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Abstract. Automatic visual inspection has become an important appli-
cation of pattern recognition, as it supports the human in this demanding
and often dangerous work. Nevertheless, often missing abnormal or de-
fective samples prohibit a supervised learning of defect models. For this
reason, techniques known as one-class classification and novelty- or un-
usual event detection have arisen in the past years. This paper presents a
new strategy to employ Hidden Markov models for defect localization in
wire ropes. It is shown, that the Viterbi scores can be used as indicator
for unusual subsequences. This prevents a partition of the signal into suf-
ficient small signal windows at cost of the temporal context. Our results
outperform recent time-invariant one-class classification approaches and
depict a great advance for an automatic visual inspection of wire ropes.

1 Introduction

Visual inspection of material surfaces has become an important application of
pattern recognition [1–4]. Especially in scenarios, in which a manual inspection
implies a high risk for the human life an automatic inspection is highly appreci-
ated. Furthermore, in case of long-time inspections a human suffers from fatigue
and a reduced level of concentration. The inspection of wire ropes of ropeways,
elevators or bridges is an example for such a dangerous and at the same time
demanding inspection task. As the ropes cannot be unmounted, a manual in-
spection bears a high risk for the human life. The inspection speed is often quite
high (0.5 meters/s) and defects are small and nearly invisible. In Fig. 1(a) two
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(a) Rope defects (b) Prototype system (c) Rope views

Fig. 1. (a) Two common kind of rope defects: a missing wire (top) and a wire fraction
(bottom). (b) the prototype system leading to four different rope views (c).

common classes of surface defects in wire ropes are shown: a missing wire and a
wire fraction. In order to afford an automatic visual inspection of wire ropes, a
prototype system displayed in Fig. 1(b) was developed [5]. Line cameras project
the rope to a fixed number of rope views, visible in Fig. 1(c).
As it becomes clear from Fig. 1(a) surface defects in wire ropes are not obvious.
Therefore, a machine-based recognition is a challenging problem. Furthermore, a
frequently reported problem in automatic visual inspection is the lack of faulty,
abnormal examples. It is hard to obtain defective examples from a real ropeway,
especially due to the strict rules for a regular visual examination [6]. In order
to cope with the missing abnormal training material, one-class classification
approaches, also known as novelty detection or unusual event detection, have
arisen the past years [7, 1, 3, 4, 8].

A brief overview of visual inspection and one-class classification is given in
the following section. In Sect. 3 anomaly detection with Hidden-Markov models
is introduced, followed by a derivation of our new strategy for the detection of
anomalous subsequences. The ratio between the maximum Viterbi scores of two
consecutive time steps serves as anomaly indicator and the theoretical meaning
of this ratio is derived. In Sect. 5 the method and the payoff are summarized
and discussed followed by an outlook on future work.

2 Related Work

One-class classification (OCC) [7] is a concept often used in automatic visual in-
spection applications. The key idea is to learn only a representation of a target
class - mostly the class of intact examples. Afterwards, anomalies and defects
are recognized by outlier detection. Xie [4] provides a comprehensive summary
of recent advances in visual inspection coping also with one-class classification
strategies for anomaly and defect detection. In [9] and [10] general novelty and
outlier detection methods are subsumed. Application examples in the field of au-
tomatic visual inspection are given by Maenpaa et al. [1], who use self-organizing
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Fig. 2. Result of the automatic defect detection in wire ropes presented in [8]. The
white window borders the rope region, which was classified as potential defect.

maps for real-time surface inspection. Xie and Mirmehdi [11, 3] employ a Gaus-
sian mixture model (GMM) to detect abnormal variations from the random
texture of ceramic tiles. In [12] an OCC approach using a GMM for automatic
defect detection in wire ropes is presented. Potential defects in ropes are identi-
fied by an outlier detection scheme. The work is extended in [8] by a comparison
of different features. The approach allows a defect detection in wire ropes, but
its localization ability is strongly restricted. Fig. 2 shows an exemplary detection
result obtained with our implementation of the approach of Platzer et al. [8].
Obviously, just a small part of the defect was recovered. Our working hypothesis
states, that defect detection and localization can be improved by the usage of
temporal context during the classification.

Hidden Markov models (HMM) are a well-known technique to incorporate
temporal context from time series into classification problems. OCC in the con-
text of sequential instead of static data is often called unusual event detection.
For example, Zhang et al. [13] present a semi-supervised HMM approach for
unusual event detection. A HMM explaining usual events is learned from a huge
amount of normal training data. Unusual events are recognized by a reduced
likelihood of the data given the model, and the model is adapted to this un-
usual events by a Bayesian approach. Brewer et al. [14] employ coupled Hidden
Markov models (CHMM) to identify suspects in digital forensics. An application
to surface inspection based on CHMMs is presented by Pernkopf [2]. A defect lo-
calization in texture using HMMs was presented by Hadizadeh and Shokouhi [15].
They utilize the HMM as a texture unit descriptor and predict the pixel values
of the texture. Defect detection is performed, based on the prediction error.

In most HMM-based anomaly detection approaches a decision is made based
on the sequence likelihood given the learned model. By windowing the signal
it is possible to get a better localization, but at the expense of less temporal
context. So, obviously these are opposing intentions. For our purpose, a prefer-
ably wide temporal context covering at least one rope period is important. At
the same time, an exact localization of defects within the sequence would be
a great improvement. Therefore, in the following section HMM-based anomaly
detection will be explained more detailed and a new approach for the recognition
of unusual subsequences will be introduced.
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3 HMM-based Anomaly Detection

A Hidden Markov model is a probabilistic graphical model for a two-step random
process. In the context of wire rope surface analysis the rope views are treated
as observation sequences, whereas the hidden states are linked to the position in
the rope. Emission distributions are modeled by a GMM based on histograms
of oriented gradients (HOG) [16], which serve as features. This feature choice
is motivated by the regular rope structure ruled by gradients oriented perpen-
dicular to the twist direction. To improve the discrimination ability of features,
also the entropy of each HOG cell is computed and used within the features.
As it is no problem to obtain a lot of intact rope data, model learning is per-
formed in the usual way by the well-known Baum-Welch algorithm [17]. Due to
the periodic structure of wire ropes, a cyclic model with a fixed bandwidth is
used preventing an error-prone segmentation of the training data into periodic
segments. By defining a threshold on the probability of the observation sequence
given the model a decision of the sequence belonging to the model can be made.
Again it should be referred to the opposing goals: by separating the signal into
effectual small test sequences it is possible to achieve a good localization, but at
cost of the temporal context used to compare the test sequence with the model.
For this reason, the following section introduces a new way for an HMM-based
recognition of unusual subsequences.

3.1 Unusual Subsequence Detection

To decode the optimal state sequence given a learned HMM λ and an observation
sequence O1:T of length T , the Viterbi algorithm is used [17]. Based on the
Viterbi score δt(i) = maxS1,...,St−1 P (S1, . . . , St = si, o1, . . . , ot | λ) at time t for
state St = si, the likelihood of the optimal path (marked by *) can be computed
recursively by

P ∗ = max
1≤i≤N

δT (i). (1)

δt(i) is defined as

δ1(i) = πibi(o1), ∀ 1 ≤ i ≤ N (2)

δt(j) = max
1≤i≤N

[δt−1(i)aij ] bj(ot), ∀ 1 ≤ j ≤ N, 2 ≤ t ≤ T, (3)

where aij is the state transition probability from state St = si to state St+1 = sj ,
bj(ot) represents the emission probability of state St = sj to emit the observation
ot at time t, πi is the initial probability of state S1 = si and N denotes the
number of states used in the topology of the model. To decode the optimal state
sequence the argument which maximized (3) must be stored in the forward step

ψ1(i) = 0 (4)

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij ] , ∀1 ≤ j ≤ N, 2 ≤ t ≤ T. (5)
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Fig. 3. Graphical illustration of the meaning of ratio r. Bold arrows indicate the state
transition ai′j′ , which was chosen to maximize δt+1(j). The dashed arrow represents
the transition from k′ to j′ skipped in this case. Black shaded circles represent states
with maximum Viterbi score. The ellipsis marks the states i′ and k′ for which r is
computed.

The optimal path is then defined by S∗t = ψt+1(S∗t+1) for t = T − 1, T − 2, . . . , 1
leading to the optimal state sequence. Accordingly, the maximum Viterbi score
max1≤j≤N δt(j) at time t gives the likelihood of the optimal path of the partial
observation sequence O1:t.

In case of defective rope regions, we assume that subsequences of the data
cannot be explained well by the model. This should be reflected in the maxi-
mum Viterbi score of the according time steps, as the likelihood on the optimal
path should decrease significantly. Hence, the ratio of two consecutive maximum
Viterbi scores of neighboring time steps can be used as anomaly indicator and
can be written as

R =
max1≤j≤N δt+1(j)

max1≤k≤N δt(k)
(6)

=
max1≤j≤N max1≤i≤N [δt(i)aij ] bj(ot+1)

max1≤k≤N δt(k)
(7)

By substituting j′ = arg max1≤j≤N δt+1(j), i′ = arg max1≤i≤N δt(i)aij′ and k′ =
arg max1≤k≤N δt(k) (7) can be rewritten as

R =
δt(i
′)ai′j′bj′(ot+1)

δt(k′)
=
δt(i
′)

δt(k′)︸ ︷︷ ︸
r≤1

ai′j′bj′(ot+1)︸ ︷︷ ︸
z

(8)

From (8) it becomes clear, that the ratio of two consecutive maximum Viterbi
scores can be seen as a supplementary weightage of z given the information from
the next time step. r is the ratio of the Viterbi score δt(i

′) of state i′, which was
chosen to maximize δt+1(j) and the maximum Viterbi score δt(k

′) in state k′ at
time t. This ratio can be referred to represent the structural uncertainty present
in the model with respect to the input data and the optimal state at time t.
The lower r becomes, the less certainty is present with regard to the choice of
the optimal St. Fig. 3 illustrates the meaning of r. δt+1 is not maximized by a
transition from state St = k′ which offers the maximum δt(k). Instead δt+1(j)
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(a) Broken wire

(b) Missing wire

Fig. 4. Defect localization results on a sequence containing a broken wire (a) and a
sequence with a missing wire (b). The light gray bar (green in colored version) gives
the ground truth labeling of the human expert while the dark gray bar (pink in colored
version) above the thin white timeline shows the obtained detection result.

becomes maximal for a transition from St = si′ , although the Viterbi score
δt(i
′) was not maximum. This obeys that i′ was not optimal with respect to the

observation sequence O1:t, but becomes optimal if O1:t+1 is considered.
As the regular characteristic of the rope implies a certain fixed structure,

the structural uncertainty is supposed to grow if the underlying data cannot be
explained well by the learned model. This happens if anomalies are existent in
the data. A threshold on the scalar obtained by (8) for every time step t is used
to evaluate the presented approach by means of ROC curves. We will call this
threshold anomaly indicator in the remaining paper.
Localization results for two common rope defects are visible in Fig. 4 and clarify
the potential of our theory. Although the detection results not perfectly match
the ground truth labeling, regions with an anomalous visual appearance were
recognized nearly to their full extent. The improvement becomes clear, if you
compare the localization result for the missing wire in Fig. 4(b) with the de-
tection result for the same defect of the same data sequence from Fig. 2. A
quantitative evaluation of our approach will follow in the next section.

4 Experiments

All experiments were performed on authentic rope data acquired from real rope-
ways. HMM and GMM implementations of the Torch3 machine learning library
[18] were employed. The number of states in the HMM was chosen to be 10 with
eight components in the GMM. The HOG features were computed for blocks of
20 camera lines and a cell size of 20× 20 pixels with m = 4 orientation bins. As
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Fig. 5. Influence of the size of the training set (in camera lines) on the system perfor-
mance. The performance measures are given as area under the ROC curve (AUC).

the entropy for each cell was used as additional feature, the feature dimension
for a rope with 150 pixels diameter results in a size of 7 ∗ (4 + 1) = 35.

Model learning was done for each of the four rope views. A region which
is known to be defect-free was chosen for this task. For numerical stability we
used the log-likelihood instead of the likelihood, which turns the ratio in (6)
into a difference. By varying the threshold on the differences of consecutive
logarithmized maximum Viterbi scores, we analyzed our results with help of ROC
curves. A camera line-based ratio between human-labeled defects, recovered as
anomaly and the overall sum of defective camera lines was computed and is
referred to as true positive rate (TPR). The false positive rate (FPR) gives a
measure of the false alarm frequency. It should be noted, that the resolution of
the defect location depends on the block size, used for the feature compuation.

Rope analysis was performed individually for every view given the associated
model. The resulting ROC curves were averaged over all views. Interference
between the views was not considered yet. Ground truth data for all experiments
was given by a carefully accomplished defect labeling of a human expert.

Model learning can be done within a few minutes, as just a few rope meters
are used. The time for the analysis of the rope depends on the length of the rope.
In our experiments the speed for anomaly detection was approximately 6 meters
per minute which leads to a processing speed up to 1000 camera lines per second
(10cm/s). A parallel computation for all camera views needs approximately 3.5
hours for a rope resulting in 13.000.000 camera lines (1300 meters).

4.1 Importance of the amount of training data

The first experiment was designed to reveal the influence of the size of the
training set. In Fig. 5 the area under the ROC curve (AUC) is given for different
sized training sets. The ROC curves were averaged over the four rope views
for a testrun on 13.000.000 camera lines (1300m of rope). Models were learned
on training sets reaching from 10.000 camera lines to 200.000 camera lines (1-
20m of rope). As expected, the size of the training set has an influence on the
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Fig. 6. Averaged ROC curve (AUC= 0.96) over all cameras and testruns (a) and ROC
curves with corresponding AUC values for individual camera views (b) of a single
testrun. The circle in (a) marks the recognition rates (TPR=0.97,FPR=0.36) obtained
if all defects are detected while the square gives the recognition rates (TPR= 0.88,
FPR= 0.04) for a tolerance range of one missed defect.

performance, because the HMM needs an adequate data basis for the estimation
of the model parameters. It becomes clear, that at least 50.000 camera lines are
required to obtain a robust model. In the following, experiments a training set
containing 100.000 camera lines of training data was used for model learning.

4.2 Recovered Defect area

This experiment evaluates the amount of recovered defect area. The averaged
result over 10 test runs with individually learned models is shown in Fig. 6(a).
The AUC value for this curve is 0.96. The circle marks the first anomaly indi-
cator value for which no defects were missed, while the square outlines the best
recognition rates obtained for a tolerance range of one missed defect. The results
of four individual camera views of a selected test run are visible in Fig. 6(b).
It becomes clear, that cameras two and three have a weaker performance com-
pared to one and four. This is due to missing wires which are very inconspicuous
and therefore really hard to detect with an appearance based approach in these
views. In Table 1 the averaged number of defects which were not discovered in
the rope subjected to the value of the anomaly indicator are summarized.

Table 1. Averaged number of missed defects related to anomaly indicator value.

threshold 10 20 30 40 50 60 70 80 90

missed defects 5.925 4.750 3.675 3.100 2.275 1.100 0.000 0.000 0.000



9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
T

ru
e 

P
o

si
ti

v
e 

R
at

e

False Positive Rate

HMM approach
OCC approach

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Approach

AUC value

HMM
OCC

Fig. 7. Comparison of defect localization results obtained withthe OCC approach in-
troduced in [8] and the HMM anomaly detection strategy presented in this paper.

4.3 Comparison to Time Invariant OCC

To outline the improvement concerning an automatic defect detection and local-
ization we compare our results to the approach of Platzer et al. [8], where a time
invariant OCC method was used. As in [8] the subject of interest was just a de-
fect detection, they perform a classification postprocessing. This postprocessing
step marks the whole defect area as recognized as soon as one signal window in
the defect range is classified as anomaly. Hence, always 100% of the defect area
is recovered unless a defect is totally missed. To compare both approaches re-
garding their localization ability, we skip this postprocessing for our evaluation.
Fig. 7 compares the results obtained with the OCC approach and the presented
HMM strategy. For both approaches, the TPR gives the percentage of recov-
ered defect area while the FPR gives the false alarm rate. It becomes clear, that
the HMM approach leads to a remarkable improvement in the defect localization
compared to the OCC approach. This is a great benefit and an important aspect
for the practical applicability of the system.

5 Conclusions

An new HMM-based approach for anomaly detection in wire ropes was presented.
Contrary to most HMM-based anomaly detection approaches, which are based on
the sequence likelihood of the whole observation sequence, a localization strategy
for unusual subsequences was proposed. In contrast to the usual approaches our
method needs no steering of the localization ability by choosing an effectual
small signal window for the analysis. The detection of anomalous subsequences
is based on the ratio of two consecutive maximum Viterbi scores. As these ratio
represents a supplementary weightage of the previous chosen state transition on
the optimal path, it can serve as indicator for defects in wire ropes.

Our experiments prove the working hypothesis of the paper. A context-based
classification using HMMs together with our new strategy for unusual subse-
quence recognition can lead to an improved and more robust defect detection in
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wire ropes. In experiments on real-life rope data from a ropeway it was possible
to recover 90% of the overall defect area with the presented approach. At the
same time, the false alarm rate stays clearly below 10%. A comparison to the
work of Platzer et al. [8] in the field of visual rope inspection emphasizes the
impressible improvement gained by the presented approach.

An interesting open question is still, how the dependency relations between
the different rope views can be taken into account to improve the method. Fur-
thermore, the automatic adaption of the anomaly indicator value to the data
will be a point under investigation.
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Anomaly Detection in Wire Ropes Using Linear Prediction Combined with One-
class Classification. In: Proceedings of the 13th International Fall Workshop Vision,
Modeling and Visualization. (2008) 343–352

13. Zhang, D., Gatica-Perez, D., Bengio, S., McCowan, I.: Semi-supervised adapted
HMMs for unusual event detection. In: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. Volume 1. (2005) 611–
618



11

14. Brewer, N., Nianjun, L., Vel, O.D., Caelli, T.: Using Coupled Hidden Markov Mod-
els to Model Suspect Interactions in Digital Forensic Analysis. In: International
Workshop on Integrating AI and Data Mining. (2006) 58–64

15. Hadizadeh, H., Shokouhi, B.: Random Texture Defect Detection Using 1-D Hidden
Markov Models Based on Local Binary Patterns. IEICE Transactions on Informa-
tion and Systems E91-D(7) (2008) 1937–1945

16. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
International Conference on Computer Vision and Pattern Recognition (CVPR).
(2005) 886–893

17. Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proceedings of the IEEE 77(2) (1989) 257 – 286
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