs are constructed to be in-distribution null-variables. To be in-distribution, knockoffs are exchangeable with
the original variables: the correlation between knockoffs is the same as the correlation between the original variables
[4]. To be null-variables, knockoffs do not contain any information about the outcome Y . Formally, this translates to
the construction of knockoffs X̃ = (X̃1, ..., X̃n) given the features X = (X1, ..., Xn) such that they fulfill the two
properties as follows:

– Exchangeability ∀S ⊂ 1, ...n (X, X̃)swap(S) = (X̃,X), where (X, X̃)swap(S) = (X̃,X) is obtained by
swapping the features Xj , indexed by set j ∈ S with their knockoffs X̃j ;

– Null variables X̃ ⊥ Y |X , which is guaranteed if X̃ is constructed without looking at Y .

Initially designed for linear models and Gaussian data distributions, knockoffs have been extended by [4] to non-linear
predictive models and arbitrary data distributions and by [5] to work with arbitrary predictive models. [19, 20] have
proposed knockoff generation methods for arbitrary data distributions.

3 Counterfactual Generation with Knockoffs

Motivated by the over-regularization imposed by existing generative in-filling functions, we propose to use knockoffs
as an in-filling method for generating counterfactual explanations and combine knockoffs with the per-pixel dropout
approach of Fill-In Drop-Out (FIDO) [2] for mask generation.

In the sections that follow, we denote the classifier function as f . Its output given input x, a probability distribution over
the classes, is denoted as f(x). To refer to the probability of a specific target class c, we will denote it as f(c|x).

3.1 Counterfactual generation

The FIDO algorithm [2] starts by sampling a binary mask, which indicates the pixels to be perturbed. Reference values
are then computed using the in-filling function, and perturbation is done by replacing original feature values with the
reference values. The resulting image is then fed to the classifier. The classifier output is used to update the per-pixel
dropout probabilities from which a new binary mask can be sampled. This procedure is repeated for several iterations to
optimize the SSR and SDR objectives. The saliency map is then generated from the counterfactual explanation in the
form of dropout probabilities.

Mask sampling FIDO defines counterfactual generation as doing per-pixel dropout on the N image pixels with
dropout probabilities θ ∈ [0, 1]N [2]. The dropout probabilities are used to sample binary masks z ∈ {0, 1}N from a
Bernoulli distribution q with parameter θ and should be found such that the objective is optimal using masks sampled
from the distribution. Therefore, the optimization of the SSR and SDR objectives is done with respect to θ. Since
computing gradients for the masks in binary form is not possible, Concrete dropout [21] is used to relax the Bernoulli
distribution to a continuous distribution. The Concrete distribution approximates the binary mask z as z̃ according to
Equation 1, where u is a random uniform variable u ∼ Unif(0, 1).

z̃ = sigmoid(
1

t
) · (log p)− log(1− p) + log u− log(1− u)) (1)

Value swapping To perturb the features of a sample x from the dataset, pixels are replaced as indicated by the mask,
i.e., where z̃ = 1, using the in-filling function. The result is a new image x̂ as described by function Θ in Equation 2,
where � is the Hadamard element-wise multiplication, which we call the corrupted image.

Θ(x, z̃) = z̃ � x+ (1− z̃)� x̂ (2)

3
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Figure 1: In-filling using knockoffs.

Mask parameters update The corrupted image is fed to the classifier. The outcome is used to compute the log-odds
score s as described in Equation 3. The score is plugged in the SSR or SDR objectives as in Equations 4 and 5,
respectively.

s(c|x) = log f(c|x)− log(1− f(c|x)) (3)

θSSR = min
Eqθ(z)

s(c|φ(x, z̃)) + λ‖z̃‖1 0 (4)

θSDR = min
Eqθ(z)

−s(c|φ(x, z̃)) + λ‖1− z̃‖1. (5)

To speed up convergence and cover more possible solutions, multiple dropout masks can be sampled at an iteration,
and the parameters can be updated using mini-batch gradient descent. Additional regularization can be done using
Total Variation (TV) [8] or by optimizing the objectives for the down-sampled image. The resulting counterfactual,
represented by the parameter θ, which has values between 0 and 1, is visualized as a diverging saliency map by
subtracting 0.5 from θ [2].

3.2 In-filling methods

Knockoffs We use knockoffs to perturb the feature of interest r by taking the respective feature value from the
knockoff image x̃. The resulting in-filling function can be defined mathematically as x̂ ∼ p(xr|x−r, x̃1:r−1).

To generate knockoffs, we use a VAE trained on the original dataset as proposed in [20], from which we obtain the
necessary conditional probability distributions for the generation process. The generation process starts by marginalizing
feature j by setting it to 0. Then, the modified image is passed through the VAE encoder to infer the latent variables z∗,
which are then decoded into a new image x∗. The knockoff value for feature j is then set to the value of the feature
from the decoded image x∗j . This procedure is repeated for all features in the image, each time starting from the last
obtained knockoff image.

To generate counterfactuals, we use the knockoff image to replace the original with knockoff values as previously
described in Equation 2. This process is also illustrated in Figure 1. The corrupted image is then fed to the classifier
to obtain the classifier score, and the log-odds score is computed. Then, the objective is optimized, and the dropout
probabilities of the mask are updated. To avoid computational overhead, we only generate one knockoff image, which
we repeatedly use.

Flip One of the heuristic methods used in FIDO is the mean value of the dataset. Due to the binary nature of MNIST,
using the mean would lead to counterfactuals signalizing the entire background as important. We are rather interested in
important regions within the number. Therefore, our heuristic flips the bit value feature of interest r to the dataset’s
background value, as defined by the function x̂r = 0.

Generative For the generative in-filling function, we use a convolutional VAE, which we train to do in-filling by
randomly masking 7× 7 pixel squares of the image. We then use it to replaces feature of interest r by drawing possible
values from its probability distribution conditioned on the remaining pixels x̂r ∼ p(xr|x−r). From now on, we denote
this in-filling function as VAE.
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3.3 Evaluation metrics

Knockoffs quality evaluation The quality of the knockoffs depends on the quality of the approximation of the data
generating model. This translates to the VAE being able to generate new, diverse samples of good quality; otherwise,
the knockoffs will be copies of the original images. To test the knockoffs’ quality and compare them with the other
in-filling methods, we assess how well the perturbation decorrelates the image from the original while still keeping the
data in-distribution, similarly to [2]. We quantify the correlation using the multi-structural similarity index (MS-SSIM)
[22] between original images and perturbed images, and the in-distribution-ness as the classifier target probability. We
perturb the images by randomly replacing pixels with the different in-filling methods and compare the trade-off between
correlation and in-distribution-ness for the different in-filling methods. Ideally, MS-SSIM should be as low as possible,
while the target class probability should remain high.

Saliency map evaluation To evaluate the SSR and SDR saliency maps (see definition in Section 3.1), we are mainly
interested in the saliency metric (SM), which quantifies the information content and compactness of the salient region [8].
SM is computed by cropping the image to the saliency bounding box and upscaling the cropped image to the original size.
The saliency bounding box is obtained by thresholding the relevance values at a certain level and taking the minimum
bounding box that contains those pixels. The upscaled image is then fed to the classifier, and the SM is computed for
image x with saliency bounding box b as log max( area(b)

area(x) , 0.05)− log p(ctarget|CropAndUpscale(x, b)). A negative
score indicates that the saliency map has high information content in a small image area.

To make the comparison with other methods more thorough, we also compute the weakly supervised location (WSL)
metric. WSL quantifies how well the saliency maps find the object of interest as the percentage of correct saliency
predictions [8]. A prediction is correct if the intersection over union (IOU) of the saliency bounding box with the
ground truth bounding box is over 0.5.

However, our main metric remains the SM. With counterfactuals, we are rather interested in finding the causal regions
that change the classifier’s outcome, and consider that SM reveals the causal contribution: if the attributed region is not
causal for the classifier outcome, it will return another label. Suppose the classifier learns the class ’car’ only due to a
confounding concept, e.g., the road. Then, the WSL score of an attribution method indicating the road would be near 0
(no attribution to the car). However, the SM score would be maximal because the confounding object was attributed -
this is the correct causal explanation. which might be smaller than the object or even lie slightly outside of it.

4 Experimental results

We evaluate and compare our proposed method on classifiers trained on the entire MNIST [6] dataset and two subsets
derived from it, which will be described in the subsequent sections. We start with the presentation of the results on
the entire MNIST dataset, for which we evaluate the metrics from Section 3.3. We then continue with a qualitative
evaluation of the two subsets of the MNIST dataset.

We explain pre-trained ResNet-18 classifiers, which were trained with a learning rate of 0.003 and a batch size of 256
for ten epochs. For the VAE in-filling models, we train convolutional VAEs with a learning rate of 0.0002 and a batch
size of 256 for 200 epochs. For knockoff generation, we train VAE models with a learning rate of 0.0002 and a batch
size of 128 for 500 epochs.

To optimize the SSR and SDR objectives, we also use Adam [23] with a learning rate of λ = 1− e3 unless otherwise
specified. We sample batches of 8 masks and use a TV factor 0.01 for all datasets.

4.1 Counterfactual explanations on MNIST

We evaluate our approach on the benchmark dataset MNIST [6], because its binary nature makes a clear delimitation
between background and foreground, and the notion of counterfactual might be more intuitive on numbers. On MNIST,
counterfactuals should indicate how a number could be modified to belong to a different class. An example is illustrated
in Figure 5, where pixels marked as red should be removed or added to transform a three into an eight and an eight into
a three, respectively.

Knockoff evaluation To generate knockoffs, we use two VAEs with two latent code sizes: 5 and 16, and compare
them with the flip and VAE in-fillings, as shown in Figure 3. We find that the VAE with code size 16 overfits, leading to
a bad trade-off between in-distribution-ness and correlation. We, therefore, continue our experiments with the knockoffs
from the VAE with code size 5, from which a few examples can be seen in Figure 2. In general, knockoffs tend to be a
prototype of the class number or a number that is complementary to the original, similar to a distractor image.
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Figure 2: Examples of knockoffs
from the VAE with latent code size
5. Upper row: knockoffs, lower row:
original images.

Figure 3: Structural similarity index (MS-SSIM) versus probability of
target class for randomly corrupted pixels with the in-filling methods:
without intervention (none), flip (flip), VAE (vae), knockoffs from a
VAE with code size 5 (knockoff 5) and code size 16 (knockoff 16).
Knockoffs from a VAE with latent code size 5 perform best.

Counterfactual generation We generate counterfactuals to explain the classifier model with an accuracy score
of 96.650% on 2966 correctly classified samples with both SSR and SDR objectives. We visualize counterfactual
explanations as divergent saliency maps by mapping the counterfactual ones to -0.5 to 0.5 and the gradient-based
attributions to -1 and 1. The generated explanations for four selected samples can be found in 4.

To compute the metrics, we use three different threshold levels for the perturbation-based saliency maps: 0.4, 0.5, and
0.6. For the gradient-based maps, we use the following thresholds: the mean of the saliency map, 0.0, and 0.2 to account
for the different scaling between the maps. Since the MNIST dataset does not have ground-truth boxes, we threshold
the images at the value 0.1 and take the smallest bounding box that encompasses the remaining pixels. We use these
ground truth boxes to also compute a maximum baseline value, which we call MAX. We also compute a minimum
baseline by defining the saliency box as the entire image.

Figure 4: Examples of counterfactuals on MNIST. Left to right: original image, SSR flip, SSR VAE, SSR knockoff, SDR
flip, SDR VAE, SDR knockoff, Integrated Gradients, Gradients × Input, Guided GradCAM. Flip and gradient-based
methods highlight almost the entire number. VAE and knockoff in-filling methods focus on similar regions. However,
knockoff counterfactuals highlight more areas outside the numbers that would transform each of them into another
number. The generated saliency maps have different colors for the background pixels due to the different mapping of
the attribution values.

Visual inspection of the results, some of which can be seen in Figure 4, reveal that the SSR flip counterfactuals and
gradient-based methods generally highlight the entire number. In contrast, VAE counterfactuals attribute importance to
fewer pixels within the number. Both VAE and knockoff counterfactuals highlight similar regions, and these are often
the curves and angles that are unique to the number classes. Compared to VAE counterfactuals, knockoff counterfactuals
also highlight regions that lie outside the numbers and could be modified to change the class of the number, as can be
seen in the examples from Figure 4. VAE counterfactuals do not signalize these pixels due to the powerful regularization
effect of the in-filling function.

The quantitative results shown in Table 1 support the qualitative observations. All counterfactual saliency maps give
good results, with high WSL and negative SM values. The flip counterfactuals consistently give the best WSL values
but fluctuate around the 0.0 value for the SM because they highlight almost the entire number. Among the gradient
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Table 1: Results of the weakly supervised location (WSL) and saliency metric (SM) for perturbation-based and
gradient-based attributions. The WSL score is in % (higher is better). For the SM, lower is better, and a negative value
indicates a good saliency detector. Best scores are in bold.

Perturbation-based attribution Gradient-based attribution

Threshold SSR SDR Threshold IG GGC I × GMetric Flip VAE Knockoff Flip VAE Knockoff

SM
0.4 -0.266 -0.440 -0.418 -0.319 -0.385 -0.411 saliency map

mean 0.055 0.050 0.002
0.5 -0.228 -0.334 -0.391 -0.349 -0.374 -0.398 0.0 -0.082 -0.074 0.019
0.6 -0.154 -0.167 -0.363 -0.150 -0.354 -0.383 0.2 0.962 1.091 -0.037

WSL
0.4 99.804 98.335 97.970 99.906 97.390 96.723 saliency map

mean 89.979 82.097 13.587

0.5 99.852 99.292 98.463 99.926 98.254 97.465 0.0 99.966 99.932 11.631
0.6 99.831 99.494 98.780 99.946 98.968 97.970 0.2 51.876 40.708 42.118

methods, Integrated Gradients (IG) and Input × Gradients (I × G) perform similarly well. Guided GradCAM (GGC)
performs poorly, as it attributes pixels across the entire image.

As expected, the VAE and knockoff counterfactuals have a good SM score and a lower WSL score. Averaged over all
classes and both objectives, knockoff counterfactuals obtain the best SM score. While this might indicate that they define
the most compact relevant regions, the per-class evaluation presented in the Supplementary Material reveals additional
insights: knockoff counterfactuals consistently perform better for classes 0, 3, and 8. VAE counterfactuals perform
significantly worse in these classes, which explains the average outcome. For the other classes, VAE counterfactuals
generally perform slightly better.

A possible explanation for this outcome is that, for classes 0, 3, and 8, the generated knockoffs also belong to these
same three classes with high probability. When used to corrupt the original image, the knockoffs displace critical lines
such as the middle line of 0 or the lower and upper left lines of the 8. This displacement is always within the number
and thus leads to a compact counterfactual. For the other classes, the generated knockoffs belong to classes that result
in a displacement of lines further outside the object. Since the VAE rarely generates different values than the originals
for the background pixels, the VAE counterfactuals do not highlight these regions. Another reason for failure to deliver
explanations that indicate which regions should be changed is that some knockoffs are prototypes of the number. In
those cases, the explanation does not indicate which regions should be modified and might stretch along with the entire
number.

Another important insight is that knockoffs also offer the most visually consistent results across both objectives. This is
probably due to the reduced degrees of freedom of the knockoffs compared to the VAE approach: For the knockoff
counterfactuals, we only use one knockoff image to obtain reference values, while the VAE infers missing values at
each iteration of the procedure.

4.2 Counterfactual explanations on complementary MNIST

To better understand the ability of our in-filling method to generate counterfactuals in the causal sense, i.e., indicate
which regions should be modified to change one number into the other, we derive two subsets from MNIST and generate
counterfactuals for them. We select the pairs of numbers 3 and 8 and 5 and 6, consisting of 11982 training and 1984
testing images, and 11339 training and 1850 testing images, respectively. We name these subsets complementary
MNIST 3/8 and 5/6. We consider these pairs of numbers complementary because they can easily be transformed into
another by removing or adding parts, as highlighted for 3 and 8 in Figure 5. Therefore, the evaluation of these datasets
should better indicate which in-filling method displays the best counterfactual explanation.

Our trained classifiers obtain the following accuracy scores: 96.580% on complementary MNIST 3/8 scores, and
90.140% on complementary MNIST 5/6. We use a learning rate of λ = 5− e4 for the perturbation-based counterfactual
generation, while all other parameters remain unchanged.

Figure 5: Examples of counterfactuals that result from the perturbation of numbers 3 and 8. By adding, in the case of 3,
or removing, in the case of 8, the pixels highlighted in red, the numbers can be transformed into the other.
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Figure 6: Counterfactuals for complementary MNIST 3/8.
Left to right: original image, SSR flip, SSR VAE, SSR
knockoff, SDR flip, SDR VAE, SDR knockoff. Upper two
rows: samples for which SSR knockoff counterfactuals
perform well compared to VAE counterfactuals. Lower
two rows: samples for which SSR knockoff counterfactu-
als perform worse than VAE counterfactuals.

Figure 7: Counterfactuals for complementary MNIST 5/6.
Left to right: original image, SSR flip, SSR VAE, SSR
knockoff, SDR flip, SDR VAE, SDR knockoff. Upper two
rows: samples for which SSR knockoff counterfactuals on
the complementary MNIST 5/6 perform well compared
to VAE counterfactuals. Lower two rows: samples for
which SSR knockoff counterfactuals perform worse than
VAE counterfactuals.

Counterfactual explanations for complementary MNIST 3/8 Since this subset contains only two classes, the flip
in-filling generates better counterfactuals than for MNIST but still highlights pixels that cover a large surface of the
number, as shown in the second row of Figure 6. On the other extreme, VAE counterfactuals often select few pixels
at the numbers’ ends or curves, rather than the entire regions. Knockoff counterfactuals highlight whole areas that
should be removed or added to a number to transform them into the other but generally restrict to these regions only.
These observations hold only for the SSR objective. For the SDR objective, all counterfactuals cover large parts of
the numbers, probably due to the higher degrees of freedom. It is also important to note that the knockoff in-filling
sometimes fails. This happens when the generated knockoff is a prototype of the class, rather than a complementary
number, as shown in the last row of Figure 6.

Counterfactual explanations for complementary MNIST 5/6 For the complementary MNIST 5/6, flip SSR coun-
terfactuals signalize the whole number as important. VAE counterfactuals signalize more compact regions that should
be modified to transform one number into the other, as can be seen in Figure 7. Knockoff counterfactuals highlight
similar areas to the VAE yet tend to attribute more pixels. For example, for the numbers 5 in Figure 7, importance is
attributed to the upper and lower left parts of the numbers. However, some artifacts can be observed in the upper central
parts of the numbers. Bad performing saliency maps, such as the last two rows of Figure 7, reveal the downside of
reduced regularization that comes with knockoffs. It leads to artifacts in the knockoff counterfactuals that are difficult to
interpret. Although these maps still signalize some important regions, they are much noisier compared to the VAE maps.
This might be again because, for the 5/6 dataset, the generated knockoffs are more often prototypes of the class number.

As for the 3/8 subset, SDR counterfactuals generally signalize large areas of the number. Knockoffs and VAE SDR
counterfactuals do focus on similar regions, but knockoff counterfactuals tend to signalize more pixels than the VAE
ones.

5 Conclusions

Counterfactual explanations are highly influenced by the reference values used to perturb the features. Heuristically
generated values falsely attribute pixels due to the out-of-distribution data after perturbation, which biases the classifier,
and, implicitly, the explanation [2]. Perturbations with generative in-fillings alleviate this problem since they are
in-distribution. They also regularize counterfactual explanations since generative models predict redundant pixels well
and thus introduce no change for these pixels. However, generative methods may also over-regularize since they can
also perform well on less redundant pixels. We hypothesized that this might lead to an increased number of false
negatives and showed that this is indeed the case.

To alleviate the over-regularization, we proposed to use the Knockoffs framework of [3] to generate perturbation
values. We compared our developed counterfactual explanation method with heuristic and generative in-fillings and
gradient-based methods for CNNs classifiers. Here we could demonstrate that knockoff counterfactuals highlight the
entire region to be perturbed to change the number into another, while VAE counterfactuals highlight the number’s
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relevant key pixels. On average, knockoff counterfactuals score best with respect to the compactness of the salient
area. Yet, a class-wise inspection shows that knockoff counterfactuals consistently score best for the classes for which
perturbed pixels are still within the number. When knockoffs are not complementary in shape with the original, pixels
signalized as important lie outside the number. However, these indicate which regions could be modified to change the
classifier output. Furthermore, since knockoffs respect the in-distribution-ness condition, we believe that these pixels
are important to the classifier.

Although we obtained promising results in our proof-of-concept study, our current approach needs further refinement.
First, an extensive evaluation of knockoff generation methods for image data is necessary. This step would also allow us
to test our method on natural image data. We also faced the question of whether evaluating the regions’ compactness is
the right approach for counterfactual evaluation. A consistent explanation might better fulfill expectations from causal
and human perspective. We believe that for the future, taking a more causal approach towards evaluation metrics would
be interesting and could create a bridge between human and machine reasoning.
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6 Supplementary Material

6.1 Class-wise evaluation

Table S1: Results of the class-wise evaluation of the
weakly supervised location (WSL) and saliency metric
(SM) on MNIST counterfactuals with 0.4 threshold for
the SSR objective. Flip scores best for class 1, VAE
scores best for classes: 2, 4, 5, 6, 7, 9, and knockoff score
best for classes: 0, 3, 8. Best scores are in bold.

WSL SM
Class Flip VAE Knockoff Flip VAE Knockoff
0 100.000 100.000 99.267 0.603 0.056 -0.164
1 98.237 85.593 85.897 -1.113 -1.104 -1.104
2 100.000 100.000 99.934 -0.480 -0.525 -0.279
3 100.000 100.000 99.781 -0.333 0.072 -0.371
4 100.000 100.000 99.262 -0.647 -0.743 -0.532
5 100.000 100.000 100.000 -0.633 -0.739 -0.585
6 100.000 99.189 98.986 -0.552 -0.683 -0.474
7 100.000 100.000 99.744 -0.487 -0.760 -0.661
8 100.000 100.000 99.241 0.145 0.240 -0.010
9 100.000 100.000 99.419 0.942 -0.058 0.091

Table S2: Results of the class-wise evaluation of weakly
supervised location (WSL) and saliency metric (SM) on
MNIST counterfactuals with 0.4 threshold for the SDR
objective. Flip scores best for classes: 1, 2, 4, 5, 6,
VAE scores best for class 7, and knockoff scores best
for classes: 0, 3, 8, 9. Best scores are in bold.

WSL SM
Class Flip VAE Knockoff Flip VAE Knockoff
0 100.000 99.414 100.000 0.345 -0.007 -0.019
1 99.271 81.824 76.231 -1.136 -1.067 -1.069
2 100.000 100.000 99.934 -0.461 -0.386 -0.390
3 100.000 98.759 99.124 -0.354 -0.318 -0.366
4 100.000 99.530 99.597 -0.601 -0.489 -0.547
5 100.000 100.000 99.787 -0.615 -0.563 -0.544
6 100.000 100.000 98.378 -0.616 -0.558 -0.483
7 100.000 99.297 99.361 -0.608 -0.629 -0.553
8 100.000 99.379 99.241 0.283 0.152 -0.057
9 99.871 97.677 98.194 0.686 0.121 0.013

Table S3: Results of the class-wise evaluation of weakly
supervised location (WSL) and saliency metric (SM) on
MNIST counterfactuals with 0.5 threshold for the SSR
objective. Flip scores best for class: 2, VAE scores best
for classes: 4, 5, 6, 7, 9 and knockoff scores best for
classes: 0, 1, 3, 8. Best scores are in bold.

WSL SM
Class Flip VAE Knockoff Flip VAE Knockoff
0 100.000 100.000 100.000 1.005 0.449 -0.097
1 98.646 93.975 88.624 -0.956 -0.783 -0.987
2 100.000 100.000 100.000 -0.556 -0.544 -0.296
3 100.000 100.000 100.000 -0.210 0.739 -0.340
4 100.000 100.000 99.256 -0.699 -0.733 -0.562
5 100.000 100.000 100.000 -0.669 -0.769 -0.575
6 100.000 99.392 99.172 -0.576 -0.721 -0.510
7 100.000 100.000 99.920 -0.554 -0.779 -0.699
8 100.000 100.000 99.448 0.256 0.292 0.027
9 100.000 100.000 99.612 0.994 0.143 0.276

Table S4: Results of the class-wise evaluation of weakly
supervised location (WSL) and saliency metric (SM) on
MNIST counterfactuals with 0.5 threshold for the SDR
objective. Flip scores best for classes: 1, 2, 4, 5, 6, VAE
scores best for classes: 1, 7 and knockoff scores best for
classes: 3, 8, 9. Best scores are in bold.

WSL SM
Class Flip VAE Knockoff Flip VAE Knockoff
0 100.000 100.000 100.000 0.891 0.084 0.128
1 99.453 88.389 82.249 -1.195 -1.131 -1.118
2 100.000 100.000 100.000 -0.461 -0.435 -0.414
3 100.000 98.686 99.635 -0.263 -0.250 -0.299
4 100.000 99.732 98.523 -0.639 -0.495 -0.588
5 100.000 99.858 99.858 -0.664 -0.589 -0.570
6 100.000 100.000 98.784 -0.624 -0.610 -0.538
7 100.000 99.553 99.617 -0.626 -0.655 -0.577
8 100.000 100.000 99.310 0.333 0.253 -0.036
9 99.871 97.613 98.645 0.916 0.209 0.142

Table S5: Results of the class-wise evaluation of weakly
supervised location (WSL) and saliency metric (SM) on
MNIST counterfactuals with 0.6 threshold for the SSR
objective. Flip scores best for classes: 1, 2, 4, VAE scores
best for classes: 5, 6, 7, 9 and knockoff scores best for
classes: 0, 3, and 8. Best scores are in bold.

WSL SM
Class Flip VAE Knockoff Flip VAE Knockoff
0 100.000 100.000 100.000 1.469 0.885 0.118
1 98.480 97.751 91.489 -1.175 -1.165 -1.170
2 100.000 100.000 100.000 -0.538 -0.432 -0.278
3 100.000 100.000 99.197 -0.051 1.490 -0.197
4 100.000 99.463 98.993 -0.753 -0.720 -0.565
5 100.000 100.000 98.936 -0.708 -0.760 -0.632
6 100.000 99.797 98.986 -0.628 -0.750 -0.563
7 100.000 99.936 100.000 -0.586 -0.758 -0.747
8 100.000 100.000 99.862 0.433 0.508 0.072
9 100.000 100.0000 99.419 1.200 0.349 0.452

Table S6: Results of the class-wise evaluation of weakly
supervised location (WSL) and saliency metric (SM) on
MNIST counterfactuals with 0.6 threshold for the SDR
objective. Flip scores best for classes: 4, 5, VAE scores
best for classes: 0, 1, 6, 7 and knockoff scores best for
classes: 2, 3, 8, 9. Best scores are in bold.

WSL SM
Class Flip VAE Knockoff Flip VAE Knockoff
0 100.000 100.000 100.000 1.405 0.234 0.411
1 99.635 94.043 85.410 -1.182 -1.197 -1.148
2 100.000 100.000 100.000 -0.447 -0.450 -0.485
3 100.000 98.540 99.854 -0.082 -0.190 -0.237
4 100.000 99.664 98.591 -0.705 -0.519 -0.631
5 100.000 99.929 100.000 -0.737 -0.623 -0.586
6 100.000 100.000 98.986 -0.599 0.667 -0.603
7 100.000 99.872 99.681 -0.678 -0.697 -0.631
8 100.000 100.000 100.000 0.587 0.304 -0.005
9 99.871 98.258 98.839 1.147 0.404 0.233
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6.2 Additional examples

6.2.1 MNIST counterfactuals

Figure S1: Examples of counterfactuals for samples from MNIST. Left to right: original image, SSR flip, SSR VAE,
SSR knockoff, SDR flip, SDR VAE, SDR knockoff, Gradients × Input, Integrated Gradients, Guided GradCAM.

11



A PREPRINT - FEBRUARY 2, 2021

6.2.2 Complementary MNIST 3/8 and 5/6

Figure S2: Examples of counterfactuals for numbers 3
and 8 from the complementary MNIST 3/8 subset. Left to
right: original image, SSR flip, SSR VAE, SSR knockoff,
SDR flip, SDR VAE, SDR knockoff.

Figure S3: Examples of counterfactuals for numbers 5
and 6 from the complementary MNIST 5/6 subset. Left to
right: original image, SSR flip, SSR VAE, SSR knockoff,
SDR flip, SDR VAE, SDR knockoff.
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