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Abstract. Fine-grained classification is a particular case of a classifi-
cation problem, aiming to classify objects that share the visual appear-
ance and can only be distinguished by subtle differences. Fine-grained
classification models are often deployed to determine animal species or
individuals in automated animal monitoring systems. Precise visual ex-
planations of the model’s decision are crucial to analyze systematic er-
rors. Attention- or gradient-based methods are commonly used to iden-
tify regions in the image that contribute the most to the classification
decision. These methods deliver either too coarse or too noisy explana-
tions, unsuitable for identifying subtle visual differences reliably. How-
ever, perturbation-based methods can precisely identify pixels causally
responsible for the classification result. Fill-in of the dropout (FIDO) al-
gorithm is one of those methods. It utilizes the concrete dropout (CD) to
sample a set of attribution masks and updates the sampling parameters
based on the output of the classification model. A known problem of the
algorithm is a high variance in the gradient estimates, which the authors
have mitigated until now by mini-batch updates of the sampling param-
eters. This paper presents a solution to circumvent these computational
instabilities by simplifying the CD sampling and reducing reliance on
large mini-batch sizes. First, it allows estimating the parameters with
smaller mini-batch sizes without losing the quality of the estimates but
with a reduced computational effort. Furthermore, our solution produces
finer and more coherent attribution masks. Finally, we use the resulting
attribution masks to improve the classification performance of a trained
model without additional fine-tuning of the model.

Keywords: Perturbation-based counterfactuals · fine-grained classifica-
tion · attribution masks · concrete dropout · gradient stability.

1 Introduction

Fine-grained classification tackles the hard task of classifying objects that share
the visual appearance and can only be distinguished by subtle differences, e.g.,
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animal species or car makes. Most commonly, fine-grained classification models
are employed in the field of animal species recognition or animal individual iden-
tification: classification of insects [3,19] and birds [14,21,37], or identification of
elephants [24], great apes [4,17,35,45], and sharks [15]. Even though these auto-
mated recognition systems surpass humans in terms of recognition performance,
in some cases, an explanation of the system’s decision might be beneficial even
for experts. On the one hand, explanations might help in cases of uncertainty in
human decisions. On the other hand, it can help to feedback information to the
developer of the system if systematic errors in the decision are observable. Those
systematic errors might be spurious biases in the learned models [32] and could
be revealed by inspection of a highlighted region that should not be considered
by a classification model.

Even though various methods [14,21,24,37] were presented in the context of
fine-grained recognition to reliably distinguish classes with subtle visual differ-
ences, these methods offer either a too coarse-grained visual explanation or an
explanation with many false positives.

Attention-based methods [13,14,47], for example, introduce attention mech-
anisms to enhance or diminish the values of intermediate features. They operate
on intermediate feature representations, which always have a much lower resolu-
tion than the input image. Hence, upscaling the low-resolution attention to the
higher-resolution image cannot highlight the fine-grained areas, which are often
important for a reliable explanation of the decision.

Gradient-based methods [38,39,40] identify pixel-wise importance by com-
puting the gradients of the classifier’s decision w.r.t. the input image. These
methods identify much finer areas in the image and enable decision visualiza-
tion on the fine-grained level. However, these methods may also falsely highlight
background pixels as has been shown in the work of Shrikumar et al. [36] and
Adebayo et al. [1].

In this paper, we build upon a perturbation-based method, the fill-in of the
dropout (FIDO) approach, proposed by Chang et al. [5]. The idea behind FIDO
is to perturb the pixel values of the input image and observe the change in the
classification decision. The authors realize the perturbation with a binary mask,
whose entries model a binary decision whether to perturb a pixel or not. The
mask is sampled using a set of trainable parameters and a sampling method
introduced as concrete dropout (CD) by Gal et al. [9]. After optimizing the
trainable parameters w.r.t. the classification decision, the parameters represent
the importance of each pixel for the classification. One drawback of the approach
is the high variance in estimating the gradients while optimizing the sampling
parameters. Chang et al. mention this drawback in their work, and suggest re-
ducing the variance by averaged gradients over a mini-batch of sampled masks.

We propose a mathematically equivalent but simplified version of CD. As
a consequence, we reduce the amount of exponential and logarithm operations
during the sampling procedure resulting in more stable gradient computations.
We will show that the FIDO algorithm becomes less reliant on the size of the
mini-batches, which allows the estimation of the attribution masks with smaller
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Fig. 1: Visual comparison of the original FIDO method and our proposed im-
provement. We estimated the masks using 30 optimization steps and two dif-
ferent batch sizes: 4 and 16. Our method produces masks that do not differ
much for the visualized batch sizes. In contrast, the method of Chang et al. [5]
strongly depends on higher batch sizes and produces more wrongly attributed
pixels (e.g., the background or the tree branch) if the mini-batch size of 4 or less
is used. Similarly to Chang et al., we visualized only the mask values above the
threshold of 0.5. (best viewed in color)

mini-batch sizes. To summarize our contribution: (1) the estimation of the attri-
bution masks is possible with a smaller mini-batch size without losing quality but
with a reduced computational effort; (2) our proposed solution results in more
precise and coherent attribution masks, as Figure 1 shows; (3) most importantly,
we demonstrate that the estimated attribution mask can be leveraged for im-
proving the classification performance of a fine-grained classification model. We
outperform other baseline methods and achieve classification results comparable
to a setup if ground truth bounding boxes are used.

2 Related Work

Attribution methods aim at estimating a saliency (or attribution) map for
an input image that defines the importance of each area in the image for the
desired task, e.g., for classification. We give a brief overview of three possible
attribution methods that are often used in literature.

End-to-end trainable attention methods [13,14,47] present different approaches
that modify the architecture of a CNN model. In general, these modifications
estimate saliency maps, or attentions, for intermediate feature representations.
The estimated saliencies are then used to enhance or diminish the feature val-
ues. Even though the estimated attention maps improve the classification sig-
nificantly, they are coarse since they typically operate on intermediate represen-
tations right before the final classification layer. Consequently, up-scaling these
attentions to the dimension of the original image cannot capture precisely the
fine-grained details.
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In contrast, gradient-based methods [20,38,39,40] estimate pixel-wise impor-
tance by computing gradients of the outputs (logit of the target class) w.r.t.
the input pixels. Even though the resulting saliency map is much finer than
attention-based saliencies, it often highlights lots of irrelevant areas in the image,
e.g., the background of the image. This may be caused by gradient saturation,
discontinuity in the activations of the network [36], or an inductive bias due
to the convolutional architecture, which is independent of the learned parame-
ters [1].

Finally, perturbation-based methods [5,7,8] attribute the importance to a pixel
by modifying the pixel’s value and observing the change in the network’s output.
These methods identify image regions that are significantly relevant for a given
classification target. Hereby, two different objectives can be used to estimate
these regions: (1) the estimation of the smallest region that retains a certain
classification score, and (2) the estimation of the smallest region that minimizes
the target classification score when this region is changed. Dabkowski and Gal [7]
presented a method that follows the mentioned objectives and Chang et al. [5]
reformulated these objectives in their fill-in of the dropout (FIDO) algorithm.
They further presented different infill methods and their effects on the estimated
saliency maps.

In this work, we utilize the FIDO algorithm and present a way to enhance
the computation stability of the gradients. Furthermore, we propose a way to
combine the resulting attribution masks into a joint attribution mask, which we
finally use to improve the results of a fine-tuned classification model. As with
all perturbation-based methods, we keep the advantage that neither a change of
the architecture nor a fine-tuning of the parameters is required.

Fine-grained categorization is a special classification discipline that aims at
distinguishing visually very similar objects, e.g., bird species [44], car models [23],
moth species [33], or elephant individuals [24]. These objects often differ only in
subtle visual features and the major challenge is to build a classification model
that identifies these features reliably. On the one hand, it is common to utilize
the input image as it is and either perform a smart pre-training strategy [6,22]
or aggregate feature using different techniques [26,37]. On the other hand, there
are the part- or attention-based approaches [13,14,20,47] that either extract rel-
evant regions, so-called parts, in the input image or enhance and diminish in-
termediate feature values with attention mechanisms. Finally, transformer-based
approaches [11,46] are currently at the top in different fine-grained classification
benchmarks. However, these methods rely on the parameter-rich transformer
architecture and big datasets for fine-tuning. Typically, in the context of auto-
mated animal monitoring these resources are not available making such models
difficult to deploy in the field.

In this work, we use two widely used CNN architectures [12,41] fine-tuned
on the CUB-200-2011 [44] dataset. Without any further modification or fine-
tuning, we use the estimated attribution masks to extract an auxiliary crop
of the original input image. Finally, we use the extracted crop to enhance the
classification decision.
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3 Simplified Concrete Dropout - Improved Stability

Our final goal is a pixel-wise attribution of importance for a certain classification
output. Perturbation-based methods offer a way to estimate this importance by
observing the causal relation between a perturbation of the input and the caused
change in the decision of a classification model. One example is the fill-in of
the dropout (FIDO) algorithm [5] which computes these attribution masks by
identifying pixel regions defined as following:

1. Smallest destroying region (SDR) represents an image region that minimizes
the classification score if this region is changed.

2. Smallest sufficient region (SSR) represents an image region that maximizes
the classification score if only this region is retained from the original content.

Based on these definitions, the FIDO algorithm optimizes the parameters of a
binary dropout mask. The mask identifies whether a pixel value should be per-
turbed with an alternative representation (infill) or not, and can be interpreted
as a saliency map. In the following, we formalize the objective functions, illustrate
the limitation of the FIDO algorithm, and explain our suggested improvements.

3.1 The FIDO Algorithm and Its Limitations

Given an image x with N pixels, a class c, a differential classification model M
producing an output distribution pM(c|x), we are interested in a subset of pixels
r that divides the image into two parts x = xr ∪ x\r. Observing the classifier’s
output when xr is not visible gives insights into the importance of the region r
for the classification decision. Because of the binary division of the image into
two parts, the region r can be modeled by a binary dropout mask z ∈ {0, 1}N
with the same size1 as x and an infill function ϕ that linearly combines the
original image x and an infill x̂ with an element-wise multiplication ⊙:

ϕ(x, z) = (1− z)⊙ x+ z⊙ x̂ . (1)

There are different ways to generate an infill image x̂. First, content-independent
approaches, like random (uniformly or normally distributed), or fixed (e.g., ze-
ros) pixel values, generate the infill image independently of the input’s content.
Because these methods are independent of the content of the image, they cause a
hard domain shift for the underlying classification model. Chang et al. [5] showed
that these infill approaches perform worse compared to content-aware methods
like GANs [10] or Gaussian blur. Popescu et al. [30] used knockoffs [2] to gen-
erate infill values and reported in their work superiority of knockoff infills on
the MNIST dataset [25]. All of these content-aware methods generate the infill
image depending on the pixels of the original image and retain the structure

1 for sake of simplicity, we consider x and z as 1D vectors, instead of 2D matrices with
dimensions H and W , and N = H ·W.
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and composition of the original image to some degree. In our experiments, we
use the Gaussian blur approach to create the infill image x̂. First, it removes
the fine-grained details we aim to identify but retains the contents of the image
so that the infill is not an out-of-domain input for the classification model. Sec-
ond, the knockoff generation, proposed by Popescu et al., is suitable for MNIST
images because of the low dimensionality of the images (28 × 28 px) and the
binary pixel values. Unfortunately, to this point, there is no way to apply this
generation process to real-world RGB images. Finally, the GAN-based infills are
computationally intensive and require an additional model that has to be trained
on data related to the images we want to analyze.

The search space of all possible binary masks z grows exponentially with the
number of pixels, hence we need an efficient way to estimate the values zn ∈ z.
Assuming a Bernoulli distribution for the binary mask values allows us to sample
the masks from a parametrized distribution qθ(z) and optimize the parameters
θn ∈ θ using the SSR and SDR objectives:

LSSR(θ) = Eqθ(z) [−sM(c|ϕ(x, z)) + λ||1− z||1] and (2)

LSDR(θ) = Eqθ(z) [ sM(c|ϕ(x, z)) + λ||z||1] (3)

with the L1 regularization factor λ. Following the original work, we set λ = 0.001.
The score sM is defined as log-odds of classification probabilities:

sM(c|x) = log
pM(c|x)

1− pM(c|x) . (4)

To be able to optimize θ through a discrete random mask z, the authors relax
the discrete Bernoulli distribution and replace it with a continuous approxima-
tion: the concrete distribution [16,28]. The resulting sampling, called concrete
dropout (CD), was proposed by Gal et al. [9] and is defined as

zn = σ

(
1

t

(
log

θn
1− θn

+ log
η

1− η

))
η ∼ U(0, 1) (5)

with the temperature parameter t (we follow the original work and set this
parameter to 0.1), σ being the sigmoid function, and η sampled from a uniform
distribution.

In the original work, Chang et al. [5] proposed two methods to speed up
convergence and avoid unnatural artifacts during the optimization process. First,
they computed the gradients w.r.t. θ from a mini-batch of dropout masks. They
mentioned in Appendix (A.6) that they observed unsatisfactory results with
mini-batch sizes less than 4, which they attributed to the high variance in the
gradient estimates. Second, they sampled a coarser dropout mask (e.g. 56× 56)
and upsampled the mask using bi-linear interpolation to the dimensions of the
input (e.g. 224× 224).
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In the following, we reflect upon the cause of the high variance in the gradi-
ent estimates and propose a way to increase the computational stability. Con-
sequently, our solution reduces the dependency of the FIDO method on the
mini-batch size, allowing the estimation of the attribution masks with lower
mini-batch sizes which ultimately reduces the computation time. Finally, since
we are interested in fine-grained details in the image, the estimation of a coarser
attribution mask followed by an upsampling operation would not lead to the
desired level of detail. With our solution and the resulting improvement in the
gradient computation, we can directly estimate a full-sized attribution mask θ
without any unnatural artifacts, as shown in Figure 1.

3.2 Improving Computational Stability

The sampling of z using CD requires that all dropout parameters θn ∈ θ are
in the range [0, 1]. One way to achieve this is to initialize the attribution mask
with real-valued parameters ϑn ∈ R and apply the sigmoid function to those:
θn = σ(ϑn). As a consequence, the CD sampling procedure for z, as described
in Eq. 5, is a chaining of multiple exponential and logarithmic operations. This
can be easily implemented in the current deep learning frameworks and is a
common practice, e.g., in the reference implementation of Gal et al.2. However,
we hypothesize that exactly this chaining of operations causes a high variance
in the gradient estimates, and we validate this assumption in our experiments.

Under the assumption that θ is the output of the sigmoid function, we can
simplify the sampling procedure of the attribution mask z and mitigate the
before-mentioned problem. First, for readability reasons, we substitute the uni-
form noise part with a single variable η̂ = log η

1−η in Eq. 5. Then after using the

transformation θn = σ(ϑn) from above, expanding the argument of the sigmoid
function, and simplifying the terms, the sampling of the binary mask z using
CD transforms to a simple sigmoid function:

zn = σ

(
1

t

(
log

σ (ϑn)

1− σ (ϑn)
+ η̂

))
(6)

= σ

(
1

t

(
log

(1 + exp(−ϑn))
−1

1− (1 + exp(−ϑn))
−1 + η̂

))
(7)

= σ

(
1

t

(
log

1

exp(−ϑn)
+ η̂

))
= σ

(
ϑn + η̂

t

)
. (8)

The resulting formula is equivalent to the original formulation of CD. However,
the reduction of exponential and logarithmic operations, and hence the reduc-
tion of the number of operations in the gradient computation, are the major
benefits of the simplified version in Eq. 8. As a result, it reduces computational
inaccuracies and enhances the propagation of the gradients. Consequently, the

2 https://github.com/yaringal/ConcreteDropout
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optimization of the parameters ϑ, and of the attribution map defined by θ, con-
verges to more precise and better results as we show in Section 4.

In Sect. S2 of our supplementary material, we performed an empirical evalu-
ation of this statement and showed that our proposed simplifications result in a
lower variance of the gradient estimates. Additionally, you can find in Sect. S1
a Python implementation of the improved Concrete Dropout layer using the
PyTorch [29] framework.

3.3 Combined Attribution Mask for Fine-grained Classification

So far, we only applied operations on the original formulation to simplify Eq. 5
from the original work of Chang et al. [5]. However, we can also show that the
estimated attribution masks improve the performance of a classification model.
First, we follow Chang et al. and only consider mask entries with an importance
rate above 0.5. Then, we estimate a bounding box around the selected values of
the attribution mask. In the end, we use this bounding box to crop a patch from
the input image and use it as an additional input to the classification model
(see Section 4.3). Instead of using the attribution masks separately, we are inter-
ested in regions that are important to sustain and should not be deleted. Hence,
we propose to combine the attribution masks θSSR and θSDR using element-
wise multiplication of mask values followed by a square root as a normalization
function:

θjoint =
√
θSSR ⊙ (1− θSDR) . (9)

With element-wise multiplication, we ensure that if either of the attribution
values is low, then the joint attribution is also low. The square root normalizes
the joint values to the range where we can apply the same threshold (0.5): for
example, if both attribution values are around 0.5, then also the joint attribution
will be around 0.5 and not around 0.25.

4 Experiments

We performed all experiments on the CUB-200-2011 [44] dataset. It consists
of 5994 training and 5794 test images for 200 different species of birds. It is
the most used fine-grained dataset for benchmarking because of its balanced
sample distribution. We selected this dataset mainly because it also contains
ground truth bounding box annotations, which we used as one of our baselines
in Section 4.3

Figure 1 shows a qualitative comparison of the estimated masks on one ex-
ample image of the CUB-200-2011 dataset. Notably, our solution is more stable
when we use smaller mini-batch sizes and produces fewer false positive attribu-
tions, e.g., in the background or highlighting of the tree branch.

We evaluated two widely used CNN architectures pre-trained on the Ima-
geNet [34] dataset: ResNet50 [12] and InceptionV3 [41]. Additionally, we used
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Fig. 2: Examples of the estimated masks for the Red-winged Blackbird and the
Yellow-headed Blackbird using the original FIDO approach and our proposed im-
proved method. Besides the ground-truth segmentation masks, we also reported
the intersection over union (IoU) of the estimated mask with the ground-truth.

an alternative pre-training on the iNaturalist2017 dataset [43] for the Incep-
tionV3 architecture proposed by Cui et al. [6] (denoted with IncV3* and In-
ceptionV3* in Tables 1 and 2, respectively). All architectures are fine-tuned
for 60 epochs on the CUB-200-2011 dataset using the AdamW [27] optimizer
with the learning rate of 1× 10−3 (and ϵ set to 0.1)3.

4.1 Evaluating Mask Precision

To quantify the visual observations in Figure 1, we selected two visually similar
classes of Blackbirds from the CUB-200-2011 dataset: the Red-winged Blackbird
and the Yellow-headed Blackbird. Both belong to the family of Icterids (New
World blackbirds) and have black as a dominant plumage color. However, as the
name of the species indicates, the main visual feature distinguishing these birds
from other black-feathered birds is the red wing or the yellow head. Using
this information, we created segmentation masks with the Segment Anything
model [18] for the mentioned regions and used these as ground truth.

We fine-tuned a classification model (ResNet50 [12]) on the entire dataset
and estimated the attribution masks using both methods: the original FIDO
approach by Chang et al. [5] and our improved method. We evaluated different
mini-batch sizes and a different number of optimization steps. Both of these
parameters strongly affect the runtime of the algorithm. After an attribution
mask was estimated, we selected only the values above the threshold of 0.5 and
computed the IoU with the ground truth mask. We performed this evaluation
for the masks estimated by the SSR and SDR objectives separately as well as
using the joint mask as defined in Eq. 9.

In Figure 3, we report the IoU results of the mentioned setups. First, the plot
shows that our solution (solid lines) outperforms the original approach (dashed
lines) in every constellation of the hyperparameters. Next, the optimization pro-
cess becomes less sensitive to the size of the mini-batches. This can be seen

3 Changing the default parameter smooths the training, as suggested in
https://www.tensorflow.org/api docs/python/tf/keras/optimizers/Adam#notes 2
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(a) IoU values for different mini-batch sizes.
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(b) IoU values for a different number of optimization steps.

Fig. 3: Intersection over union (IoU) of the estimated masks with the ground-
truth annotations of a discriminative region. We tested different values for the
hyperparameters mini-batch size (a) and the number of optimization steps (b).
Our proposed method (solid lines) outperforms the original work (dashed lines)
and shows less sensitivity against the mini-batch size. (best viewed in color)

either by the slope (Figure 3a) or the variance (Figure 3b) of the IoU curves.
Our method achieved the same quality of the attribution masks with smaller
mini-batch sizes. Consequently, by reducing the mini-batch size, the number of
sampled dropout masks at every optimization step is also reduced. Hence, by
using a mini-batch size of 8 instead of 32, which Chang et al. use in their work,
we could reduce the computation time per image from 40 to 11 seconds4 for 100
optimization steps.

In Figure 2, we visualized four examples of the mentioned classes, our an-
notated segmentation masks, and the results of both approaches after 100 opti-
mization steps and using a mini-batch size of 8.

4 We processed the images using an Intel i9-10940X CPU, 128GB RAM, and a GeForce
RTX 3090 GPU
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Table 1: Comparison of the original solution proposed by Chang et al. and our
improved implementation in terms of mask coherency. For different model archi-
tectures and different mask estimation objectives, we report the total variation
as defined in Eq. 10 (lower is better).

SSR SDR Joint
RN50 IncV3 IncV3* RN50 IncV3 IncV3* RN50 IncV3 IncV3*

Chang et al. [5] 39.74 32.44 27.79 44.21 45.53 37.81 37.61 33.92 28.66
Ours 17.54 18.18 17.37 22.72 21.87 20.20 16.95 15.21 14.06

4.2 Mask Coherency

Following Dabkowski et al. [7], Chang et al. propose to use total variation regu-
larization with a weighting factor of 0.01, which is defined as

TV(z) =
∑

i,j

(zi,j − zi,j+1)
2
+
∑

i,j

(zi,j − zi+1,j)
2

. (10)

We observed that the high variance in the gradients affects the coherency of the
masks (see Figure 1). Hence, we computed the total variance of the estimated
masks and reported the results in Table 1. The total variation is computed
for the attribution masks estimated for the entire CUB-200-2011 dataset with
the original approach and our proposed solution. The results show that our
solution produces more coherent masks, meaning the identified regions are more
connected.

4.3 Test-time Augmentation of a Fine-grained Classifier

Given a model fine-tuned on the CUB-200-2011 dataset, we evaluated in this
experiment how we can use the estimated attribution masks to improve the
classification performance of the model. In addition to the prediction of the
baseline models, we used different methods to extract one auxiliary crop from
the original image and compute the prediction using this crop. Then, we aver-
aged the predictions and report the resulting accuracies in Table 2. This way
of classification improvement is widely used to different extent. He et al. [12] or
Szegedy et al. [41], for example, use ten or 144 crops in their work, respectively.
Hu et al. [14], as another example, perform attention cropping to enhance the
prediction of the classifier. In our setup, we extracted a single crop using different
methods, which we explain in the following.
Ground-truth bounding boxes: We utilized the bounding box annotations
of the CUB-200-2011 dataset. First, we only used the crops identified by the
bounding boxes. Second, we combined the predictions from the cropped image
and the original image, by averaging the predictions.
Center and random crop: Following the motivation behind the crops used by
He et al. [12] and Szegedy et al. [41] that the object of interest is likely to be in
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Table 2: Comparison of the classification performance using different test-time
augmentation (TTA) methods on the CUB-200-2011 dataset. Besides the base-
lines (no TTA or ground truth bounding boxes), we also evaluated heuris-
tic methods (random or center crop), content-aware methods (GradCam or a
bird detector), and two different FIDO implementations (the original work of
Chang et al. and our proposed improvement). We report the accuracy (in %).

ResNet50 InceptionV3 InceptionV3*

Baseline (BL) 82.78 79.86 90.32
GT bounding boxes only 84.38 81.31 90.18
BL + GT bounding boxes 84.55 81.65 90.70

BL + random crop 83.41 80.45 89.99
BL + center crop 83.83 81.07 90.16

BL + gradient [20] 83.74 80.76 90.02
BL + BirdYolo [42] 83.81 81.12 90.39

BL + FIDO [5] 84.17 81.67 90.47
BL + FIDO (ours) 84.67 81.77 90.51

the center, we cropped the center of the image. Furthermore, we also extracted
a random crop. For both methods, we set the size of the crop to be 75% of the
width and height of the original image. These methods are content-agnostic and
use only heuristics to estimate the region to crop.

Gradient crop: As a first content-aware method, we computed the gradients
w.r.t. the input image [38]. We utilized the pre-processing and thresholding of the
gradient as presented by Korsch et al. [20], estimated a bounding box around the
resulting saliency map, and cropped the original image based on the estimated
bounding box.

BirdYOLO is a YOLOv3 [31] detection model pre-trained on a bird detection
dataset [42]. For each image, we used the bounding box with the highest confi-
dence score, extended it to a square, and cropped the original image accordingly.

FIDO: Finally, we utilized the joint mask computed from the SSR and SDR
masks of the FIDO algorithm as defined in Eq. 9. On the one hand, we used the
masks estimated by the original work of Chang et al. [5], and on the other hand,
the masks estimated with our proposed improvements.

The results in Table 2 show that compared to the baseline model the ground
truth bounding boxes yield a higher classification accuracy, even if solely us-
ing the bounding box crops for classification. Next, we can see that even such
content-agnostic methods like center or random cropping can boost classification
performance. Similar improvements can be achieved by content-aware methods
like gradients or a detection model. We observed the most improvement with the
FIDO algorithm, and finally with our proposed solution we achieved the best
results that are comparable to using ground-truth bounding boxes.
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5 Conclusions

In this paper, we proposed a simplified version of the concrete dropout (CD).
The CD is used in the fill-in of the dropout (FIDO) algorithm to sample a set
of attribution masks based on an underlying parametrized distribution. Using
these masks, one can estimate how relevant a specific image pixel was for the
classification decision. The parameters of the distribution are optimized based
on the classification score but the optimization process suffers from a high vari-
ance in the gradient computation if the original formulation of CD is used. Our
solution simplifies the sampling computations and results in more stable gra-
dient estimations. Our approach maintains the quality of the estimated masks
while reducing computational effort due to smaller mini-batch sizes during the
optimization process. Furthermore, the resulting attribution masks contain fewer
falsely attributed regions. We also presented a way of using the estimated fine-
grained attribution masks to enhance the classification decision. Compared with
other classification baselines, our solution produces the best result and even
performs comparably to a setup where ground truth bounding boxes are used.

As an extension, our proposed single-crop TTA can be extended with a part-
based approach to further boost the classification performance. Alternatively, a
repeated iterative estimation of the masks may be worth an investigation.
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