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Abstract

Automatic visual inspection has gathered a high im-
portance in many fields of industrial applications.
Especially in security relevant applications visual
inspection is obligatory. Unfortunately, this task
currently bears also a risk for the human inspec-
tor, as in the case of visual rope inspection. The
huge and heavy rope is mounted in great height,
or it is directly connected with running machines.
Furthermore, the defects and anomalies are so in-
conspicuous, that even for a human expert this is a
very demanding task. For this reason, we preserftigure 1: Rope defects: in the upper image you can
an approach for the automatic detection of defectsee a wire fraction and in the image below a wire is
or anomalies in wire ropes. Features, which incormissing.
porate context-information from the preceding rope
region, are extracted with help of linear prediction.
These features are then used to learn the faultledgactions, damaged rope material due to lightening
and normal structure of the rope with help of a one-strokes or missing wires. Figure 1 displays two of
class classification approach. Two different learnthe mentioned defects, marked in the rope. Fur-
ing strategies, the K-means clustering and a Gaughermore, a reduced stress of the rope or untwisting
sian mixture model, are used and compared. Thean be the origin for evolving defects and structural
evaluation is done on real rope data from a ropeanomalies. For many applications, the ends of the
way. Our first results considering this demandingrope have to be connected by interweaving individ-
task show that it is possible to exclude more than 9@al wires of the one end with lacings of the other
percent of the rope as faultless. end. Every time such an interleaving is done, there
is a special structural modification, called knot. The
area which covers all knots is called splice and is
1 Introduction and Motivation known as a region of higher liability to defects.
Therefore, it is also important to detect these knots
Wire ropes are used in many fields of daily life: as a structural anomaly.
they bear the weight of bridges and can be found as Visual inspection of wire ropes is a difficult and
load cable in every elevator. Moreover, they are thelangerous task [14]. The inspectors are exposed
foundation of every ropeway. All mentioned appli- to many risks like crashing or injuries caused by
cations of wire ropes indicate a high risk for humanthe closeness to the running rope. Besides, the in-
life if such a wire rope is damaged and therefore nogpection speed is quite high (on average 0.5 me-
safe any more. It is thus not astonishing that thergers/second) which makes it a hard effort, to concen-
exist strict rules for a regular inspection [14]. trate on the passing rope without missing small de-
Typical defects in wire ropes are small wire fective rope regions. For this reason, an automatic
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The only obtainable ground truth data is delivered
from the human inspector by manually labeling the
defects in a rope data sample set. Hence, statistical
learning approaches are limited to one-class clas-
sification. Given just a sample set of defect-free,
structural consistent rope data, the task is to deter-
mine a boundary around this data in order to op-
timize the separation between target class and out-
liers [19].

1.1 Related Work

Comparable state-of-the-art work can be found in
the field of visual inspection of textile fabrics [18],
fault detection in material-surfaces [9] or other
comparable anomaly detection tasks.
Figure 2: A prototype version of the device which Mo;t of_the _approaches for anomaly and defect
detection in this context are based on textural fea-
tures, like local binary patterns (LBP) [18] or ga-
bor filter outputs [9, 8]. Chan and Pang [2] make
. . . . . use of Fourier analysis to detect defects in fabrics.
visual inspection would be an important improve- . L
. L The approaches of Chetverikov [3] and Vartianinen
ment. This was the motivation for the development -
. - - et al. [20] both are engaged with the problem of
of a prototypic acquisition system based on four line

cameras and vielding rope data in a digital rnannelrregularity detection in regular patterns or struc-
; y grop gralr fures. Whereas Chetverikov [3] uses regularity fea-
[14]. This prototype system can be seen in figure 2

; : ; . . . “tures based on the auto-correlation function for the
Using this new technique, it became possible to in- - .
. : detection of non-regular structures, Vartianinen et
spect the acquired data in a safe and comfortable : . )
way and without time pressure. al. [_20] s_eparate regular anpl irregular image infor-
mation with help of the Fourier transform.

A solution to the problem of automatic visual in- Mostly, defect detection based on thresholding
spection of wire ropes, based on the digitally actne filtered or transformed image data [8] is per-
quired data, is introduced in this paper. Consideringgrmed. Chetverikov [3] uses a clustering approach
visual inspection of wire ropes as an computer Vi-gng defines a threshold on the maximum distance
sion task bears some further problems. First thgy the cluster center for the detection of defects.
defective regions mostly are limited to small areasrhreshold determination is performed by training
and the image quality is deranged by mud, powdefgy defect-free samples. More sophisticated learn-
grease or water as well as reflections caused by thgg strategies use unsupervised classification meth-
lighting conditions. So even for a human itis hard togqs |ike Gaussian mixture models [21] or self orga-
locate small defects like a missing or broken wire Ofhizing maps (SOM) [10]. These approaches can be
small structural anomalies in the image data. Therearranged in the context of novelty detection. An ex-
fore, contextual information from neighbouring re- tensjve overview over the field of novelty detection,
gions is an important information for the detection|so known as one-class classification or outlier de-
of abnormal regions. tection, is presented in [12, 13, 6]. More detailed

Regarding machine learning strategies, restricwork can be found in [19].
tions are made due to the small sample set of de- However, most of these approaches for defect de-
fects, which is available in advance. Because safetiection do not take into consideration the aspect of
is the key aspect, inspection instructions are rigoreontextual information over time. For the detection
ous. This makes it hard to collect enough samplef small structural anomalies and defects in rope
defects of the different defect classes for supervisedata this contextual information is highly important.
learning methods. In contrast, it is no problem toln this paper, rope data is regarded as a time series.
design a huge sample set of defect-free rope daté model which can explain the appearance of the

acquires the rope data



data is sought. As one key technique in the fieldand the prediction error can be derived as:

of time series analysis linear prediction (LP) should »

be mentioned. Linear prediction aims to predict the ¢(¢) = z(¢) — 2(t) = =(t) + Z arz(t—k). (2)
next value of a time series based on thkast val- =1

ues and so Incorporates a certain temporal CoNteXt1is motivates the choice of linear prediction for
In speech processing it is used to model the hu;

man vocal tract [15]. Although linear prediction is feature extraction, because for the prediction of the

. . .~ actual value the contextual information of the past
known for decades, it was recently used in the flelda P

. . .~ values is used. By this, context information is im-
of defect detection. Hajimowlana et al. [5] use lin- _. . . . -
L . . ) nD|ICI'[|y incorporated in the resulting feature.
ear prediction for defect detection in web inspectio

L A general assumption made in linear prediction is
systems. Based on the prediction error they are ablfw stationarity of the signal. For this reason a non-

to localize defects in textures, containing a constant, _.. . . .
L . . nar nal shoul men nrel I
background. In [17] 2-dimensional linear predic- tationary signal should be segmented in relatively

e . o mall, overlapping frames [15]. Hence, the signal
tion is used for the automatic determination ofseedg pping [15] 9

. . . . . is multiplied with a window functionw(t), which
points for a region growing algorithm in order to . : .
detect microcalcifications in mammograms is chosen to be a rectangular window. The window

. . size N is dependent on the application and here was
In this paper, a new approach combining features . k
. e . chosen to be of 40 pixels width due to a strong re-

extracted by linear prediction with a one-class clas- . ;
e T sponse of the auto-correlation function for a transla-
sification approach for defect detection in wire rope,

data is presented. Section 2 introduces how I_Iyon of 40 pixels. This peak corresponds to a period

features are extracted from multichannel rope dat of the regular wire structure. The quadratic error
. : Pe Caly nction for the whole window with & [to, t1] is
These features are used in section 3 to form an indi-

vidual feature space for every channel, which serves 21 5 s
for the separation into target class (non-defective £ = > _(e(t)?®= > (z(t) —2(t)* (3)

t1

rope regions) and outliers (possible defects). Ex- t=to t=to

periments and results using real rope data from a o P

ropeway are presented in section 4. They reveal the = Z (Z oz (t — k))2 (4)
usability of the presented approach for automatic t=to k=0

defect detection in wire ropes. A discussion aboutvith oy = 1. Based on this least-squares formula-
the contribution of this paper and the future worktion, the optimal parametefs= (1, ... ,) can

can be found in section 5. be derived by solving the following system
diction of LS S
2 Linear Prediction of Rope Data = — —i) =
p Set Q;ak t:Zthc(t k)x(t—i) =0 (5)

Linear prediction can be seen as one of the key tech-. . -
. . " . with i« = 1,...,p. Considering thaty, = 1 one
niques in speech recognition. It is used to compute . . .
. .can rewrite (5) as the following set of equations

parameters that determine the spectral characteris-

tics of the underlying speech signal. Related ap- Ld
plications are furthermore the recognition of EEG Z ardri = —¢oi  fori=1,....p (6)
signals or the analysis of seismic signals [11]. k=1

The general idea is to develop a parametric reprewith ¢;,; = ?:to z(t — k)z(t — i). These equa-

sentation that models the behaviour of the Under|ytions are known as the normal equations [11] and
ing signal. In case of linear prediction, this is donecan be solved for the prediction coefficients, 1 <

by forecasting the value(t) of the signal- attimet ;. < p. The optimal parameter set is derived by the
by alinear combination of thepast values:(t—k)  use of the auto-correlation method [11, 15]. Due to
with £ = 1,..., p. pis the order of the autoregres- the assumption of a stationary signal covered by the

sive process. The predictioi(t) of a 1-D signal  window, the short-time auto-correlation function

can be written as: s
-

IR R(i) =Y x(t)a(t +1) @)
Z(t)=—> arx(t—k) 1)

t=tq



can be used to replage; by R(k —1). Thisresults large training sample set of defect-free feature sam-

in ples for finding an optimal description of the target
» density. Furthermore, the small number of avail-

Z arR(k — i) = —R(i) @) able, defective samples is no prqblem any longer, as

et well as the fact that not all possible defects can be

covered by such a sample set. Considering the goal

whereR(k — i) forms the auto-correlation matrix, to exclude as many rope meters as possible from a
which is known to be a Toeplitz matrix [15]. Such further inspection, the theory of one-class classifi-
Toeplitz matrix systems can be solved efficiently bycation seems to be a good choice.
use of the Levinson-Durbin recursion [11]. A comparison of the problem of one-class clas-
sification with the normal binary classification is
given in [19] and is shortly summarized in the fol-
lowing. In binary classification problems an opti-
As result of the Levinson-Durbin recursion one getsmal parameter vectar™ is searched for in the train-
the parameter vecta¥ = (1, ...qy), contain-  ing, which minimizes the total errarof the classi-
ing the LP coefficients and the minimum total er-fication functionf(&; @) with respect to the class-
ror E, of orderp [11]. Because of windowing labely.
the signal into sufficient small frames, a possible
defect will probably cover large parts of the win- €true(f, @, A) = /€(f(07§ ), y)p(d,y) da dy
dow. Hence, linear prediction in this window would )
cause an optimal fitting of the model to the defect
and does not compulsory result in a high total erHere f is the classification function which is de-
ror. For this reason, the overall total prediction erroP€ndent on the parameters The error functiore
seems not to be a distinctive indicator of a defect. ¢an be an arbitrary function for defining the classi-

Furthermore, the rope data is a 2-dimensionafication error, like the mean squared error for real-
signal. Thus 1-D linear prediction is not effec- valued classification functions or the 0-1-loss for a
tual to analyse the whole signal. To overcomediscrete valued functiofi. A is the feature space.
this, the rope data is considered as a multichanne| N contrast, for one-class classification problems
time series. The signaf consists ofc channels the only obtainable information is that of the tar-
# = (&1 &2...7.)7 and every channel represents9et dgnsi_ty. This solely allows a minimization of
a 1-dimensional time serie& = (z:(1)...z:(t) the rejection of defect-fr_ee_ sgmples. Hence, the to-
withi € {1,...,c}. For every channelof this sig- tal error (9) cannot be minimized due to the lack of
nal an individual 1-D linear prediction is performed, knowledge about the outlier density. The total error
leading to the estimaté;(¢) and a representative iS therefore replaced by two other error functio_qs:
coefficient vectory;. This resulting coefficient vec- the false negative rate (FNR) and the false positive

tor &, is used directly as corresponding feature forate (FPR). The false negative rate measures how
the actual frame and the chanrel many faultless samples are regarded as outlier with

respect to all positive samples, and the false positive

rate gives the amount of defects wrongly classified
3 One-class Classification of Rope as fault-free. The FNR can be measured directly

Data from the training set. By treating the whole feature

space as target density, the FNR would be maxi-
After feature extraction, separation between faultmized in a trivial manner. Instead, the false positive
less and faulty samples is desired. The faultlesgate (FPR) cannot be measured in training without
samples represent the target clagssand the de- a sample set containing a sufficient number of de-
fects are considered as outliers. In other words, fective samples. However, assuming a uniform dis-
a representation for the target densityy | wr)  tribution of outliers, a minimization of the FNR in
is searched without any knowledge about the outeombination with a minimization of the descriptive
lier densityp(& | wo) [19]. This way of looking at  volume of the target density(d | wr) results in
the one-class classification problem fits very well alla minimization of the FNR together with the FPR
present problems. So it is no problem to construct §19].

2.1 1-D Feature Extraction



There exist many different methods for nov- nearest prototype is defined as
elty detection [6]. Tax [19] divides them into i .
three different categories: density-based methods, dimeans (') = mm & = 7kl

boundary methods and reconstruction-based meth- ) _ ) .
ods. Density-based methods attempt to estimate the€ Maximum distance obtained for a feature in the

whole probability density of the target class. EX_training stgge is used for t_hres_hold comp_utation [6].
amples are Gaussian distributions or Gaussian mix2U€ 0 noise and uncertainty in the training set, the
ture models (GMM). Boundary methods focus onMmaximum c_ilstance is not a good choice. ltis stated,
computing the boundaries of the target class with{nat an optimal thresholt,,. should be among the
out estimating the complete density. This is ad-M€an distance.c., and the maximum distance
vantageous, especially if the training sample set igmae Meéasured during the training step.

not representative or consists only of few examples _ _

[19]. Reconstruction-based methods subdivide the topt = Admean + (1 = A)dmas (12
feature space and represent it by subspaces or proteere A with 0 < X < 1 is the free parameter steer-
types. Most of these approaches make use of a pring the threshold. A good evaluation method for an
ori knowledge about the data or the generating proeptimally chosen threshold,,: are receiver operat-
cess [19]. For this work, two approaches are choing characteristics (ROC) [16]. This evaluation is
sen: the K-means clustering and a Gaussian mixturgiven in section 4.

model. Both approaches are shortly summarized in

the following subsections. 3.2 Gaussian Mixture Models

11

As second classification strategy a Gaussian mix-
ture model is chosen. Estimating the underlying

K-means clustering is chosen due to its simplicitydensity only with help of a simple Gaussian would

and its feasibility to represent the feature space ale too inflexible due to the unimodal character of
a set of prototype vectors [6]. Considering the rope? Single Gaussian. A way to approximate complex
data, it is an acceptable assumption to think of thélensities is provided by the usage of Gaussian mix-
features as representatives of a certain signal chature models [1]. Many authors use a Gaussian mix-
acteristic, which repeats over time due to the pefure model with a predefined number of Gaussian
riodic structure of the rope. Hence, an approacr‘ﬁemeb to describe the underlying density in the
which subdivides the feature space into clusters bei€nse of one-class classification, e.g. [19, 16, 21].
|Onging to one of the pr‘ototypes7 fits this assump.A Gaussian mixture consists of a linear combina-
tion. The number of prototypes equals the numbefon of K single Gaussian kernels with dimension

of clustersK and is predefined in advance. For d-
training, resulting in the prototype vectors and a

3.1 K-means Clustering

: . o N [, Y) =
cluster radius, the following error function is mini- (@7 %)

i in- 1 - - -1, =
mized. By t.hat,.for every featu@extracteq by lin T exp (_7(04 T T #))
ear prediction, its nearest cluster centgris com- (2m)2 2|2
puted in the sense of the euclidian distance: (13)

e =2 Each Gaussian component = 1,...,K is
€ s = min ||@; — . 10 . . o .
frmean Z ( jin Fkl ) (10) parametrized by its mean vectdy and its covari-

ance matriXz; as well as the corresponding mixing
Training is done via an iterative procedure. In thecoefficientr;.
first step new samples are assigned to the nearest
cluster, and in the second step the cluster centers,
representing the prototype, are recomputed as the
mean vector of all cluster samples [1]. After the
training, it is possible to define a threshold on theThe mixing coefficientsr; represent the influence
maximum distance to a cluster as a criterion for outof that component with respect to the overall den-
lier rejection. The distance of a featu@ to the sity. It holds thatZJK:1 m; = 1.

K
paoc (@) =Y mpar(@ | iy, B5)  (14)
j=1



(14) gives the likelihood of a certain sample examined in a fixed-sized channel-neighbourhood,
a belonging to the target density. The parame-and the whole frame is only labeled as anomaly if
ters® = {m,...,mx}, i = {fi1,...,[ix} and the number of potential outliers in one neighbour-
3 ={31,...,Xk} are derived in the training step hood exceeds a certain threshold Experimental
based on the EM-algorithm [1]. In contrast to the K-evaluation of this threshold is presented in section 4.
means clustering, the Gaussian mixture model com- Since most of the defects in real rope data have
putes a soft assignment for every new sample coran elongation between 100 and 300 lines, a further
sidering the membership to a certain component [1Jassumption is made for the outlier detection: if one
For the use of density-based models it is possible terame in the range of this defect is rejected as an
define an analytic threshold [19]. One strategy foroutlier, the whole defect is marked as detected. This
doing so is presented in [7]. In this work, the thresh-procedure is necessary at the moment due to the fit-
old is determined in a similar manner as describeding characteristic of the linear prediction model to
in section 3.1 for K-means clustering. Based onthe underlying data. From this follows, that it is not
the minimal likelihood, assigned to one of the train-possible to determine the exact area of the error with
ing samples, and the mean likelihood achieved inhe presented approach. In case of a detection run
the training, the optimal threshold is evaluated within a real-life scenario without groundtruth-labeling,
help of ROC-curves and results are presented in se¢he human expert would have to control a sufficient
tion 4. large area around the outlier frame.

3.3 Anomaly Detection Model 4 Experiments and Results

In this section, the anomaly detection model is in-

troduced. By regarding the rope data as a multiEvaluation is done on real rope data, which was ac-
channel version of a 1-D time series, it becomegjuired within the feasibility study for the already
clear that the signal characteristics of the individ-mentioned prototype device. For this reason, the
ual channels are not equal. This is induced by theinderlying dataset contains real rope defects, and
different periodicity of the local structure present inthe data is noisy and deranged with mud or wa-
variable regions of the rope. Especially in regiongter. Since these are real-life problems, the following
around the rope borders, the period length of a lightevaluation can proof the practicability of the pre-
dark change is different from that of the interior sented approach.

rope regions. Furthermore, defective regions are The data set we used has 13.618.176 lines ac-
limited to only a small amount of channels. Hence,quired by each line camera. For every view there
the construction of a very high-dimensional featureexists a labeled error table, giving the range and the
vector out of the feature vectors for every individuallabel of every defect or anomaly in the rope. For the
channel would suppress the defect probability of théearning step only rope regions which are assumed
frame in case of a present defect. For this reasorip be fault-free were used. For the testing phase a
every channel is treated separately concerning feaonnected region with all available defects was cho-
ture extraction and classification. Figure 3 presentsen. The number of defects in this region of about
a rough sketch of the underlying model. For everyl3.100.000 lines varies from view to view between
channel its own feature space is created. In ever§ and 13.

feature space clustering of the defect-free samplesis The evaluation was done with respect to a com-
performed, resulting in a representation of the overparison of the two different one-class classification
all density by an individual model. Testing with real strategies. We used Torch3 library [4] as imple-
rope data is also performed channel-wise. For evergnentation for the K-means clustering, as well as for
channel an individual decision about the rejectiorthe Gaussian mixture model. The performance of
as outlier is made. Unfortunately, this technique inthe whole system can be best assessed with help
general leads to a high rejection rate of defect-fre@f ROC curves, which show the system behaviour
samples due to noise or mud, existent in at least oneoncerning false and true positive rates with respect
of the channel-signals. Therefore, the proposed afie the threshold for outlier rejection. Furthermore,
proach makes use of neighbourhood information irsome of the parameters are evaluated in order to
the decision process. The classification output igind an optimal setting. These are in the follow-



Figure 3: Multichannel-version of the classification model. For everyiobkin the frame (blue) a feature
is extracted and examined in a separate feature space for that chEmmed part in the detection window
marks the signal values, which are predicted in the actual step.
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Figure 4: Plot of the mean distance with respect to the number of clugéjsahd mean log pdf-value
with respect to the number of Gaussians (right), achieved in a trainingviitef00.000 lines of defect-free
rope data. Evaluation was done on channel 50 of view 2.

ing the size of the training set (in lines), the numbelber of clusters/Gaussians. The plots in figure 4
of channel-outliers which have to be reached in orshow exemplary the results for the channel 50 out
der to consider the whole frame as outlier, and thef 130. For the other channels results are similar.
number of cluster centers or Gaussians, which arblote that Torch3 implementation, like common ap-
predefined for the classification task. proaches, uses the log likelihood instead of the like-
lihood. To be consistent concerning the range, they
therefore negated the euclidian distance used in the
K-means approach. Based on these plots, the num-
In order to determine the optimal number of clus-ber of clusters for the K-means approach was set to
ters or Gaussians for the one-class classificatiofive. In the Gaussian mixture model 8 components
of defect-free rope data, the mean distance (meawere used in the following experiments.

probability density function-value (pdf) of one fea-

ture) regched in the learning step was _used._ Th'ﬁ.Z ROC Curves

mean distance (pdf-value for the Gaussian mixture

case) is assumed to decrease (increase) for eveROC curves describe the behaviour of the system
added cluster (Gaussian). Indeed, adding one advith respect to true and false positive rates and a
ditional cluster or Gaussian to a small number ofvarying threshold for the rejection of one class. The
already used ones, should have a higher impact ogoal is in general to maximize the TPR and min-
the mean distance (pdf-value), than adding an addimize the FPR. However, in the context of visual
tional cluster or Gaussian to an already huge numrope inspection it is important not to miss any de-

4.1 Number of Clusters/Gaussians



tures from 200.000 lines of rope data. The course
i of the ROC curve for K-means clustering and learn-
ing with 2.000 lines of rope data shows a curious
behaviour at one point. This can be caused by the
, random initialisation of the K-means clustering in
every learning step. Note that even the miss of one
1 defect causes the FPR to increase apparent.

08

0.6

04

True Positive Rate

. | S e 4.4 Impact of the Outlier Threshold
0 02 0.4 06 08 1

This experiment is used to show the impact of the
heuristic pre-processing, which is done after the
classification of every individual channel. Given a
Figure 5. ROC curves for the usage of K-meanseighbourhood of 15 channels, the whole frame is
clustering (red) and a Gaussian mixture modebnly rejected as an outlier if a sufficient number of
(green) with 5 respectively 8 clusters/Gaussians anghannels in this neighbourhood vote for an outlier.
a learning sample set consisting of features fronThis threshold is varied in our experiment between
10.000 lines of defect-free rope. 1 and14 and figure 7 shows the result for = 3,5
and 10 respectively. The results for the Gaussian
case (right) are close to the results for the K-means
. ) T _approach (left). It is obvious that too high values
portant interest is to minimize the FPR. A maxi-¢, - = voquit in lower overall performance because

?lljz:tlon of the T_T_)E '; gz:ly sugge_stl;{e Wh'ée t:ethe procedure is made less sensitive for defects. On
stays zero. The CUrVes In figuré 5 SO, o oiher hand a very low threshold will also reduce

the system behaviour with regards to the threshol e performance due to a high sensitivity for noise.

computation from (12), wherg is varied from0- Regarding the plots, a threshold between three and

! ‘T’ .StEpS 0f0.05. The number of lines uged for five seems to be a good choice in order to achieve a
training was 10.000. Apparently, the Gaussian m'xhigh TPR with minimal EPR

ture approach outperforms the K-means clustering.

Nevertheless, both strategies result in a quite high

true positive rate. Hence, a huge amount of rope5 Conclusion and Outlook

up to 90 percent and more, can be excluded from

further inspection. A new approach for the challenging, automatic vi-
sual inspection of wire ropes was presented. As a
first step, features based on linear prediction were
introduced. The use of this features is justified
Clearly, the size of the training sample set has atvy their ability to incorporate the temporal context,
influence on the results, because the goal is to besthich is useful to detect deflections from a normal
represent the underlying density of defect-free samstructure. A combination of a one-class classifi-
ples. For this task, it is important to cover enoughcation strategy using K-means clustering or Gaus-
faultless observations from the rope data in ordesian mixture models with the LP-based features was
to discriminate between real defective sample andnotivated and described. The presented work inte-
noisy, but defect-free samples. Testruns, resultingrates well in the field of novelty detection, with
in ROC curves, for both classification approachesespect to an optimal separation of defective or ab-
based on different sized training sample sets (2.000ormal samples from the learned, fault-free struc-
20.000 and 200.000 lines of rope data) were perture of wire ropes. The evaluation of the whole sys-
formed. The outcome of the experiments can baem proofs its applicability for the real-life problem
seen in figure 6. A size of 2000 lines is not suffi- of visual inspection. The system is able to exclude
cient for the chosen setting with a frame width of 40up to 90 percent and more of the rope data from
lines and an overlap of 15 lines. Best results werdurther visual inspection. Considering the severity
obtained for a training sample set consisting of feaof the data, this is a remarkable result. Indeed, it

False Positive Rate

fect. On account of this, the primary and most im

4.3 Influence of the Training Size
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Figure 6: ROC curves for usage of K-means clustering (left) and a<au mixture model (right) with
different sized training sets of 2000 (red), 20000 (green) and@D(dlue) lines of rope data.
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Figure 7: ROC curves with regard to the outlier rejection threshole- 3, 5, 10 for the K-means approach
(left) and the Gaussian mixture model (right). Training was perform#d 20000 defect-free sample lines.
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