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Abstract

We present a modular architecture for image un-
derstanding and active computer vision which con-
sists of the following major components: Sensor and
actor interfaces required for data–driven active vi-
sion are encapsulated to hide machine–dependent
parts; image segmentation is implemented in object–
oriented programming as a hierarchy of image oper-
ator classes, guaranteeing simple and uniform inter-
faces. We apply this architecture to appearance-based
object recognition. This is used for an autonomous
mobile service robot which has to locate objects us-
ing visual sensors.

1 Introduction

Conventional autonomous robots can operate and
perform their tasks in many cases without visual and
audio capabilities. They can navigate using their de-
dicated sensors and built–in plans. In contrast, ser-
vice robots which operate in environments where peo-
ple are present need capabilities to communicate with
trained and untrained persons. This is essential for
safety reasons as well as for increasing the acceptance
of such technical products by the users. Two major
modes of human communication are speech and vi-
sual interpretation of gestures, mimics, and possibly
lip movements. In [1] we described an architecture for
knowledge-based recognition of speech as well as im-
ages in the context of robotics tasks. In this contribu-
tion we elaborate on the visual recognition tasks.

Autonomous mobile systems with visual capabili-
ties are a great challenge for computer vision systems
since they require skills for the solution of complex
image understanding problems, such as driving a car

This work was funded partially by theDeutsche Forschungsge-
meinschaft(DFG) under grant SFB 603 and Graduiertenkolleg 3D
Bildanalyse. Only the authors are responsible for the contents. This
work was funded partially by the Bayerische Forschungsstiftung
(project DIROKOL)

[27] or exploring a scene [30]. In this contribution we
present a vision system that provides mechanisms ac-
tive computer vision and robotics. The major goal here
is to explore a scene with an active camera device
which is one task that autonomous mobile systems
have to solve. They employ active camera devices to
focus on objects or on details. Object recognition is
one of the major tasks to be solved in this context. In
this contribution we concentrate on appearance-based
object recognition methods which have regained at-
tention because of their ability to deal with com-
plex shaped objects with arbitrary texture under vary-
ing lighting conditions. While segmentation-based ap-
proaches [8, 29, 18] suffer from difficult model gen-
eration and unreliable detection of geometric features
[17, 18], appearance-based methods are solely based
on intensity images without the need for segmentation,
neither for model generation nor during the classifi-
cation stage. In contrast to segmentation which tries
to extract only the important information needed for
the recognition task, appearance-based approaches re-
tain as much information as possible by operating di-
rectly on local features of the image. The input is ei-
ther the unprocessed image vector or the result of a
local feature extraction process. Our work extends the
approach of [15, 4, 14] which allows for robust object
recognition in the presence of noise and occlusion.

A software system for image understanding and
robotics usually has a considerable size. The ma-
jor problem in software design of general imag-
ing systems is that on the one hand highly run–
time efficient code and low–level access to hard-
ware is required, and that on the other hand a gen-
eral and platform–independent implementation is de-
sired which provides all data types and functions also
for at least intermediate–level processing, such as re-
sults of segmentation. Today’s software engineering is
closely coupled with the ideas of object–orientation
and genericity which can help simplifying code reuse;
if applied properly, object–orientation unifies inter-
faces and simplifies documentation by the hierarchical
structure of classes. Genericity provides an alternative
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solution to software engineering problems [13]. Both
concepts are available in C++ [25]. Object–oriented
programming has been proposed for image processing
and computer vision by several authors, in particular
in the context of the image understanding environment
[9]; this approach is mainly used to represent data. We
also use object–oriented programming for operators
and devices.

In Sect. 2 we describe techniques to appearance-
based object recognition, which is introduced for-
mally. In Sect. 3.1 we outline the general structure of
our system and the object–oriented implementation.
In Sect. 3.2 we combine object recogntion, robotics
tasks, and our software design and outline the object–
oriented implementation; results for object recogni-
tion are shown in Sect. 4 using an example of a ser-
vice robot designed for fetch–and–carry services in a
hospital. We conclude with a summary and future di-
rections in Sect. 5.

2 Appearance-Based Object Recognition

The most challenging problems in computer vision
which are still not solved entierly are especially re-
lated to object recognition [28]. Up to now, there have
been no general algorithms that allow the automatic
learning of arbitrary 3-D objects and their recognition
and localization in complex scenes. The termobject
recognitiondenotes two problems [28]: classification
of an object and determination of its pose parameters.
By definition, the recognition requires thatknowledge
or modelsof the object are available. The key idea is to
compare the image with a model. The key issues thus
are the choice of the representation scheme, of the se-
lection of models, and the method for comparison.

We assume thatNK object classesΩκ (1 ≤ κ ≤
NK) are known and represented as “knowledge” (i.e.,
models) in an appropriate manner. The representation
of the object can be in two dimensions, it may use a
full 3–D description, or it can contain a set of 2–D
views [26] of a 3–D object. The representaiton of such
models is one of the major problems in computer vi-
sion and will be discussed in the following. The object
models use an object coordinate system and a refer-
ence point (mostly on the object) as its origin.

We also assume that an image is given which may
contain data in 2–D,2 1

2–D or 3–D. For intensity im-
ages in 2–D it may be either monochrome, color or
a multi–channel image. A digital image is mathemat-
ically considered as a matrix of discrete valuesf =
[f i,j](1 ≤ i ≤ M, 1 ≤ j ≤ N).

Appearance based object recognition uses non–
geometric models representing the intensities in the
projected image. Rather than using an abstract model
of geometries and geometric relations, images of an
object taken from different viewpoints and under dif-
ferent lighting conditions are used as object represen-

tation. Figure 1 shows a set of such images. To beat
the curse of dimensionality, the images used for object
representation are transformed to lower–dimensional
feature vectors. This overcomes several problems re-
lated to standard approaches as, for example, the ge-
ometric modeling of fairly complex objects and the
required feature segmentation. Comparative studies
prove the power and the competitiveness of appear-
ance based approaches to solve recognition problems
[23].

In the following we concentrate on approaches us-
ing Eigenspaces. As the given image and the model
share the same representation, the choice of the dis-
tance function for matching images with models is
simpler than for geometric models. We rearrange the
image pixelsf i,j in an image vector

f ′ = (f1,1, . . . , f1,N , . . . , fM,1, . . . , fM,N )T (1)

where the prime character denotes imagevectorsin
the following. The elements off ′ are denoted byf ′

i

with 1 ≤ i ≤ MN . The comparison of two normal-
ized imagesf ′

1 andf ′
2 with ||f ′

i|| = 1 by corre-
lation simply reduces to the dot product of the image
vectorsf ′

1 andf ′
2

s = f ′
1
T · f ′

2 ; (2)

the biggers gets, the more similar are the imagesf ′
1

andf ′
2.

Obviously, high dimensional feature vectors such
as this image vector will not allow the implementation
of efficient recognition algorithms [17]. The vectors
have to be transformed to lower dimensions. Com-
monly used transforms are the principal component
analysis [16, 12, 6] or in more recent publications the
Fisher transform [3]. In the following we motivate a
linear tranformationΦ which maps the image vector
f ′ ∈ IRN ·M to a feature vectorc = (c1, . . . , cLa)T ∈
IRLa with La � N ·M by

c = Φf ′ = AΦtf
′ b = Φtf

′ (3)

where the linear tranformationΦt maps the im-
age vectorf ′ ∈ IRN ·M to a feature vectorb =
(b1, . . . , bLa , . . . , bNM )T ∈ IRNM and does not re-
duce the dimension; the matrixA selects the firstLa

columns fromΦt.
If we chooseΦ such that the distance of all features

is maximized, this reduces to a problem of eigenvalue
computation. FromNa given images written as vec-
torsf ′

1, . . . f
′
Na

of an object we compute the mean
vector

µ =
1

Na

Na∑
k=1

f ′
k

and from this we create a matrixV whose columns
are the image vectors

V =
[
(f ′

1 − µ)| . . . |(f ′
Na

− µ)
]

. (4)
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Figure 1. Three different views of an ob-
ject (upper row), mean vector (lower row,
left), and eigenvectors v0, v15 (second
row). For the computation 72 views and
360o rotation in 5o–steps were used.

Eigenvalue analysis of the matrixK = V V T yields
the eigenvectorsv1, . . . vNa sorted by magnitude of
the corresponding eigenvalues. A fundamental fact
from linear algebra states that an image vectorf ′

l can
be written as a linear combination of the mean image
vector and the eigenvectors as

f ′
l = µ +

Na∑
ν=1

b(l)
ν vν .

An approximation off ′ can be obtained if instead of
Na eigenvectors we select only the firstLa ≤ Na vec-
tors v1, . . . vLa . The image vectorf ′

l is represented
by a feature vector

c(l) =
(
c
(l)
1 , . . . , c

(l)
La

)T

= Φ
(
f ′

l − µ
)

(5)

and the columns of the matrixΦ are the vectors
v1, . . . vLa .

In the experiments forNa = 100 images we
choose only the firstLa = 15 eigenvectors. For each
object classκ we now record images from different
viewpoints and under changing lighting conditions,
perform the transformation to eigenspace to obtain a
set of vectors

{
c(κ,ν); ν = 1 . . . Naκ

}
(6)

and a class–specific matrixΦκ for Naκ images cap-
tured. The recording conditions including the camera
position are assumed to be known; they can be set ac-
curately by a camera mounted to a robot or by placing
the object on a turn table. The vectorsc(κ,j) of an ob-
ject of classκ are a manifold in eigenspace. They are
used and stored as the object modelCκ. The process-
ing steps of this approach are exemplified in Figure 1.
For pose estimation the ground truth pose parameters

Figure 2. Example of a manifold model
with two degrees of freedom generated
from views of the punch (Figure 1).

of the training images are stored together with the fea-
ture vectors. In [16], for example, parametric curves
for interpolating the sparse data are used for this. Fig-
ure 2 shows an example of a manifold projected onto
the first three eigenvectors. Besides manifolds, other
object models like Gaussian densities are possible and
are currently examined carfully [7].

The correlation of two normalized imagesf ′
i and

f ′
j can now be approximated by the Euclidian dis-

tance of two weight vectorsc(i) andc(j) which yields
a huge gain in computation speed:

‖f ′
i
T
f ′

j‖ ≈ 1− 0.5‖c(i) − c(j)‖ .

For the recognition of an object on a given image
which has not to be part of the image set used for
training, we compute its eigenspace representation to
create a vectorc using (5). From the manifolds rep-
resenting the objects we choose the one which has
minimal distanced(Cκ, c) to the computed vectorc.
Object recognition is thus reduced to the problem of
finding the minimum distance between an object and
a model. Classification of an image vectorf ′ is then
performed according the mapping

δ(f ′) := argminκd(Cκ,Φκ, f ′) , (7)

where the functiond was chosen here to have three
arguments in order to gain flexibility for the distance
measure. A rejection classΩ0 can be introduced by
defining a upper boundΘ for the accepted distance. If
the distance of a vectorc is larger than this threshold
for each class, then the vector is assigned to the class
Ω0.

In order to generate an image from a vectorc, we
use the pseudo–inverseΦ+ of Φ

Φ+ = ΦT
(
ΦΦT

)−1

(8)

to create
f̃ ′ = Φ+c + µ , (9)

which is an approximation off ′.
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The key to success in this approach is not to create
the matrix

K = V V T

explicitly when the eigenvectors are computed. For a
typical imagef of sizeN = 256 andM = 256, the
image vectorf ′ has length216; for Na = 100 im-
ages, the matrixV has size216 × 100; the matrixK
would thus be of size216 × 216 and computation of
the eigenvectors would be unfeasible. Instead, we use
either iterative methods to compute the eigenvectors
[19] or we use a result from singular value decomposi-
tion. We compute the eigenvaluesλi and eigenvectors
v′

j of the so–called implicit matrix

K′ = V TV

which is much smaller thanK. In our example, the
size would be100× 100. We note that

K ′v′
ν = V T (V v′

ν) = λjv
′
ν . (10)

We multiply (10) from left byV and get

V
(
V TV

)
v′

k =
(
V V T

)
V v′

k = λj (V v′
k) .

(11)
which shows that the eigenvalues ofK′ are also eigen-
values ofK and that the eigenvectors are related by
V . We use these results to compute the eigenvectors
for K.

The problem of calculating the feature vectorcκ

for an image vectorf ′ via (5) is, that elements belong-
ing to occluded or noisy image parts lead to arbitrary
errors [14]. The idea is to reformulate the projection
problem so that no longer all elements are used but
only a subset.

Therefore the pseudo–inverse matrix ofΦ+
κ intro-

duced in (8) resulting in an equation system ofm =
MN equations for theLa unknownsc(κ)

1 , . . . , c
(κ)
La

of
c(κ)

f ′
1 = ϕ+

κ,11c
(κ)
1 + . . . + ϕ+

κ,1nc(κ)
n + µ1

... (12)

f ′
m = ϕ+

κ,m1c
(κ)
1 + . . . + ϕ+

κ,mnc(κ)
n + µm

with Φ+
κ = [ϕ+

κ,στ ](1 ≤ σ ≤ m, 1 ≤ τ ≤ La).
Based on the observation that in the absence of in-

terferences it would be sufficient to choosermin = La

independent equations out of them from this equation
system to compute a solution for theLa components
of the feature vectorcκ, an approximatioñcκ can be
calculated by choosing a setS = {s1, . . . , sr} with
La ≤ r � m and solving

f ′
s1

= ϕ+
κ,s11

c̃
(κ)
1 + . . . + ϕ+

κ,s1nc̃(κ)
n + µs1

... (13)

f ′
sr

= ϕ+
κ,sr1c̃

(κ)
1 + . . . + ϕ+

κ,srnc̃(κ)
n + µsr

in the least square sense forc̃κ using singular value
decomposition (SVD).

The set of chosen equations forf ′
sι

, sι ∈ S can be
partitioned intoSo, for whichf ′

sι
, sι ∈ So are undis-

turbed object pixels, andSb, which represents back-
ground pixels and outliers. The approximation forc̃κ

according to (13) can only be adequate if|So| > |Sb|
holds. To achieve this, [15] suggests to generate a
numberH of hypothesestS, 1 ≤ t ≤ H for each class
Ωκ by generating the elementstsι on a random basis
and to compute

˜tf ′ = tΦκ
tc̃κ + µ (14)

for each hypothesis. For noisy images, the simple dis-
tance measure defined by (2) turns out to be insuffi-
cient because all components of the feature vector are
weighted equally, whereas the components belonging
to vectors with smaller eigenvalues are more sensitive
to noise. This is the reason, why we choose three ar-
guments in (7). Any distance to the feature vector can
be chosen here.

While this random selection scheme works fine for
compact objects, e.g. those for which the ratio of ob-
ject to background pixels within the bounding box is
considerably high, it fails for objects which occupy
only a small part of the bounding box in the image
as the probability of getting a sufficient amount of
good object points for the generation of hypotheses
is low. By incorporating additional knowledge about
object properties the initial selection scheme can be
improved if only pixels are regarded as possibly good
candidates if object specific conditions like local tex-
ture features or color, are fulfilled. Up to know, only
the average object intensity is used for restricting the
point selection.

3 Implementation

Various modules for common computer vision
algorithms are provided our software environment.
These modules were implemented for several appli-
cations. This flexibility first requires additional effort
for portable software. On the long run it reduces the
effort of software maintenance.

3.1 System Architectures

The need for a flexible, knowledege-based com-
puter vision system with real–time capabilities at least
for low–level processing lead to “An imageanalysis
system” (ANIMALS, [20, 22, 21]) which is imple-
mented in C++. It provides modules for the whole
range of algorithms from low–level sensor and actor
control up to knowledge-based analysis.

The general problem of image analysis is to find the
optimaldescription of the input image content which
is appropriate to the current problem. Sometimes this
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means that the most precise description of the image
data has to be found, in other cases a less exact re-
sult which can be computed faster will be sufficient.
In many image analysis problems, objects have to be
found in the images and described by terms that fit to
the application.

These general problems can be divided into several
sub–problems. After an initial preprocessing stage,
images are usually segmented into meaningful parts.
Various segmentation algorithms create initial sym-
bolic descriptions of the input data [18] which we call
segmentation objects[20]. A segmentation object con-
tains sets of features, such as points, lines, or more
complex geometric structures; it can also contain and
administrate relations between such features such as
parallelism of lines or adjacency of points. Models in
a knowledge base containing expectations on the pos-
sible scene in the problem domain are matched with
segmentation objects in order to provide a final sym-
bolic description. This is achieved best if the repre-
sentation for the models is similar to the structure of
segmentation results. If no segmentation is required or
desired, the segmentation stage is replaced by a fea-
ture extraction algorithm; the data representation for
the resulting feature sets is easily managed by the seg-
mentation object as well.

Modern architectures for image analysis incorpo-
rate active components such as pan/tilt devices or cam-
eras on a robot. Such devices lead to feed–back loops
in the course from image data to image descriptions.
A top–level view of the main components in our im-
age analysis system is shown in Figure 3; data is cap-
tured and digitized from a camera and transformed to
a description which may cause changes in camera pa-
rameters or tuning of segmentation parameters. Mod-
els which are collected in the knowledge base are cre-
ated from segmentation results or at least have similar
structure.These models are used for the analysis. Im-
age processing tasks are shown in oval boxes; data is
depicted as rectangles.

The dotted lines in Figure 3 indicate that a control
problem has to be solved in active vision or active ex-
ploration resulting in a closed loop of sensing and act-
ing. Information is passed back to the lower levels of
processing and to the input devices; this way, param-
eters of procedures can be changed depending on the
state of analysis, or the values of the camera and lens
can be modified.

The algorithms and data structures of our system
are implemented in aHierarchy ofPictureProcessing
ObjectS (HIPPOS, written as‘́ιππoς [20, 22]), an
object–oriented class library designed for image anal-
ysis. In [22], the data interfaces were defined as
classes for therepresentationof segmentation results.
The segmentation object[22] provides a uniform in-
terface between low–level and high–level processing;
its components can be arbitrary objects resulting from
point, line, region or surface segmentation. Images,

segmentation objects, and additional classes for rep-
resentation of segmentation results such as e.g. chain
codes, lines, polygons, circles, etc. are derived from
one common base class which unifies all interfaces. In
[10, 21]this system is extended to a hierarchical struc-
ture of image processing and analysis classesandob-
jects(cmp. [5]). Objects are the actual algorithms with
specific parameter sets which are also objects. Classes
as implementation of algorithms are particularly use-
ful, when operations require internal tables which in-
crease their efficiency since tables can then be easily
allocated and handled.

For appearance-based object recognition we need
camera classes with attached actors in order to change
the camera position. As shown below, the segmenta-
tion objects are relatively simple in this case; they con-
tain merely vectors of real numbers. The structure of
models, in this case, is similar to segmentation objects.
The description after recognition contains the detected
object class as well as the pose estimation. Feedback
is required if the recogniton is not successful and a
change in the viewing direction is required in order to
initiate a new recognition sequence.

For robotics tasks we need other interfaces which
are also defined by classes. Care has to be taken that
actors which are commonly related to the vision hier-
archy, such as pan/tilt axes of an active camera, are
equipped with similar syntax as axes on the robot.
Only then, imaging algorithms can be easily integrated
into the robotics application: a pan movement can then
be performed alternativley by panning the camera or
turning the robot in place.

The general class structure of the system provides
disjoint packages for commandline and graphical in-
terfaces, matrix and vector classes, image and im-
age related data, image processing and image analysis
classes, sensors such as cameras, actors such as cam-
era stepper motors, and robotics such as motion com-
mands. For efficiency reasons, all implementation is
done in C and C++. All software has been tested under
Linux, IRIX, and HPUX. Various modules for com-
mon computer vision algorithms are provided in AN-
IMALS. These modules were implemented for sev-
eral applications. Since all segmentation algorithms
use the common interface for data exchange pro-
vided by the segmentation objects, the compatiblity is
high. This flexibility first requires additional effort for
portable software. On the long run it reduces the effort
of software maintenance.

3.2 Image Data and Algorithms

The description of appearance-based methods re-
quires that a two–dimensional image is accessed as
a one–dimensional vector (1). Whereas conventional
image processing systems only use the latter notion,
our image classes mentioned in Sect. 3.1 provide both,
access by one or by two indices, which can be ei-
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ther checked for the validity of the range, or not (if
high execution speed is required). The relatively sim-
ple idea for the implementation is to provide paramet-
ric vector and matrix classes. Matrices are composed
of vector classes which do not allocate their memory
themselves, but reuse the already allocated continuous
memory from the matrices; details are given in [20,
Chap. 11].

By inheritance, these generic vector classes are
equipped with numeric operations such as addition
and scalar product. Matrices define methods for mul-
tiplication by vectors and matrices. Matrix and vec-
tor objects can thus be used for the implementation of
most of the equations in Sect. 2.

Several methods and programs can be used to de-
termine the eigenvectors of the matrixV in (4). We
equip the numeric matrix object with a common inter-
face for eigen analysis and internally switch to differ-
ent algorithms for the solution of the eigen system.

In the experiments it is required to select an optimal
distance measure between model (in this case mani-
fold) and feature set. This is denoted byd in (7). Nat-
urally, in C++ we implement this by a virtual function
and do experiments with different distance measures
without chaning the classification scheme. Other clas-
sification algorithms could be selected as well from a
hierarchy of classifcation classes [11].

3.3 Sensors and Actors

Due to the variability of the hardware connected
with an image analysis software system, interfaces
to several types of frame grabbers, cameras, lenses,
stereo devices, etc. have to be provdided by the sys-
tem. In order not to burden the programs by a large
number of switches, all these special devices are en-
capsulated as classes which share their common be-
haviour in a base class. Whereas the internal imple-
mentation may be sophisticated and thereby provides
the required performance, the user interfaces for these
classes are simple in C++.

The computation of (6) requires that a set of images
is recorded with known parameters for the viewing di-
rection. This requires the notion of rotation axes which
yields the idea of an axis class. Several techical real-
izations are used to record such a set of images. Either
we rotate a turn table, or we move a robot arm con-
nected to a camera, or we move the autonomous robot
on which we place the camera. From the algorithmic
view, the problem remains the same. We simply need
transformations of the image and camera coordinate
systems.

Using a class hierarchy as outlined in Figure 4, not
only the algorithms are similar, but also the imple-
mentation.1 As axes, motors, and geomeric transfor-

1Currently, we use a TRC head mounted to our XR 4000 robot.
For training, Canon, or Sonycameras and a turn table or camera on
a hand of a stationary robot are used.

mations are derived from a common base class, they
areforcedinto a common interface syntax. Only so it
is possible to have an implementation which is almost
independent of the actors used. The syntax of those
motors and axes has also be used to access robot mo-
tors.

4 Results

The methods have been tested on typical objects
from office environments and on objects commonly
used in hospitals; examples drawn from the training
set are depicted in Figure 5. Object scale, transla-
tion and one rotational degrees of freedom has been
estimated during the tests. Only those images have
been used for the tests, which have not been included
into the training set. In addition, Gaussian noise was
added to the images for one test set. Another test
was performed where parts of the objects were ran-
domly occluded; a large area of the image was masked
out for that purpose. Examples for test images are
shown in Figure 6. The test images were of size2562

whereas the bounding boxes of the objects differed
from 122x87 to 185x131, which corresponds to size
of the training images.

Figure 5. Objects from the sample set
(different scales)

Number of training images 355
Number of test images 60
Number of classes 3
Number of eigenvectors used 20

Table 1. Sample set of office data, also
used in [24]

For the estimation of the object translation within
the scene, a hierarchical approach is used. The2562

scenes have been subsampled two times by a factor
of three resulting in images of size282 at the lowest
resolution. For each imagepoint at this resolution, a
confidence value for beiing an object location is calcu-
lated. This is done by using subsampled version of the
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Figure 6. Expamles from the test set. Top
line: Gaussian noise added, bottom line:
synthetic occlusion of large parts of the
objects

Figure 7. Examples of objects subject
to confusion in the recognition module.
The object in the middle shows a tape
roll. The same object from another view
is occluded on the right side. Due to the
lack of information, the stapler (left) has
a higher confidence.

eigenspace models. Only areas with high confidence
values are searched on the higher resolution levels.

After calculating a confidence map for each class,
the class and location with the highest confidence is
choosen. The pose and scale estimation is given im-
plicetly by nearest model point of the choosen class.
Table 2 gives the results achieved for the selected ob-
jects.

The main problem is the mixing up between objects
1 and 2 (duct tape disposer and stapler). Rejected cases
result from correct classification but a wrong pose es-
timation. The high number of wrong assignments of
class 2 to 1 is due to fact that for small objects (like
the duct tape disposer) in some cases almost the com-
plete object was occluded, as can be seen in Figure 7.

The search and classification time depends on the
number of hypotheses generated per class, the number
of points initially used for each hypothesis, and the
number of object classes. For measuring computation
times, 5 hypotheses have been generated per image,

un– Gaussian occlusion
disturbed noise added

91.67% 83.33% 50.00%

Table 2. Averaged classification results.

reject 0 1 2
0 0 16 4 0
1 3 0 11 6
2 5 0 12 3

Table 3. Absolute confusion matrix for
occluded test images (left column: num-
ber of actual class, top row: number of
assigned class, or reject).

70 initial points were selected per hypothesis, and 3
object classes.

On a personal computer with a PentiumII proces-
sor running at 700 MHz, it took about 8 seconds for
the search, confidence calculation and pose estimation
of one object with a185× 131 bounding box within a
2562 image using a resolution hierarchy (2 level deep,
subsampling factor of 3). Most of the time is spent
on calculating the SVD for approximating̃cκ (about
55%). The other time consuming part is the pointwise
search at the lowest resolution hierachy level for pos-
sible object locations. Faster “region–of–interest” op-
erators are currently studied, like “histogram backpro-
jection”, for circumventing this search.

5 Conclusion and Future Work

We described our system architecture for active im-
age understanding which is implemented in an object–
oriented fashion. Classes and objects encapsulate data,
devices, and operators. We argued that this program-
ming paradigm simplifies solving image analysis tasks
and gave examples for the expressional power of the
proposed approach, especially when applied to un-
usual areas such as device interfaces. Object–oriented
programming is preferred to genericity for hierarchies
of operator classes; assuming that the task of an op-
erator is not trivial, the overhead imposed by this im-
plementation scheme is negligible. Genericity is used
for regular data structures such as for pixel access in
image matrices.

In our application for appearance-based object
recognition we successfully applied the architecture.
The use of ANIMALS as the implementation basis al-
lows easy incorporation of new algorithms in cases
where the appaerance based approach fails, e.g an
aktive viewpoint selection scheme will be incorpo-
rated for disambiguating object views. Up to now, only
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graylevel images are used for the classification task.
The object–oriented design makes it possible to aug-
ment the object models with information about the ob-
ject color and this models may be used in the existing
algorithms without any changes.

References to other applications have been given.
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Figure 4. Class hierarchy for motors used in active vision systems
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