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Abstract. The plant community composition is an essential indicator
of environmental changes and is, for this reason, usually analyzed in
ecological field studies in terms of the so-called plant cover. The manual
acquisition of this kind of data is time-consuming, laborious, and prone to
human error. Automated camera systems can collect high-resolution im-
ages of the surveyed vegetation plots at a high frequency. In combination
with subsequent algorithmic analysis, it is possible to objectively extract
information on plant community composition quickly and with little hu-
man effort. An automated camera system can easily collect the large
amounts of image data necessary to train a Deep Learning system for
automatic analysis. However, due to the amount of work required to an-
notate vegetation images with plant cover data, only few labeled samples
are available. As automated camera systems can collect many pictures
without labels, we introduce an approach to interpolate the sparse la-
bels in the collected vegetation plot time series down to the intermediate
dense and unlabeled images to artificially increase our training dataset
to seven times its original size. Moreover, we introduce a new method
we call Monte-Carlo Cropping. This approach trains on a collection of
cropped parts of the training images to deal with high-resolution images
efficiently, implicitly augment the training images, and speed up train-
ing. We evaluate both approaches on a plant cover dataset containing
images of herbaceous plant communities and find that our methods lead
to improvements in the species, community, and segmentation metrics
investigated.
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(0)
Annotated

Trifolium pra. 15%
Achillea mil. 5%
Grasses 25%
... ...

(1)
Not Annotated

Trifolium pra. ?
Achillea mil. ?
Grasses ?
... ...

(2)
Not Annotated

Trifolium pra. ?
Achillea mil. ?
Grasses ?
... ...

(3)
Not Annotated

Trifolium pra. ?
Achillea mil. ?
Grasses ?
... ...

(4)
Not Annotated

Trifolium pra. ?
Achillea mil. ?
Grasses ?
... ...

(5)
Not Annotated

Trifolium pra. ?
Achillea mil. ?
Grasses ?
... ...

(6)
Not Annotated

Trifolium pra. ?
Achillea mil. ?
Grasses ?
... ...

(7)
Annotated

Trifolium pra. 25%
Achillea mil. 10%
Grasses 40%
... ...

Fig. 1: From the entire dataset, since there are weekly annotations, but daily
images, only about one in seven images is annotated. While the images do not
significantly differ from one day to the next, the small differences between the
images can still help the model learn intermediate growth stages of the plants.

1 Introduction

The plant community composition is an essential indicator for environmental
changes such as changes in climate change [20,18,19], insect abundance [23,24],
and land-use [7,9]. Hence, this kind of data is usually collected by plant ecologists
[18,7,23,3], for example, in the form of measuring the plant cover, in regular, but
rather long, time intervals. The plant cover is defined as the percentage of area of
ground covered by each plant species disregarding any occlusion. Usually, many
different plant species are contained in a single plot, which often overgrow and
occlude each other, making the estimation of the plant cover a very complex
task.

Automated plant cover prediction can be a vital asset to plant biodiversity
researchers. Abundance values, like the plant cover, are traditionally collected
manually by estimating them directly in the field on vegetation plots by visual
inspection (see Figure 1). However, collecting data this way is laborious, prone
to human error, and subjective. Therefore, automated systems performing such
estimations offer a significant advantage to these traditional methods, as they
can analyze a large number of images of such vegetation plots in a short amount
of time and deliver valuable research data at a high temporal resolution. The
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collected plant abundance data can then be used to determine the influence of
environmental changes on the plant communities. The high temporal resolution
of the automatically extracted data offers the potential for very fine-grained
analyses, such that a shift in the community distribution can be investigated in
intervals of days or even hours instead of only weeks [24], months [1] or years
[9].

To establish an automated system to perform such an analysis of images,
convolutional neural networks (CNNs) are a good choice, as they are powerful
image processing models. However, they usually require large amounts of labeled
training data to perform well. Körschens et al.˙[13] demonstrated a way to de-
termine the plant cover by training on the so-called InsectArmageddon dataset
[24,13], which we will also investigate in this work and which contains merely
682 labeled images, collected and annotated with plant cover estimates in weekly
intervals. As this number of training images is relatively low, especially in con-
junction with such a complex task, the quality of the results is very likely limited
by the amount of available training data.

To solve the issue of little labeled data, we investigate using unlabeled inter-
mediate images to increase the size of the training set. Plant cover estimates for
vegetation plots are very laborious to create. However, additional unlabeled im-
ages are not. If an automated camera system exists to gather images for training
or automatic analysis of plant cover, it can usually also collect a large num-
ber of additional unlabeled images at almost no cost. In the InsectArmageddon
dataset, images are collected at a daily basis but only annotated at the weekly
one. We leverage this experimental setup to automatically generate weak labels
for the intermediate days between two days for which human annotations are
given. The key idea is to handle uncertainty in the weak labels by weighting
them according to their temporal distance to the next reference estimate. We
will refer to this approach as label interpolation.

In addition to this, to enable the network to train on images at their full
resolution, we propose a Monte-Carlo sampling approach for training the net-
work, which we will refer to as Monte-Carlo Cropping (MCC). The original
image is sampled in equally-sized patches, for each of which the target output
is estimated individually. Afterwards, the network output for all patches sam-
pled from a single image is averaged. This kind of sampling empirically seems to
have a regularizing effect on the network training, leading to better results on
high-resolution images and drastically reducing the training time of such images.

In the following, we will elaborate on related work to our approaches, followed
by a detailed explanation of our methods, experimental results, and finally, a
conclusion.

2 Related Work

Label Interpolation. In this work, we investigate the problem of utilizing unla-
beled images for training in addition to a small number of images with labels.
This problem is usually tackled by semi-supervised learning approaches, espe-
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cially self-training [22,11]. In self-training methods, a model is trained with few
annotated images and then used to label available but unannotated images to
increase the size of the training set iteratively. In contrast to these approaches,
label interpolation heavily utilizes the strong correlation of plant cover values
in the time series to generate labels and does not rely on trained models at all.
Similarly, the data augmentation method mixup [27] also interpolates labels to
generate novel annotations. However, in contrast to our method, the authors do
not apply the new labels to unlabeled images but fuse two existing images and
their class labels.

Monte-Carlo Cropping (MCC). Another problem we tackle in this work is the
utilization of high-resolution images in CNN training. Cropping the original
training images into much smaller images is a simple approach to this problem,
and is usually applied in tasks like image segmentation and object detection,
that also often deal with high-resolution images [25,26,4,16,15]. For these tasks,
cropping is usually done a single time per epoch per image, and the ground-truth
data is also adapted in the same way. For image segmentation, the ground-truth
data are usually segmentation maps, which have the same dimensions as the
original image, and can also be cropped in the same way. The ground-truth for
object detection are usually bounding box coordinates in the original images,
which can also be easily be adapted to the cropped input image by systemati-
cally modifying the coordinates. For plant cover estimation, however, the target
data are merely numerical vectors representing the plant cover distribution in
the image, and can therefore neither be cropped or simply adapted. To solve
this problem, our Monte-Carlo Cropping introduces a stochastical component in
order to be able to approximate the underlying plant cover distribution, which
does not need to be done for image segmentation and object detection.

3 Methods

3.1 Label Interpolation

The first method we introduce is label interpolation. As shown in Figure 1, from
seven existing images in a single week, only a single one is labeled, leaving the
other images unused. Moreover, we can see that the differences between the daily
pictures are only minor compared to the weekly differences; however not insignif-
icant. Images of this kind have two advantages. Firstly, the network can learn the
growth process of plants in much more fine-grained steps, especially since this
kind of data contains more and new information compared to simple augmented
images. And secondly, since the differences between the pictures are relatively
small, we can infer certain properties of the supposed labels for these images
from their neighboring annotations. More formally, for our label interpolation
method to work, we take advantage of the fact that plant cover estimates are
continuous values. Moreover, we assume that the intermediate value theorem [2]
holds for these estimates collected in a time series. That is, if a plant’s measured
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cover value in a certain week was cover(t0) and cover(t1) in the following week,

∀v with min(cover(t0), cover(t1)) < v < max(cover(t0), cover(t1)), (1)

∃t ∈ (t0, t1) : cover(t) = v . (2)

Under the assumption that plants grow in a continuous fashion without external
interference, this theorem holds.

Here, we will utilize linear interpolation, specifically of the data of two sub-
sequent weeks, which implicitly weights the values respective to their temporal
distance to the next annotated data point:

cover(t) =
cover(t0)(t1 − t) + cover(t1)(t− t0)

t1 − t0
. (3)

A linear interpolation might not precisely represent the growth process of
the plants and discontinuities in the images (like occlusion). However, with such
small time steps, the growth process of the plants can be assumed to be approxi-
mately linear between two weeks. We are aware of violations of our assumptions
in practice. However, empirically such issues play only a minor role when it
comes to the overall quality of our suggested approach.

3.2 Monte-Carlo Cropping

The second method we introduce here is Monte-Carlo Cropping (MCC). A sig-
nificant problem in plant cover prediction is that the images provided by the
camera systems usually have a relatively high resolution (e.g., 2688×1520 pixels
for the InsectArmageddon dataset). However, networks are usually only applied
on rather small, often downscaled images (224 × 224 for typical ImageNet [21]
tasks, and 448× 448 or similar for fine-grained ones [5]).

Training on large images is computationally expensive, consumes large amounts
of memory, and can take a long time. For the original image I ∈ RH×W×3 we
sample patches P ∈ Rh×w×3 with h ≪ H and w ≪ W . For each patch P , we
let the network predict the plant cover separately and then average these values
over the number of patches sampled from each image.

Since the patches are sampled from an image with the plant cover values
coverp, the expected value is equal to coverp for a large number of patches
sampled. Therefore, due to the law of large numbers [6], the following holds:

lim
n→∞

1

n

n∑

i=1

coveri,p = coverp , (4)

with n being the number of patches sampled, i being the index of the randomly
sampled patch, and p denoting plant species. I.e., while the plant cover values
observed in the smaller patches do not necessarily reflect the values of the total
images when selecting a sufficiently large number of patches, they do so on
average.
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Fig. 2: An example of a random patch selection with Monte-Carlo Cropping.

During training, we sample equally sized square patches from the original
image, an example of which can be seen in Figure 2. It is visible that the number
of pixels shown to the network is significantly reduced, depending on the size of
the patches and number of patches sampled. Hence, computational complexity
can also be reduced with MCC.

4 Experimental Results

4.1 Dataset

In our experiments, we utilize the InsectArmageddon dataset [24,14] from the
eponymous iDiv project that took place in 2018 over multiple months. The im-
ages were collected in 24 so-called EcoUnits, which are boxes containing small
enclosed ecosystems. Each of the EcoUnits was equipped with two cameras that
collected daily pictures of these ecosystems. The dataset from the InsectAr-
mageddon experiment comprises estimated plant cover data (“reference esti-
mates”) for eight herbaceous plant species in 682 images collected weekly by
a single ecologist. The image set with original and interpolated annotations
contains about 4900 images, i.e., about seven times the number of images due
to one originally labeled image per week, and six with interpolated labels. On
this dataset, we perform 12-fold cross-validation by selecting the images of two
EcoUnits for testing, and the ones of the remaining 22 EcoUnits for training.
For more details on the InsectArmageddon image dataset, we would like to refer
to [24] and [14].

4.2 Setup

We use the approach introduced in [13]. i.e., we utilize a ResNet50 [8], architec-
ture with Feature Pyramid Network [17], the 3-phase pre-training pipeline based
on freely available images from GBIF4 to train a classification network (phase
1), which generates simple segmentations with class activation mapping (CAM)
[28], on which we then pre-train a segmentation network (phase 2). The weights

4 http://gbif.org
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of this network are then used as initialization for our plant cover prediction
network, which we train on the plant cover annotations (phase 3).

During the first phase, we utilize global log-sum-exp-pooling [12,13] with a
learning rate of 10−4 and a weight decay of 10−4. We use this pooling method, as
in [12] it generated better segmentations when used in conjunction with CAM.
Moreover, we use a categorical cross-entropy loss during optimization and train
with early stopping and dynamic learning rate reduction. The learning rate is
reduced by a factor of 10 when there is no improvement in the validation accuracy
over four epochs, and the training is stopped, if there is no improvement over six
epochs. In the second phase, we use a learning rate of 10−5, a weight decay of
10−4, and a combination of binary-cross-entropy and dice loss, which are summed
up and weighted equally as loss. During this training, we also used a dynamic
learning rate adaptation and early stopping; however, we monitored the mean
Intersection over Union (mIoU) instead of the accuracy. In the third phase, we
train with a batch size of 1 and a learning rate of 10−5, which is reduced by a
factor of 10 after 50% and 75% of the total epochs, respectively. We are using
the mean scaled absolute error (MSAEσ) as loss. This error is defined as

MSAEσ(t,p) =
1

n

n∑

i=1

∣∣∣∣
ti
σi

− pi
σi

∣∣∣∣ , (5)

where σ, in our case, is the standard deviation of the species-wise plant cover
values calculated over the training dataset. This loss aims to reweight the species
to account for the substantial imbalance in the dataset.

In our experiments, we compare the image resolution used in previous works
[13] (1536 × 768 pixels) and the full image resolution (2688 × 1536 pixels). We
investigate several training durations and their effect on the training with weekly
and interpolated daily images. For the daily labels we investigate fewer epochs,
since the iteration count per epoch is much higher in comparison to the weekly
label dataset.

For our experiments on MCC, we investigate different patch sizes as well as
several patch counts. We chose the patch sizes of 1282, 2562, 5122, and 10242

pixels, and for each patch size, a respective sample count so that the number
of pixels sampled is around 50% of the pixel count of the original image. For
each sample count selected, we also investigate a pixel count of half or double
the number of pixels sampled. For a patch of 5122 pixels, we investigate sample
counts of 8, 4, and 16; for a patch of 2562 pixels, sample counts of 32, 16, and
64, etc. It should be noted that the cropped image patches are input into the
network as-is without any additional resizing.

4.3 Metrics

We investigate three different metrics to analyze our results. The first metric
is the aforementioned mean scaled absolute error MSAEσ. The second metric
is the mean Intersection over Union (IoU) metric calculated over the segmenta-
tion image subset introduced in [13] containing 14 pixel-wise annotated images
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Table 1: Comparison of training with weekly images with only the original la-
bels and daily images with original and interpolated labels. Abbreviations used:
MSAEσ - Mean Scaled Absolute Error, IoU - Intersection over Union, DPC -
DCA-Procrustes-Correlation. Top results are marked in bold font.

Weekly Images Daily Images
MSAEσ IoU DPC MSAEσ IoU DPC

Resolution Epochs

1536x768

3 0.527 0.158 0.724 0.499 0.198 0.780
6 0.505 0.192 0.766 0.502 0.204 0.766
10 0.501 0.196 0.770 0.503 0.199 0.772
15 0.500 0.201 0.768 0.498 0.194 0.773
25 0.501 0.203 0.760 - - -
40 0.502 0.187 0.765 - - -

2688x1536

3 0.545 0.156 0.656 0.494 0.205 0.780
6 0.510 0.188 0.757 0.493 0.223 0.778
10 0.502 0.204 0.766 0.491 0.208 0.777
15 0.497 0.208 0.757 0.489 0.181 0.781
25 0.493 0.205 0.763 - - -
40 0.495 0.192 0.761 - - -

from the InsectArmageddon dataset. The last metric we will refer to as the
DCA-Procrustes-Correlation (DPC). It is calculated by performing a Detrended
Correspondence Analysis (DCA) [10] on the target and predicted outputs, which
are then compared with a Procrustes analysis. This returns a correlation value,
where higher values show a higher similarity of the distributions to each other,
which is significant for ecological applications.

With the MSAEσ, we can evaluate the performance of our models in ab-
solute terms, i.e., how accurate the species-wise predictions are based on the
reference estimates. The IoU determines how well the top layer of plants is pre-
dicted, disregarding any occluded plants, and the DPC explains how well the
predicted species distribution matches with the one estimated by the expert. All
experiments are performed in a 12-fold cross-validation over three repetitions.

4.4 Label Interpolation

The results of our experiments with label interpolation are shown in Table 1.
Regarding the weekly annotated images, it is visible that the MSAEσ and IoU
are increasing with higher epoch counts, and the higher-resolution images also
return slightly better results than the low-resolution images. However, after ten
epochs, low-resolution images achieve the best DPC value (0.77). This value is
not outperformed when using high-resolution images, leading to the conclusion
that the network can learn to reduce the prediction error for some more dominant
species from the high-resolution images but cannot accurately learn and reflect
the actual distribution due to the neglect of less abundant species.
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When looking at the results of the experiments using the interpolated daily
images in conjunction with the weekly annotations, we notice improvements for
both image resolutions, showing that our interpolation method is effective and
leads to better results than just using the annotated images. The low-resolution
and high-resolution images with daily images outperform their counterparts in
all metrics. It should also be noted that the top performance is achieved after
a smaller number of epochs for the daily images, likely because the number of
iterations per epoch is about seven times the one with weekly images. This way,
the top DPC value is achieved after three epochs, while the top IoU is achieved
after six epochs. The MSAEσ appears to be still improving for a larger number
of epochs.

4.5 Monte-Carlo Cropping

The results of our experiments with MCC on full-resolution images with weekly
labels and interpolated daily labels are shown in Figure 3. The detailed numerical
results can be found in the Supplementary Material. Generally, we can see that
larger patch sizes lead to better results in terms of MSAEσ and DPC, with
the patch sizes 512 and 1024 yielding the top results for the experiments with
daily and weekly labels. The patch size of 512 yields the best results for DPC,
while the size of 1024 performs best in terms of MSAEσ. For the weekly labels,
the top DPC value and MSAEσ value are 0.777 and 0.489, which outperform
the top results on the full-resolution weekly images with a DPC of 0.766 and
MSAEσ of 0.493, respectively. For achieving this performance, for the patch size
512 the optimal sample size is 8, and for 1024 it is 2, representing about 50%
of the number of pixels of the original image. The same configurations generate
the best MSAEσ and DPC results for the daily images, with 0.487 and 0.784,
respectively. The MC training outperforms the full image training also here in
terms of MSAEσ (0.487 vs. 0.489) and DPC (0.784 vs. 0.781).

Interestingly, the best top layer prediction results, i.e., segmentation results,
were achieved with a much smaller patch size, of 1282 pixels. For the weekly
images and a sample size of 128, the top IoU was 0.220, again outperforming the
naive full-resolution approach with an IoU of 0.208. Similarly, with a patch size
of 128 and a sample size of 128, the training on the daily images yields an IoU
outperforming the full-resolution training (0.232 vs. 0.223).

The discrepancies between the configurations for optimal IoU and optimal
MSAEσ and DPC can be explained by what kind of features the network learns
for the different patch sizes. With smaller patches, the network is forced to
focus on the single plants shown in the top layer and learns little about the
relationships of plants between each other, like occlusion. These relationships,
however, play a significant role in the accurate prediction of the species-wise
values and the entire composition, which are evaluated by MSAEσ and DPC,
respectively. Larger patch sizes capture the relationships and therefore perform
better in these aspects.

In summary, our MCC approach can outperform the training with full-
resolution images. The results significantly depend on the patch size, with higher
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Fig. 3: The development of the different metrics over several training durations
for images with weekly labels (left) and images with interpolated (daily) labels
(right). Abbreviations used: MSAEσ - Mean Scaled Absolute Error, IoU - Inter-
section over Union, DPC - DCA-Procrustes-Correlation
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Table 2: Comparison of training speed per epoch on the full resolution images
using different patches and sample sizes. Times shown are in minutes:seconds.

Weekly Images Daily Images
Time per Epoch Time per Epoch

Patch Size #Patches

- - 01:51 16:17

128
64 00:55 09:06
128 01:34 14:01
256 03:01 24:25

256
16 00:46 08:22
32 01:08 10:37
64 02:10 18:22

512
4 00:46 08:07
8 01:03 10:16
16 01:55 16:41

1024
1 00:45 08:15
2 01:02 10:23
4 01:52 16:17

patch sizes resulting in better community-based predictions and smaller ones in
better individual-based predictions. As training on smaller patches instead of a
large image has computational implications, we will compare computation times
in the following.

Computation Time Comparison A comparison of the times per epoch for each
setup using the full-resolution images is shown in Table 2. These measurements
were taken when training on about 75% of the images of the weekly and daily
image sets on an RTX 3090. The training on the original full-resolution images
took 1 minute and 51 seconds per epoch for only the weekly images and 16 min-
utes and 17 seconds for daily images. The top results for MSAEσ and DPC were
generated by patch size 512 and 8 patches sampled. This setup takes 1 minute
and 3 seconds on the weekly images and 10 minutes and 16 seconds on daily
ones, resulting in a time reduction of about a third. As the setup with patch size
512 and 4 sampled patches performs comparably well, one could even reduce
the training time further by about 50%, at little cost in performance. The setup
generating the top segmentation results, i.e., patch size 128 and sample sizes
256 and 128, differ in the training durations. Considering the larger numbers of
pixels used for sample size 256, the duration is longer for this setup, requiring
about 63% more time for an epoch. In contrast, the sample size of 128 reduces
the training time again by about 14%. It should be noted that, with MCC, the
number of epochs required for the optimal results on the weekly images are sim-
ilar to the number of epochs for full-resolution training, and on the daily images
the training times are usually even shorter for MCC training. For example, with
MCC training on daily images the best DPC value is achieved after 3 epochs
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as opposed to 15 for full-resolution training. Hence, the training times are not
only reduced regarding the per-epoch duration, but also the number of epochs
in total.

5 Conclusion & Future Work

We introduced two approaches for improving the data efficiency for plant cover
estimation training. One method utilizes the unannotated images in the dataset,
which can be collected at almost no cost; the other one enables efficient training
at high resolution, gathering more information from the high resolution of the
images.

Both approaches have proven effective: the label interpolation led to sufficient
training data to receive improved results for all investigated metrics when using
full-resolution images compared to their lower-resolution counterparts. There-
fore, it is advantageous to collect more images than can be labeled, if the images
are similar enough to existing images, as we can artificially increase the size of
the dataset by interpolating. Furthermore, the Monte-Carlo Cropping improved
these results even further, producing better results for different aspects of the
plant cover prediction task while decreasing the training time and computation
required during training. While, of course, a higher image resolution contains
more information, with our MCC approach, especially in combination with la-
bel interpolation, such a high resolution can be utilized much more effectively.
By increasing the image resolution in future experiments even further than in
the InsectArmageddon experiment, with our methods such a high resolution can
actually be utilized to improve the cover estimates without additional human
effort.

Our approaches will be evaluated further on new plant cover datasets with
different image resolutions, more frequent images and more plant species in fu-
ture work. Moreover, the label interpolation might be improved with a more
sophisticated interpolation model instead of linear interpolation, for example, a
model that considers the information in the image for interpolation. Similarly,
the sample selection of the Monte-Carlo Cropping could be improved by intelli-
gently selecting the patches that contain the most information in the future.
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