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Abstract: We present a modular architecture for image understanding and active computer vision which consists
of the following major components: Sensor and actor interfaces required for data—driven active vision are encap-
sulated to hide machine—dependent parts; image segmentation is implemented in object—oriented programming
as a hierarchy of image operator classes, guaranteeing simple and uniform interfaces. We apply this architecture
to appearance-based object recognition. This is used for an autonomous mobile service robot which has to locate
objects using visual sensors.
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Abstract [27] or exploring a scene [30]. In this contribution we
present a vision system that provides mechanisms ac-
We present a modular architecture for image un- tive computer vision and robotics. The major goal here
derstanding and active computer vision which con- is to explore a scene with an active camera device
sists of the following major components: Sensor and which is one task that autonomous mobile systems
actor interfaces required for data—driven active vi- have to solve. They employ active camera devices to
sion are encapsulated to hide machine—dependentfocus on objects or on details. Object recognition is
parts; image segmentation is implemented in object— one of the major tasks to be solved in this context. In
oriented programming as a hierarchy of image oper- this contribution we concentrate on appearance-based
ator classes, guaranteeing simple and uniform inter- object recognition methods which have regained at-
faces. We apply this architecture to appearance-basedtention because of their ability to deal with com-
object recognition. This is used for an autonomous plex shaped objects with arbitrary texture under vary-
mobile service robot which has to locate objects us- ing lighting conditions. While segmentation-based ap-
ing visual sensors. proaches [8, 29, 18] suffer from difficult model gen-
eration and unreliable detection of geometric features
[17, 18], appearance-based methods are solely based
1 Introduction on intensity images without the need for segmentation,
neither for model generation nor during the classifi-
cation stage. In contrast to segmentation which tries
to extract only the important information needed for
the recognition task, appearance-based approaches re-
tain as much information as possible by operating di-
rectly on local features of the image. The input is ei-
L . .. ther the unprocessed image vector or the result of a
ple are present need capabilities to communicate with .
local feature extraction process. Our work extends the

trained and untrained persons. Th|§ is essential forapproach of [15, 4, 14] which allows for robust object
safety reasons as well as for increasing the acceptance

of such technical products by the users. Two major fecognition in the presence of noise and occlqsion.
modes of human communication are speech and vi- rotﬁ) ti:()sﬂ\;vsa;fallsyﬂssm zifoé()lrr:]s?gsr;k:}:e::nd‘ll'?g 6::2-
sual interpretation of gestures, mimics, and possibly o broblem inysoftware desian of ene?al imaga-
lip movements. In [1] we described an architecture for Jin F; stems is that on the ogne har?d highl rug—
knowledge-based recognition of speech as well as im- 9 sy gnly

: X . . time efficient code and low-level access to hard-
ages in the context of robotics tasks. In this contribu- ; .
. ) o ware is required, and that on the other hand a gen-
tion we elaborate on the visual recognition tasks.

. o .. eral and platform—independent implementation is de-
Autonomous mobile systems with visual capabili- _. . . .
. o sired which provides all data types and functions also
ties are a great challenge for computer vision systems : . .
. . : ; for at least intermediate—level processing, such as re-
since they require skills for the solution of complex ; : . S
. . L sults of segmentation. Today’s software engineering is
image understanding problems, such as driving a car . . : . :
closely coupled with the ideas of object—orientation
This work was funded partially by tHeeutsche Forschungsge- and genericity which can he|p S|mp||fy|ng code reuse;

meinschafDFG) under grant SFB 603 and Graduiertenkolleg 3D . . At - oee . y
Bildanalyse. Only the authors are responsible for the contents. This if applled properly, ObJeCt orientation unifies inter

work was funded partially by the Bayerische Forschungsstiftung faces and simplifies docum?r_]tation t_)y the hierarchigal
(project DIROKOL) structure of classes. Genericity provides an alternative

Conventional autonomous robots can operate and
perform their tasks in many cases without visual and
audio capabilities. They can navigate using their de-
dicated sensors and built—in plans. In contrast, ser-
vice robots which operate in environments where peo-




solution to software engineering problems [13]. Both tation. Figure 1 shows a set of such images. To beat
concepts are available in1@ [25]. Object—oriented  the curse of dimensionality, the images used for object
programming has been proposed for image processingrepresentation are transformed to lower—dimensional
and computer vision by several authors, in particular feature vectors. This overcomes several problems re-
in the context of the image understanding environment lated to standard approaches as, for example, the ge-
[9]; this approach is mainly used to represent data. We ometric modeling of fairly complex objects and the
also use object—oriented programming for operators required feature segmentation. Comparative studies
and devices. prove the power and the competitiveness of appear-

In Sect. 2 we describe techniques to appearance-ance based approaches to solve recognition problems
based object recognition, which is introduced for- [23].
mally. In Sect. 3.1 we outline the general structure of  In the following we concentrate on approaches us-
our system and the object—oriented implementation. ing Eigenspaces. As the given image and the model
In Sect. 3.2 we combine object recogntion, robotics share the same representation, the choice of the dis-
tasks, and our software design and outline the object—tance function for matching images with models is
oriented implementation; results for object recogni- simpler than for geometric models. We rearrange the
tion are shown in Sect. 4 using an example of a ser-image pixelsf; ; in an image vector
vice robot designed for fetch—and—carry services in a

. . . / T

hospital. We conclude with a summary and future di-  f = (f1,1,- - fin, oo fan, o fun)™ (1)

rections in Sect. 5. : : .
where the prime character denotes imagetorsin

. . the following. The elements of’ are denoted by,
2 Appearance-Based Object Recognition  yijth 1 < i < M N. The comparison of two normal-
ized imagesf’; and f', with ||f';|| = 1 by corre-
The most challenging problems in computer vision lation simply reduces to the dot product of the image
which are still not solved entierly are especially re- vectorsf’, and f’,
lated to object recognition [28]. Up to now, there have
been no general algorithms that allow the automatic 5= f’lT fly )
learning of arbitrary 3-D objects and their recognition ) . )
and localization in complex scenes.  The tepject € Piggers gets, the more similar are the imaggs
recognitiondenotes two problems [28]: classification 21dS2- o _
of an object and determination of its pose parameters. OPViously, high dimensional feature vectors such
By definition, the recognition requires thatowledge as th|§ !mage vectqr_ will not a_llow the implementation
or modelsof the object are available. The key ideaisto ©f €fficient recognition algorithms [17]. The vectors
compare the image with a model. The key issues thushave to be transformed to lower dimensions. Com-

are the choice of the representation scheme, of the seMoNly used transforms are the principal component
lection of models, and the method for comparison. analysis [16, 12, 6] or in more recent publications the

We assume thalVi object classe§l, (1 < & < Fisher transform [3]. In the following we motivate a

Nx) are known and represented as “knowledger(i.e., I|r/1ear trj$1'r11\1;ormat|onl> which maps the image ¥ector
f' € R to afeature vectot = (cy1,...,cr,)” €

models) in an appropriate manner. The representation’ =~
of the object can be in two dimensions, it may use a R™ with L, < N - M by
fl_JII 3-D description, or it can contain a s_et of 2-D c=&f — AD S’ b— &, f 3)
views [26] of a 3—D object. The representaiton of such
models is one of the major problems in computer vi- where the linear tranformatio®; maps the im-
sion and will be discussed in the following. The object age vectorf’ € IRV to a feature vectob =
models use an object coordinate system and a refer-(by,... by, ...,bya)" € RYM and does not re-
ence point (mostly on the object) as its origin. duce the dimension; the matria selects the first,

We also assume that an image is given which may columns from®s.
contain data in 2—D2%—D or 3-D. For intensity im- If we choose® such that the distance of all features
ages in 2-D it may be either monochrome, color or is maximized, this reduces to a problem of eigenvalue
a multi-channel image. A digital image is mathemat- computation. FromV, given images written as vec-

ically considered as a matrix of discrete valyes= tors f'1,... f'n, of an object we compute the mean
[fijJ1<i<M,1<j<N). vector
. e N
Appearance based object recognition uses non— 1 < .,
geometric models representing the intensities in the = N, Zf k
k=1

projected image. Rather than using an abstract model _
of geometries and geometric relations, images of anand from this we create a matri' whose columns
object taken from different viewpoints and under dif- are the image vectors
ferent lighting conditions are used as object represen-
V=[fi-wl. N -mw] - @



Figure 2. Example of a manifold model
with two degrees of freedom generated
Figure 1. Three different views of an ob- from views of the punch (Figure 1).
ject (upper row), mean vector (lower row,
left), and eigenvectors wg,v15 (second
row). For the computation 72 views and
360° rotation in 5°—steps were used.

of the training images are stored together with the fea-
ture vectors. In [16], for example, parametric curves

for interpolating the sparse data are used for this. Fig-
ure 2 shows an example of a manifold projected onto

Eigenvalue analysis of the matrik = V'V yields the first three eigenvectors. Besides manifolds, other
the eigenvectors,, ... vy, sorted by magnitude of  object models like Gaussian densities are possible and
the corresponding eigenvalues. A fundamental fact are currently examined carfully [7].

from linear algebra states that an image vegtprcan The correlation of two normalized imag¢s; and
be written as a linear combination of the mean image f’j can now be approximated by the Euclidian dis-
vector and the eigenvectors as tance of two weight vectors® andc(?) which yields
N a huge gain in computation speed:
!/ 1) . .
=pu+> v, . T i
Fo=w 2 IF F N~ 1= 0.5]e® — e

For the recognition of an object on a given image
which has not to be part of the image set used for
training, we compute its eigenspace representation to
create a vectoe using (5). From the manifolds rep-
resenting the objects we choose the one which has

T minimal distancel(C,, ¢) to the computed vectat.
) = (cgl) cg)) =P (f'l — u) (5) Obi P
1oL, ject recognition is thus reduced to the problem of
finding the minimum distance between an object and
a model. Classification of an image vectfris then

An approximation off’ can be obtained if instead of
N, eigenvectors we select only the filst < N, vec-
torsvy,...vr,. The image vectof’l is represented
by a feature vector

and the columns of the matri® are the vectors

U1y V- ] ) performed according the mapping
In the experiments forN, = 100 images we
choose only the first, = 15 eigenvectors. For each 5(f') == argmin, d(Cx, ®x. ') , Q)

object class< we now record images from different

viewpoints and under changing lighting conditions, where the function was chosen here to have three

perform the transformation to eigenspace to obtain a arguments in order to gain flexibility for the distance

set of vectors measure. A rejection clag3, can be introduced by
defining a upper boun@ for the accepted distance. If

{c(”’”); v=1... NM} (6) the distance of a vectaris larger than this threshold

for each class, then the vector is assigned to the class

and a class—specific matri,, for V,, images cap- Q.

tured. The recording conditions including the camera  In order to generate an image from a veatpwe

position are assumed to be known; they can be set ac-use the pseudo—inverde" of &

curately by a camera mounted to a robot or by placing

the object on a turn table. The vecter$?) of an ob- & — T (@@T) - @8)

ject of class< are a manifold in eigenspace. They are

used and stored as the object modgl The process-  to create ~

ing steps of this approach are exemplified in Figure 1. ff=®Tc+p 9)

For imation the ground truth arameters . . . .
or pose estimation the ground truth pose p which is an approximation of .



The key to success in this approach is not to createin the least square sense f@r using singular value

the matrix
K=vv?T

explicitly when the eigenvectors are computed. For a
typical imagef of size N = 256 and M = 256, the
image vectorf’ has lengtr2'®; for N, = 100 im-
ages, the matri¥” has size2'6 x 100; the matrix K
would thus be of siz@'% x 2!6 and computation of

the eigenvectors would be unfeasible. Instead, we use
either iterative methods to compute the eigenvectors

[19] or we use a result from singular value decomposi-
tion. We compute the eigenvalugsand eigenvectors
v’; of the so—called implicit matrix

K =v7T'v

which is much smaller thad. In our example, the
size would bel00 x 100. We note that

K'vl, = VT (Vv)) =\, (10)
We multiply (10) from left byV" and get
1% (VTV) v, = (VVT) Vul, = A (Vo))
(11)

which shows that the eigenvalueslst are also eigen-
values of K and that the eigenvectors are related by

decomposition (SVD).

The set of chosen equations fﬂ!, ,$, € Scanbe
partitioned intaS,, for which f.;,,’ s, € S, are undis-
turbed object pixels, and,, which represents back-
ground pixels and outliers. The approximation &r
according to (13) can only be adequatgSf| > |Sp|
holds. To achieve this, [15] suggests to generate a
numberH of hypothese$S, 1 < ¢t < H for each class
Q.. by generating the elemenfs on a random basis
and to compute

t}"

for each hypothesis. For noisy images, the simple dis-

tance measure defined by (2) turns out to be insuffi-

cient because all components of the feature vector are
weighted equally, whereas the components belonging
to vectors with smaller eigenvalues are more sensitive
to noise. This is the reason, why we choose three ar-
guments in (7). Any distance to the feature vector can

be chosen here.

While this random selection scheme works fine for
compact objects, e.g. those for which the ratio of ob-
ject to background pixels within the bounding box is
considerably high, it fails for objects which occupy
only a small part of the bounding box in the image

'®.le. 4 p

(14)

V. We use these results to compute the eigenvectorsS the probability of getting a sufficient amount of

for K.
The problem of calculating the feature vecigy
for an image vectof’ via (5) is, that elements belong-

good object points for the generation of hypotheses
is low. By incorporating additional knowledge about
object properties the initial selection scheme can be

ing to occluded or noisy image parts lead to arbitrary improved if only pixels are regarded as possibly good
errors [14]. The idea is to reformulate the projection candidates if object specific cpndmons like local tex-
problem so that no longer all elements are used put ture features or color, are fulfilled. Up to know, only

only a subset.
Therefore the pseudo—inverse matrix®jf intro-
duced in (8) resulting in an equation systermof=

M N equations for the., unknown5c§“), . C(L? of
o(®)
fi = 90:,11‘355) +.ot ‘P:,mcgf) +
(12)
Fro = b+ el + i

with & = [@:707](1 <o<m,1<71<Ly,).

Based on the observation that in the absence of in-

terferences it would be sufficient to choosg, = L,
independent equations out of thefrom this equation
system to compute a solution for tlig, components
of the feature vectoe,,, an approximatiore,, can be
calculated by choosing a s6t= {s1,...,s,} with
L, <r < mand solving

for = Ohan&? ol 8+,
(13)
fio= ot &P et d 4,

the average object intensity is used for restricting the
point selection.

3 Implementation

Various modules for common computer vision
algorithms are provided our software environment.
These modules were implemented for several appli-
cations. This flexibility first requires additional effort
for portable software. On the long run it reduces the
effort of software maintenance.

3.1 System Architectures

The need for a flexible, knowledege-based com-
puter vision system with real-time capabilities at least
for low—level processing lead toAh imageandysis
system” (ANIMALS, [20, 22, 21]) which is imple-
mented in G+. It provides modules for the whole
range of algorithms from low—level sensor and actor
control up to knowledge-based analysis.

The general problem of image analysis is to find the
optimal description of the input image content which
is appropriate to the current problem. Sometimes this



means that the most precise description of the imagesegmentation objects, and additional classes for rep-
data has to be found, in other cases a less exact reresentation of segmentation results such as e.g. chain
sult which can be computed faster will be sufficient. codes, lines, polygons, circles, etc. are derived from
In many image analysis problems, objects have to be one common base class which unifies all interfaces. In
found in the images and described by terms that fit to [10, 21]this system is extended to a hierarchical struc-
the application. ture ofimage processing and analysis clasaeslob-
These general problems can be divided into severaljects(cmp. [5]). Objects are the actual algorithms with
sub—problems. After an initial preprocessing stage, specific parameter sets which are also objects. Classes
images are usually segmented into meaningful parts.as implementation of algorithms are particularly use-
Various segmentation algorithms create initial sym- ful, when operations require internal tables which in-
bolic descriptions of the input data [18] which we call crease their efficiency since tables can then be easily
segmentation objecf20]. A segmentation object con- allocated and handled.
tains sets of features, such as points, lines, or more For appearance-based object recognition we need
complex geometric structures; it can also contain and camera classes with attached actors in order to change
administrate relations between such features such aghe camera position. As shown below, the segmenta-
parallelism of lines or adjacency of points. Models in tion objects are relatively simple in this case; they con-
a knowledge base containing expectations on the pos-tain merely vectors of real numbers. The structure of
sible scene in the problem domain are matched with models, in this case, is similar to segmentation objects.
segmentation objects in order to provide a final sym- The description after recognition contains the detected
bolic description. This is achieved best if the repre- object class as well as the pose estimation. Feedback
sentation for the models is similar to the structure of is required if the recogniton is not successful and a
segmentation results. If no segmentation is required or change in the viewing direction is required in order to
desired, the segmentation stage is replaced by a feainitiate a new recognition sequence.
ture extraction algorithm; the data representation for  For robotics tasks we need other interfaces which
the resulting feature sets is easily managed by the seg-are also defined by classes. Care has to be taken that
mentation object as well. actors which are commonly related to the vision hier-
Modern architectures for image analysis incorpo- archy, such as pan/tilt axes of an active camera, are
rate active components such as pan/tilt devices or cam-equipped with similar syntax as axes on the robot.
eras on a robot. Such devices lead to feed—back loopsOnly then, imaging algorithms can be easily integrated
in the course from image data to image descriptions. into the robotics application: a pan movement can then
A top-level view of the main components in our im- be performed alternativley by panning the camera or
age analysis system is shown in Figure 3; data is cap-turning the robot in place.
tured and digitized from a camera and transformedto  The general class structure of the system provides
a description which may cause changes in camera pa-disjoint packages for commandline and graphical in-
rameters or tuning of segmentation parameters. Mod-terfaces, matrix and vector classes, image and im-
els which are collected in the knowledge base are cre-age related data, image processing and image analysis
ated from segmentation results or at least have similarclasses, sensors such as cameras, actors such as cam-
structure.These models are used for the analysis. Im-era stepper motors, and robotics such as motion com-
age processing tasks are shown in oval boxes; data ismands. For efficiency reasons, all implementation is
depicted as rectangles. done in C and €+. All software has been tested under
The dotted lines in Figure 3 indicate that a control Linux, IRIX, and HPUX. Various modules for com-
problem has to be solved in active vision or active ex- mon computer vision algorithms are provided in AN-
ploration resulting in a closed loop of sensing and act- IMALS. These modules were implemented for sev-
ing. Information is passed back to the lower levels of eral applications. Since all segmentation algorithms
processing and to the input devices; this way, param-use the common interface for data exchange pro-
eters of procedures can be changed depending on theided by the segmentation objects, the compatiblity is
state of analysis, or the values of the camera and lenshigh. This flexibility first requires additional effort for
can be modified. portable software. On the long run it reduces the effort
The algorithms and data structures of our system of software maintenance.
are implemented in Hierarchy ofPictureProcessing
ObjectS (HIPPOS, written asitmos [20, 22]), an 3.2 Image Data and Algorithms
object—oriented class library designed for image anal-
ysis. In [22], the data interfaces were defined as  The description of appearance-based methods re-
classes for theepresentatiorof segmentation results.  quires that a two—dimensional image is accessed as
The segmentation objedR2] provides a uniform in-  a one—dimensional vector (1). Whereas conventional
terface between low—level and high—level processing; image processing systems only use the latter notion,
its components can be arbitrary objects resulting from our image classes mentioned in Sect. 3.1 provide both,
point, line, region or surface segmentation. Images, access by one or by two indices, which can be ei-



ther checked for the validity of the range, or not (if mations are derived from a common base class, they
high execution speed is required). The relatively sim- areforcedinto a common interface syntax. Only so it
ple idea for the implementation is to provide paramet- is possible to have an implementation which is almost
ric vector and matrix classes. Matrices are composedindependent of the actors used. The syntax of those
of vector classes which do not allocate their memory motors and axes has also be used to access robot mo-
themselves, but reuse the already allocated continuoudors.
memory from the matrices; details are given in [20,
Chap. 11]. _ 4 Results

By inheritance, these generic vector classes are
equipped with numeric operations such as addition
and scalar product. Matrices define methods for mul-
tiplication by vectors and matrices. Matrix and vec-

The methods have been tested on typical objects
from office environments and on objects commonly
tor objects can thus be used for the implementation of used in hospltals;.exa.mples drawp from the training

set are depicted in Figure 5. Object scale, transla-

most of the equations in Sect. 2. . .
tion and one rotational degrees of freedom has been
Several methods and programs can be used to de-

termine the eigenvectors of the matdx in (4). We estimated during the tests._ Only those images have
. : . . . ; been used for the tests, which have not been included
equip the numeric matrix object with a common inter-

. . ; . : into the training set. In addition, Gaussian noise was
face for eigen analysis and internally switch to differ- .

. . : added to the images for one test set. Another test
ent algorithms for the solution of the eigen system.

Inthe experiments itis required to select an optimal was performed where parts of the objects were ran-

distance measure between model (in this case mani—domly occluded; a large area of the image was masked

fold) and feature set. This is denoted djn (7). Nat- out for that purpose. Examples for test images are

. : . X . shown in Figure 6. The test images were of <1762
urally, in C++ we implement this by a virtual function . . i
. N : whereas the bounding boxes of the objects differed
and do experiments with different distance measures : .
. . o from 122287 to 1852131, which corresponds to size
without chaning the classification scheme. Other clas- S
e ; of the training images.
sification algorithms could be selected as well from a
hierarchy of classifcation classes [11].

3.3 Sensors and Actors

Due to the variability of the hardware connected
with an image analysis software system, interfaces
to several types of frame grabbers, cameras, lenses,
stereo devices, etc. have to be provdided by the sys-
tem. In order not to burden the programs by a large
number of switches, all these special devices are en-
capsulated as classes which share their common be- Figure5. Objects from the sample set
haviour in a base class. Whereas the internal imple-  (different scales)
mentation may be sophisticated and thereby provides
the required performance, the user interfaces for these
classes are simple i@

The computation of (6) requires that a set of images Number of training images || 355
is recorded with known parameters for the viewing di- Number of test images 60
rection. This requires the notion of rotation axes which Number of classes 3
yields the idea of an axis class. Several techical real- Number of eigenvectors usgf 20

izations are used to record such a set of images. Either

we rotate a turn table, or we move a robot arm con-  1pe 1. Sample set of office data, also

nected to a camera, or we move the autonomous robot used in [24]

on which we place the camera. From the algorithmic

view, the problem remains the same. We simply need

transformations of the image and camera coordinate  For the estimation of the object translation within

systems. the scene, a hierarchical approach is used. 6@
Using a class hierarchy as outlined in Figure 4, not scenes have been subsampled two times by a factor

only the algorithms are similar, but also the imple- of three resulting in images of si2s8? at the lowest

mentation: As axes, motors, and geomeric transfor- resolution. For each imagepoint at this resolution, a
ICurrently, we use a TRC headounted to our XR 4000 robot.  confidence value for beiing an object location is calcu-

For training, Canon, or Somyameras and a turn table or cameraon |ated. This is done by using subsampled version of the
a hand of a stationary robot are used.
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Figure 6. Expamles from the test set. Top
line: Gaussian noise added, bottom line:
synthetic occlusion of large parts of the

objects

Table 3. Absolute confusion matrix for
occluded test images (left column: num-
ber of actual class, top row: number of
assigned class, or reject).

70 initial points were selected per hypothesis, and 3
object classes.
L On a personal computer with a Pentiumll proces-
* » sor running at 700 MHz, it took about 8 seconds for
_ *_ the search, confidence calculation and pose estimation
of one object with d85 x 131 bounding box within a
2562 image using a resolution hierarchy (2 level deep,

Figure 7. Examples of objects subject subsampling factor of 3). Most of the time is spent
to confusion in the recognition module. on calculating the SVD for approximating, (about
The object in the middle shows a tape 55%). The other time consuming part is the pointwise
roll. The same object from another view search at the lowest resolution hierachy level for pos-
is occluded on the right side. Due to the sible object locations. Faster “region—of—interest” op-
lack of information, the stapler (left) has erators are currently studied, like “histogram backpro-
a higher confidence. jection”, for circumventing this search.

5 Conclusion and Future Work

eigenspace models. Only areas with high confidence . ) o
values are searched on the higher resolution levels. We described our system architecture for active im-

After calculating a confidence map for each class, 89€ understanding which is implemented in an object—
the class and location with the highest confidence is oriented fashion. Classes and objects encapsulate data,
choosen. The pose and scale estimation is given im-devices, and operators. We argued that this program-
plicetly by nearest model point of the choosen class. Ming paradigm simplifies solving image analysis tasks

Table 2 gives the results achieved for the selected ob-and gave examples for the expressional power of the
jects. proposed approach, especially when applied to un-

The main problem is the mixing up between objects usual areas such as device interfaces. Object—oriented
1 and 2 (duct tape disposer and stapler). Rejected caseBrogramming is preferred to genericity for hierarchies
result from correct classification but a wrong pose es- Of operator classes; assuming that the task of an op-
timation. The high number of wrong assignments of €rator is not trivial, the overhead imposed by this im-
class 2 to 1 is due to fact that for small objects (like Plementation scheme is negligible. Genericity is used
the duct tape disposer) in some cases almost the comfor regular data structures such as for pixel access in

plete object was occluded, as can be seen in Figure 7image matrices. _
In our application for appearance-based object

The search and classification time depends on therécognition we successfully applied the architecture.
number of hypotheses generated per class, the numbef he use of ANIMALS as the implementation basis al-
of points initially used for each hypothesis, and the 10ws easy incorporation of new algorithms in cases
number of object classes. For measuring computationWhere the appaerance based approach fails, e.g an

times, 5 hypotheses have been generated per imageaktive viewpoint selection scheme will be incorpo-
rated for disambiguating object views. Up to nhow, only



graylevel images are used for the classification task.
The object—oriented design makes it possible to aug-
ment the object models with information about the ob-
ject color and this models may be used in the existing
algorithms without any changes.

References to other applications have been given.
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Figure 4. Class hierarchy for motors used in active vision systems
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