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Abstract. Uncertainty sampling is a widely used active learning strat-
egy to select unlabeled examples for annotation. However, previous work
hints at weaknesses of uncertainty sampling when combined with deep
learning, where the amount of data is even more significant. To investi-
gate these problems, we analyze the properties of the latent statistical
estimators of uncertainty sampling in simple scenarios. We prove that
uncertainty sampling converges towards some decision boundary. Addi-
tionally, we show that it can be inconsistent, leading to incorrect es-
timates of the optimal latent boundary. The inconsistency depends on
the latent class distribution, more specifically on the class overlap. Fur-
ther, we empirically analyze the variance of the decision boundary and
find that the performance of uncertainty sampling is also connected to
the class regions overlap. We argue that our findings could be the first
step towards explaining the poor performance of uncertainty sampling
combined with deep models.
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1 Introduction

Annotating data points is a laborious and often expensive task, especially if
highly trained experts are necessary, e.g., in medical areas. Hence, intelligently
selecting data points out of a large collection of unlabeled examples to most
efficiently use human resources is a critical problem in machine learning. Ac-
tive learning (AL) is one approach that tackles this problem by iteratively us-
ing a selection strategy based on a classifier trained on some initially labeled
data. There are many different selection strategies possible in the AL framework
[9,11,17,24,26,27,29].

One popular strategy is uncertainty sampling, which was developed to train
statistical text classifiers [17]. Uncertainty sampling uses a metric to estimate
the uncertainty of the model prediction and queries the examples where the clas-
sifier is most uncertain. The original metric is the confidence of the classifier’s
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prediction, but other popular metrics include the distance to the decision bound-
ary, i.e., margin sampling [23], and the entropy of the posterior distribution [28].
Uncertainty sampling performs well when combined with classical machine learn-
ing models, e.g. conditional random fields [25], support vector machines [18], or
decision trees [19].

However, current state-of-the-art classification models are deep architectures
like convolutional neural networks (CNNs). Combining sophisticated AL with
CNNs can result in only marginal improvements [4]. One possible explanation
for this behavior could be the bias introduced by the sampling strategy [21].

Towards understanding this unexpected behavior, we analyze uncertainty
sampling in one-dimensional scenarios and derive the usually latent estimators of
the AL system. The scenarios we investigate are closely related to binary logistic
regression. Further, we can interpret the softmax activation of the output layer
of a CNN as multinomial logistic regression [14, p. 266] in the extracted feature
space. Hence, we argue that our approach relates to the stated goal.

Our main contribution is proving that a simple active learning system using
uncertainty sampling converges against some decision boundary. We do this by
analyzing the statistical estimators introduced by uncertainty sampling. To the
best of our knowledge, we are the first to investigate uncertainty sampling on the
level of the resulting statistical estimators. We find that the consistency depends
on the latent class distribution. Furthermore, our empirical analysis reveals that
the performance depends highly on the overlap of the latent class regions.

After introducing the problem in Section 3, we state our main findings in
Section 4, including the proof that uncertainty sampling possibly converges to-
wards undesired decision boundaries. Furthermore, we empirically validate and
extend our findings in Section 5.

2 Related Work

Multiple authors report poor performances when combining different AL strate-
gies with deep models, i.e., CNNs [4,21]. Chan et al. conduct an ablation study
with self-supervised initialization, semi-supervised learning, and AL [4]. They
find that the inclusion of AL only leads to marginal benefits and speculate that
the pretraining and semi-supervision already subsume the advantages.

Mittal et al. focus their critique on the evaluation scheme generally used
to assess deep AL methods [21]. They find that changes in the training proce-
dure significantly impact the behavior of the selection strategies. Furthermore,
employing data augmentations makes the AL strategies hard to distinguish but
increases overall performance. They speculate that AL may introduce a bias into
the distribution of the labeled examples resulting in undesired behavior.

One bias of uncertainty sampling is visualized in the work of Sener and
Savarese [24]. They use t-SNE [20] to visualize the coverage of the CIFAR-10
dataset [16] when selecting examples using uncertainty sampling. A bias towards
certain areas of the feature space and a lack of selected points in other regions
is visible. In contrast, the approach of Sener and Savarese leads by design to a
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more even coverage indicating that t-SNE truly uncovers a bias of uncertainty
sampling large batches. Such a bias could be advantageous and necessary to
outperform randomly sampling new points, but their empirical evaluation shows
that uncertainty sampling does not perform better than random sampling.

In contrast to these previous works, we are focussing on identifying the issues
of uncertainty sampling by performing a detailed theoretic analysis of an AL
system in simple scenarios. We theoretically derive and investigate the usually
latent parameter estimators of the decision boundary.

A significant theoretic result is provided in the work of Dasgupta [6]. They
prove there is no AL strategy that can outperform random sampling in all cases.
In other words, there are datasets or data distributions where randomly selecting
new examples is the optimal strategy.

Additionally, Dasgupta et al. [7] theoretically analyze the rate of convergence
of a perceptron algorithm in an AL system, but they assume linear separable
classes. Similarly, the analysis of the query by committee strategy by Freund et
al. [8] also assumes that a perfect solution exists. We do not need this assumption
in our analysis. Balcan et al. theoretically investigate the rate of convergence of
the agnostic AL strategy without the assumption of an ideal solution [2]. Also
related to our theoretical approach is the work of Mussmann and Liang [22].
They focus on uncertainty sampling and logistic regression and theoretically
derive bounds for the data efficiency given the inverse error rate. The authors also
note that the data efficiency decreases if the means of two generated normally
distributed classes are moved closer together. In contrast to these works, we
focus on the consistency of the decision boundary estimators instead of the data
efficiency or rate of convergence.

3 Problem Setting

Here, we describe the classifier and estimators we want to analyze in Section 4.
We start by describing a simple binary one-dimensional problem. Let us assume
there is some latent mixture consisting of two components. These components
define the class distributions and can be described by the density functions p1
and p2. We want to determine the class of a point, i.e., whether it was drawn
from the distribution of class 1 or class 2. Towards this goal, we want to estimate
the optimal decision boundary M . Given such a decision boundary, the classifier
is a simple threshold operation.

Let X1 and X2 be sets of sample points drawn from classes 1 and 2, re-
spectively. We estimate the decision boundary without knowledge of the latent
distribution by assuming that both classes are normally distributed. To further
simplify the problem, we also assume that both classes are equally likely, i.e.,
the mixture weights are 1

2 , and that both classes share the same variance σ2.
This approach is closely related to linear discriminant analysis (LDA) [14, p.
242]. LDA also assumes normal distributions but results in logistic functions
describing the probability that an example is of a certain class. Another related
approach is logistic regression [14, p. 250] where a logistic function is estimated
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using the maximum likelihood principle. Though in our simple scenario, both
LDA and logistic regression result in the same decision boundary. In contrast,
we directly estimate the decision boundary. Our approach enables us to study
the statistical properties of the related estimators.

Under the described assumptions, the important estimators are

µ̂i =
1

|Xi|
∑
X∈Xi

X, (1) M̂ =
µ̂1 + µ̂2

2
, (2)

where i ∈ {1, 2} denotes the class. The mean estimators µ̂i are the maximum
likelihood estimators for Gaussians [3, p. 93]. A derivation for the decision bound-
ary estimator M̂ can be found in Appendix A. Note that the shared variance
σ2 is not needed to estimate M . Hence, we can ignore the variance of the class
distributions and do not need to estimate it.

The AL system estimates the means and decision boundaries for multiple
time steps t ≥ 0, resulting in a sequence of estimators. In the beginning we start

with m0 examples per class, i.e., |X (0)
1 | = |X

(0)
2 | = m0 holds. During each time

step t, we select one example Xt+1 that we annotate before estimating the next
set of parameters. Therefore, in our AL system, we get the estimators

µ̂t,i =
1

|X (t)
i |

∑
X∈X (t)

i

X, (3) M̂t =
µ̂t,1 + µ̂t,2

2
, (4)

in all time steps t ≥ 0. To analyze the convergence of such a uncertainty sampling
using system in Section 4 we additionally introduce a concrete update formula
for the mean estimators:

µ̂t+1,i =
|X (t)
i |

|X (t)
i |+ 1

µ̂t,i +
Xt+1

|X (t)
i |+ 1

. (5)

A complete derivation of Eq. (5) can be found in Appendix B.
To select examples Xt+1, let us assume we can generate a sample according

to the latent distribution, i.e., we do not have a pool of finitely many unlabeled
examples. This does not assume knowledge of the latent distribution but merely
that we can run the process that generates examples. Sampling according to the
latent distribution is known as the random baseline in AL. After querying an
example, we employ experts to annotate and add it to the corresponding class

set X (t+1)
i . In the following time step, we estimate updated parameters that

potentially better fit the latent distribution.
To perform uncertainty sampling instead, we use an uncertainty metric to

assess different examples and query the example where the classifier is most
uncertain. In our scenario, we use these metrics to calculate the example where
our classifier is most uncertain. Afterward, experts label this example according
to the latent class distribution at this specific point. There are three common
uncertainty metrics and we show in the following that they are equivalent in our
scenario.
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Claim. Given the described classifier, the uncertainty metrics (i) least confi-
dence, (ii) margin, and (iii) entropy are equivalent and generate the same point.

Proof. To validate the claim, it is enough to show that the example generated
by all three metrics is the same in any given time step t.

(i) Least confidence sampling queries the sample where the prediction confi-
dence of the classifier is minimal. In a binary problem, this confidence is at
least 1

2 , or else we predict the other class. The point where the probability for
both classes is equal is exactly the intersection of the latest estimations of our
Gaussian mixture components. Hence, the point Xt+1 where the classifier is
least confident is precisely the last decision boundary estimate M̂t.

(ii) Margin sampling selects the point closest to a decision boundary of the
classifier. Here, margin sampling chooses the best, i.e., the latest estimation
of the decision boundary. Hence, the new point Xt+1 is exactly M̂t.

(iii) When using entropy as an uncertainty metric, we query the example that
maximizes the posterior distribution’s entropy. The categorical distribution
that maximizes the entropy is the uniform distribution over both classes [5].
Given our classifier, this is precisely the decision boundary where both classes
are equally likely. Hence, Xt+1 is our latest decision boundary estimate M̂t.

ut

In this one-dimensional scenario, three commonly used uncertainty metrics
select the same point which allows us to simplify our investigation. Instead of
looking at different metrics, we will analyze the system that queries and anno-
tates the latest decision boundary estimate in each step, i.e., Xt+1 = M̂t. Note
that adding the last decision boundary estimate to either of the two classes leads
to future estimates of the means being skewed towards our estimations of M .

The theoretical part of our analysis focuses mainly on AL, where we have
no unlabeled pool but can generate examples directly instead. Before we start
to analyze the consistency and convergence of such an AL system, we want
to briefly discuss the differences to a finite pool of unlabeled data points. In
real-world problems, we often do not have access to the example generating
system but instead a fixed number T of unlabeled examples. Let the set U be
the unlabeled pool with |U| = T . Each datapoint X from U belongs either to
class 1 or 2.

Let us assume that U is sampled from the undistorted latent distribution
defining the problem. Given the sequence (Ut)t∈{0,...,T} of examples still unknown
in time step t, we observe that U = U0 ⊃ U1 ⊃ ... ⊃ UT−1 ⊃ UT = ∅ applies.

Given such a finite pool, random sampling selects an element from Ut uni-
formly, which is equivalent to sampling from the latent distribution. In contrast,
uncertainty sampling selects the example

Xt+1 = arg min
X∈Ut

|M̂t −X|, (6)

closest to the latest decision boundary estimate, because the actual M̂t is likely
not included in Ut.
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4 Theoretical Investigation of Uncertainty Sampling

Towards the goal of analyzing the convergence of an uncertainty sampling sys-
tem, we look at Eq (4). Given this definition of M̂t we know that exactly one of
the statements µ̂t,1 < M̂t < µ̂t,2, µ̂t,1 > M̂t > µ̂t,2, or µ̂t,1 = M̂t = µ̂t,2 applies.
We now analyze these cases to show that uncertainty sampling converges.

We start with the case µ̂t,1 = M̂t = µ̂t,2. In this case, the AL system already

converged. No matter to which class we add M̂t, both µ̂t,1 and µ̂t,2 will not
change for t→∞ which follows directly from Eq (5).

Let us now look at the other two cases. We note that in a time step t the
variables µ̂t,1 and µ̂t,2 define a random interval. Without loss of generality let us

assume µ̂t,1 < M̂t < µ̂t,2 applies. In step t, M̂t is annotated and used to calculate
µ̂t+1,1 and µ̂t+1,2. Let us assume the label turns out to be one. Then µ̂t+1,2 is
equal to µ̂t,2. In contrast, we know that µ̂t+1,1 > µ̂t,1 because of Eq. (5) and

M̂t > µ̂t,1. Further, we use Eq. (4) to see that µ̂t,1 < µ̂t+1,1 < M̂t+1 < µ̂t+1,2 =
µ̂t,2 holds. The consequence is [µ̂t+1,1, µ̂t+1,2] ⊂ [µ̂t,1, µ̂t,2]. We can derive the

same result if M̂t is added to class 2 because then µ̂t+1,1 = µ̂t,1 and µ̂t+1,2 < µ̂t,2.

To show that uncertainty sampling converges, we now analyze these nested
intervals. Given the sequences of estimators (µ̂t,1)t∈N0

, (µ̂t,2)t∈N0
and (M̂t)t∈N0

,

we already know that M̂t ∈ [µ̂t,1, µ̂t,2] and [µ̂t+1,1, µ̂t+1,2] ⊂ [µ̂t,1, µ̂t,2]. If the
length of nested intervals becomes arbitrarily small, then the intersection of
these nested intervals is a single number [10, p. 29]. In other words, if the length
converges towards zero then µ̂t,1 ≤ M̂∞ ≤ µ̂t,2 is true for all t ≥ 0 and for some

value M̂∞. It is enough to show that the nested intervals [µ̂t,1, µ̂t,2] become
arbitrarily small to prove that uncertainty sampling converges in our scenario.

Theorem 1. The nested intervals [µ̂t,1, µ̂t,2] in our one-dimensional scenario
become arbitrarily small for t→∞.

Proof. Let εt be the length of the interval It = [µ̂t,1, µ̂t,2] in time step t. It is
given by εt = µ̂t,2− µ̂t,1. To prove that these interval lengths become arbitrarily
small, we must show

∀δ > 0 : lim
t→∞

εt < δ. (7)

The decision boundary in step t is exactly the middle of the interval [µ̂t,1, µ̂t,2].
This fact leads to the observations

M̂t = µ̂t,1 +
εt
2

= µ̂t,2 −
εt
2
. (8)

In time step t let there be kt examples in class 1 additionally to the m0 initial
samples, i.e., |X t1 | = m0 + kt. Consequently, we know class 2 contains |X t2 | =
m0 + t− kt examples. Furthermore, there are two possible labels for M̂t.
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Case 1: Let M̂t be labeled as class 1. By using Eq. (5), Eq. (8) and some
algebraic manipulations, we get the interval boundaries of It+1:

µ̂t+1,2 = µ̂t,2, and (9)

µ̂t+1,1 =
(m0 + kt)µ̂t,1 + M̂t

m0 + kt + 1
=

(m0 + kt)µ̂t,1 + µ̂t,1 + εt
2

m0 + kt + 1
(10)

= µ̂t,1 +
εt

2(m0 + kt + 1)
. (11)

Therefore, the length εt+1 of the interval It+1 is

εt+1 = µ̂t,2 − µ̂t,1 −
εt

2(m0 + kt + 1)
(12)

= εt −
εt

2(m0 + kt + 1)
≤ εt −

εt
2(m0 + t+ 1)

. (13)

Case 2: Let M̂t be labeled as class 2. By using Eq. (5), Eq. (8) and some
algebraic manipulations, we get the interval boundaries of It+1:

µ̂t+1,1 = µ̂t,1, and (14)

µ̂t+1,2 =
(m0 + t− kt)µ̂t,2 + M̂t

m0 + t− kt + 1
=

(m0 + t− kt)µ̂t,2 + µ̂t,2 − εt
2

m0 + t− kt + 1
(15)

= µ̂t,2 −
εt

2(m0 + t− kt + 1)
. (16)

Therefore, the length εt+1 of the interval It+1 is

εt+1 = µ̂t,2 −
εt

2(m0 + t− kt + 1)
− µ̂t,1 (17)

= εt −
εt

2(m0 + t− kt + 1)
≤ εt −

εt
2(m0 + t+ 1)

. (18)

In both cases we derive an upper bound for the length of the interval by increas-
ing the denominator of a negative fraction and get

εt+1 ≤ εt −
εt

2(m0 + t+ 1)
=

(
1− 1

2(m0 + t+ 1)

)
︸ ︷︷ ︸

=:lt

εt. (19)

We now use this property recursively until we reach time step 0 resulting in

εt+1 ≤ ε0
t∏

j=0

lj = ε0 exp

 t∑
j=0

log(lj)

 . (20)

Using this bound (Eq. (20)) and recalling Eq. (7), we must now show

∀δ > 0 : lim
t→∞

ε0 exp

t−1∑
j=0

log(lj)

 < δ. (21)
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Dividing by ε0, we see it is enough to show that
∑∞
j=0 log(lj) diverges towards

−∞. Towards this goal, we use a known bound [1] of the natural logarithm and
derive an upper bound for log(lt)

log(lt) ≤ −
1

2m0 + 2

(
1

t+ 1

)
. (22)

The complete derivation can be found in Appendix C.
We can use this bound for log(lt) and some algebraic manipulations to derive

an upper bound for the limit we are interested in

lim
t→∞

t−1∑
j=0

log(lj) ≤ lim
t→∞

t−1∑
j=0

− 1

2m0 + 2

(
1

j + 1

)
= lim
t→∞

− 1

2m0 + 2

t∑
j=1

1

j
(23)

= − 1

2m0 + 2

∞∑
j=1

1

j
. (24)

The harmonic series multiplied by a negative constant is an upper bound for the
limit of the series of log(lt). This upper bound diverges towards −∞ because the
harmonic series itself diverges towards ∞ [15]. Consequently, we know

lim
t→∞

t−1∑
j=0

log(lj) = −∞. (25)

Using this limit as well as the facts δ > 0 and ε0 > 0, we see

∀δ > 0 : lim
t→∞

exp

t−1∑
j=0

log(lj)

 = 0 <
δ

ε0
. (26)

Hence, the interval lengths εt converge towards zero for t→∞.
ut

Until now, our analysis is independent of the specific latent class distribu-
tion. We have shown that in the one-dimensional case estimating the decision
boundary M of a mixture of two classes for a growing number of examples using
uncertainty sampling as a selection strategy converges towards some value M̂∞.
The question about the consistency of uncertainty sampling now reduces to: Is
M̂∞ equal to the optimal decision boundary M?

Let us assume, for example, that the latent distribution is a mixture of Gaus-
sians. As already observed, µ̂t,1 < M̂t < µ̂t,2 and µ̂t+1,1 < M̂t+1 < µ̂t+1,2 apply.
Also either µ̂t+1,1 > µ̂t,1 or µ̂t+1,2 < µ̂t,2 holds true. if for any time step t,
µ̂t,1 becomes larger than M , then the decision boundary M is not reachable

anymore. In this case, M̂∞ > M applies. The decision boundary M is likewise
unreachable, if for any time step t, µ̂t,2 < M applies. This behavior is possible
because the probability density function of Gaussians is greater than zero for all
possible examples M̂t selected by uncertainty sampling. Hence, it is possible that
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M̂t converges to a value M̂∞ 6= M . The stochastic process {M̂t}t∈N0
defined by

uncertainty sampling is not consistent given a mixture of Gaussians.
For further analysis, we look at the overlap ξ of the latent mixture [13].

Let the latent distribution be a mixture consisting of two components with the
densities p1 and p2. The overlap of such a mixture is defined as

ξ =

∫
R

min(p1(x), p2(x))dx. (27)

The behavior we determined for a mixture of two Gaussians occurs because both
densities are greater than zero for all possible values. Hence, the overlap is greater
than zero. More examples could lead to a wrong and unfixable decision boundary
if the latent class regions overlap. We use the example of two Gaussians later on
in Section 5.1 to empirically estimate the likelihood of such an event.

Let us now look at distributions without overlap. Without loss of generality
let µ1 < µ2. If the latent distribution has separate class regions, e.g., a uniform
mixture, where the class regions are next to each other, M̂t > M cannot be
added to class 1. Equivalently a M̂t < M can never be added to class 2 because
the density of class 2 at such a point is zero. Assuming the density of the latent
mixture is greater than zero for all M̂t, then these estimators of the decision
boundary are consistent because ∀t ∈ N0 : M ∈ [µ̂t,1, µ̂t,2].

In contrast, let us look at the case of a pool of T unlabeled examples U. Then
the resulting sequence of intervals [µ̂t,1, µ̂t,2] are not necessarily nested. There
is the possibility that a later interval can be larger than the interval in step t if
an example outside the interval is closest to the decision boundary estimate and
therefore selected. Another way to think about it is to observe that for t → T ,
uncertainty sampling tends towards random sampling because U is an unbiased
random sample from the latent distribution.

Let us assume our annotation budget is quite limited. We can only label
T ′ out of a vast pool of T unlabeled examples. Under these circumstances, we
claim that the undesirable properties of the infinite case of uncertainty sampling
derived in this section approximately apply. In Section 5.2, we give empirical
evidence towards this claim.

5 Empirical Investigation of Uncertainty Sampling

To corroborate our theoretical analysis in Section 4, we further investigate the
consistency, convergence and performance of uncertainty sampling. In Section 5.1
we investigate the likelihood that the optimal decision boundary becomes un-
achievable. To analyze the performance we look at the empirical variance of the
decision boundary estimators in Section 5.2.

5.1 Inconsistency given Overlapping Class Regions

Section 4 shows that uncertainty sampling can lead to inconsistent estimators
depending on the overlap of the latent mixture. Further, there are sequences of
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estimates where the optimal decision boundary can never be achieved. In this
section, we empirically evaluate how likely such a scenario occurs. Towards this
goal we want to estimate P (M ∈ [µ̂t,1, µ̂t,2]), i.e. the probability that the latent
decision boundary is still achievable in step t.

To approximate these probabilities, we train an AL system 1,000 times and
estimate the parameters µ1, µ2, and M in 500 consecutive time steps. In a given
step t, the label of the estimate M̂t depends on the latent mixture at this point.
As a latent distribution, we select a mixture of two Gaussians with the same
variance. This setup is a perfect fit for our classifier and contains an optimal
latent decision boundary, i.e., the intersection of both densities. To now analyze
different overlapping scenarios, we repeat the experiment with different combi-
nations of mixture parameters. We set the means either to −1 and 1, or −3 and
3, respectively. Regarding the variance, we evaluate values between 0.1 and 10.

Furthermore, to investigate if the probabilities P (M ∈ [µ̂t,1, µ̂t,2]) only de-
pend on the overlap of the latent mixture, we also run the experiment for mul-
tiple parameter configurations with approximately the same overlap ξ. These
configurations can be found in Tab. 1 in Appendix D.
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(a) differing overlaps ξ
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t
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P(
M

[
t,
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t,

2]
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1 = -1.00, 2 = 1.00, 2 = 0.76
1 = -1.15, 2 = 1.15, 2 = 1.00
1 = 3.00, 2 = 4.00, 2 = 0.19
1 = -0.66, 2 = 0.66, 2 = 0.33

(b) ξ ≈ 0.25

Fig. 1: Estimations of the probabilities P (M ∈ [µ̂t,1, µ̂t,2]) for multiple param-
eter configurations of Gaussian mixtures. Fig. 1a contains parameter compo-
sitions with differing overlap ξ. In contrast, Fig. 1b displays the course of
P (M ∈ [µ̂t,1, µ̂t,2]) for different parameter combinations defining mixtures with
an overlap ξ ≈ 0.25.

Results: Fig. 1a displays the empirical estimations of the probabilities P (M ∈
[µ̂t,1, µ̂t,2]). We can see that the possibility that the optimal decision boundary
M is achievable declines for later time steps. A smaller σ2 and larger distances
between both means, i.e., more separate class regions, correlate with an increased
likelihood that M is still learnable.
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The influence of the overlap ξ of the latent mixture on the course of P (M ∈
[µ̂t,1, µ̂t,2]) can be seen in Fig. 1b. All different parameter configurations with
approximately the same overlap result in roughly the same curve.

We do not know if the probabilities P (M ∈ [µ̂t,1, µ̂t,2]) converge towards
zero for t → ∞ and ξ > 0 but our results point in that direction. Whether this
conjecture holds true or not, we find that given ξ > 0, uncertainty sampling
is not only inconsistent, but for later time steps t, it is also unlikely that the
optimal decision boundary is still achievable.

5.2 Empirical variance of the Decision Boundary

To further analyze uncertainty sampling especially compared to random sam-
pling, we investigate the estimators M̂t using both strategies. To compare two
estimators for the same parameter, we look at their respective variances. A
smaller variance leads, on average, to better estimations. We approximate the
variances of M̂t by simulating AL systems employing uncertainty sampling or
random sampling, 10, 000 times with m0 = 3 initial examples per class.

First, we use multiple pairs of Gaussians with approximately the same overlap
ξ. Tab. 1 in Appendix D lists all parameter configurations.

Second, we look at two latent mixtures sharing the same class means and
variance to compare separate class regions and overlapping class regions. The
first one is the mixture of uniform distributions U(−2, 0) and U(0, 2). The second

mixture is the mixture of Gaussians N (−1, 13
2
) and N (1, 13

2
). Derivation of these

parameter configurations can be found in Appendix E.
We analyze these scenarios by first running the experiment 10, 000 times,

starting with m0 = 3 examples per class and then estimating the empirical
variance. Finally, to additionally investigate the case of a large unlabeled pool
of examples, we draw T = 25,006 examples balanced from both classes in each
experiment round. After three initial examples per class in t = 0, a pool of exactly
25,000 unlabeled examples remains. From this pool, we use Eq. (6) to select the
unlabeled example closest to the estimated decision boundary in each time step.
We expect similar results as in the case of AL systems directly sampling from
the latent mixture.

Results: Fig. 2 displays the variances of M̂t for multiple time steps given latent
mixtures with ξ ≈ 0.25. We can see for all four parameter configurations that the
variances converge approximately equally fast. However, they converge towards
different values. The exact value seems to depend on the variance σ2.

Fig. 3 displays the results for the other empirical variance experiments. These
results include the overlapping Gaussian mixtures and the separate uniform mix-
tures in both the finite unlabeled pool and generating examples cases. The first
observation is that the results given a finite pool of unlabeled examples are
nearly identical to our other results. Consequently, we conclude that our results
for the infinite case of generating samples to be labeled are approximately valid
for querying from a large pool of unlabeled examples.
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Fig. 2: The estimated empirical variance of the decision boundary estimates in-
between time steps t = 0 and t = 500. The parameter configurations define
mixtures with approximately the same overlap ξ ≈ 0.25.
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Fig. 3: The first row of plots shows the time evolution of the empirical variances
of the decision boundaries in an AL scenario with overlapping class regions
represented by a Gaussian mixture. The second row shows the equivalent results
for a scenario with separate class regions represented by a mixture of uniform
distributions. In contrast, the two columns denote generating unlabeled examples
and selecting points from a finite pool, respectively.

Uncertainty sampling outperforms random sampling in the case of separate
class regions. However, if the class regions overlap, uncertainty sampling per-
forms marginally better for the first few steps but converges towards a higher,
i.e., worse, variance. This behavior occurs because, given overlapping class re-
gions, the AL system converges towards different values in different experiment
rounds (Section 5.1). Hence, given overlapping class regions, the variance of M̂t is
greater than zero for all time steps. In contrast, random sampling results in con-
sistent mean estimators of the Gaussian mixture components [12, p. 217]. Hence,
they stochastically converge towards µ1 and µ2, respectively. Consequently, the
estimates of the decision boundary converge stochastically towards the optimal
boundary resulting in zero variance for t→∞.

Summarizing this experiment: uncertainty sampling can outperform random
sampling, but it highly depends on the latent class distribution. One reason could
be the inaccurate intuition that selecting points close to the decision boundary
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reduces the uncertainty in this area. This intuition only holds if the class regions
of the latent distribution are separate. Given overlapping class regions, some
uncertainty always remains, leading to the observed performance decrease of
uncertainty sampling.

6 Conclusions

We analyzed the latent estimators of an AL system performing uncertainty sam-
pling in one-dimensional scenarios. We find that uncertainty sampling converges,
but performance and consistency depend on the overlap of the latent distribu-
tion. Our results are congruent with the work of Mussmann and Liang [22], who
also find worse properties for more overlapping class regions.

Towards understanding the problems uncertainty sampling causes for deep
AL systems, we reduce the classifier to the backbone feature extractor and the
classification output layer. Given a CNN, we can interpret the softmax activa-
tion of the output layer as a multinomial logistic regression [14, p. 266] in the
extracted feature space. Our analysis is closely related to the binary case logistic
regression. Hence we argue, that this work is a first step towards understanding
the underwhelming performance of uncertainty sampling combined with deep
classifiers.
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