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Abstract. We present a general data-driven method for multi-view ac-
tion recognition relying on the appearance of dynamic systems captured
from different viewpoints. Thus, we do not depend on 3d reconstruction,
foreground segmentation, or accurate detections. We extend further ear-
lier approaches based on Temporal Self-Similarity Maps by new low-level
image features and similarity measures. Gaussian Process classification
in combination with Histogram Intersection Kernels serve as powerful
tools in our approach. Experiments performed on our new combined
multi-view dataset as well as on the widely used IXMAS dataset show
promising and competing results.

Keywords: Action Recognition, Multi-View, Temporal Self-Similarity,
Gaussian Processes, Histogram-Intersection Kernel.

1 Introduction

The automatic recognition of actions from video streams states a very important
problem in current computer vision research, as reflected by recent surveys[1]. A
variety of possible applications—e.g. Human-Machine Interaction, surveillance,
Smart Environments, entertainment, etc.—argues for the emerging relevance of
this topic.

As monocular approaches rely on single-view images, they solely perceive 2d
projections of the real world and discard important information. Hence, they are
likely to suffer from occlusions and ambiguities. As a consequence, the majority
of these methods use data-driven methods like Space-Time Interest Points [8]
instead of model-based representations of the image content. In contrast, existing
multi-view action recognition systems try to directly exploit 3d information,
e.g. by reconstructing the scene or fitting anatomical models, resulting in a far
higher complexity.

Having these observations in mind, we propose a method to recognize articu-
lated actions, which meets the following demands: (i) it is designed to be general
and not restricted to human action recognition, (ii) it avoids expensive dense 3d
reconstruction, (iii) it is independent from the camera setup it was learned in,
and (iv) it does not rely on foreground segmentation and exact localization.

The rest of this paper is structured as follows: in Sect. 2 we give a short intro-
duction in theory of Recurrence Plots and Temporal Self-Similarity Maps and
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(a) Camera 0 (b) Camera 3

Fig. 1. Two SSMs obtained for a robot dog performing an stand kickright action cap-
tured from different viewpoints. Action primitives induce similar local structures in the
corresponding SSM even under changes of viewpoint, illumination, or image quality.

motivate their usage. We also suggest to extend the related approach of Junejo
et al.[7] by new low-level features and distance metrics. Subsequently, Sect. 3 will
present our approach to utilize SSMs for multi-view action recognition. There-
fore we use aGaussian Process classifier together with the Histogram Intersection
Kernel, which has been shown to be more suitable for comparison of histograms.
In Sect. 4, we show results of our approach on our own new multi-view action
recognition dataset as well as on the widely used IXMAS dataset.

1.1 Related Work

Going through the related literature, methods for action recognition can be cat-
egorized into three groups: the first kind of approaches tries to reconstruct 3d
information or trajectories from the scene[15] or augment these representations
by a fourth time dimension[19,5]. Alternatively, relationships between action
features obtained from different views are learned by applying transfer learning
or knowledge transfer techniques[3,9]. The methods most related to our pro-
posal try to directly model the dynamics of actions within a view-independent
framework[7,2]. For a more extensive review about recent work on action recog-
nition we refer to recent reviews[1,14].

2 Temporal Self-similarity Maps

To understand human actions and activities, observers take benefit of their prior
knowledge of typical temporal and spatial recurrences in execution of actions.
Besides all differences in execution, two actions can be perceived as being se-
mantically identical if they share atomic action primitives in a similar frequency.
Assuming those actions to be instances of deterministic dynamical systems—
which can be modeled by differential equations—, Marwan et al.[11] presented an
intensive discussion about their interpretation utilizing Recurrence Plots (RP).
This work was further referenced for human gait analysis[2] and—due to their
stability in the case of viewpoint changes—for cross-view action recognition[7].
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Table 1. Semantic interpretations of patterns shown in SSMs introduced by recorded
actions (interpretation of [11]))

Pattern Interpretation

Homogeneous areas The corresponding atomic action represents a stationary
process

Fading in corners The recorded action represents a Non-stationary process
Periodic structures The recorded action contains a cyclic/periodic motion
Isolated points The recorded action contains an abrupt fluctuation

(Anti-) Diagonal
straight lines

The recorded action contains different atomic actions with
similar evolutionary characteristics in (reversed) time

Horiz. & vert. lines No or slow change of states for a given period of time
Bow structures The recorded action contains different atomic actions with

similar evolutionary characteristics in reversed time with
different velocities

Given a sequence I1:N = {I1, . . . , IN} of images Ii, 1 ≤ i ≤ N , a temporal Self-
Similarity Map (SSM) is generically defined as a square and symmetric matrix
SI1:N
f,d = [d(f(Ii), f(Ij))]i,j , SI1:N

f,d ∈ R
N×N of pairwise similarities d(·, ·) be-

tween low-level image features f(·) computed independently for every sequence
frame. In the literature, it has already been shown that SSMs preserve invari-
ants of the dynamic systems they capture[12], they are stable wrt. different
embedding dimensions[12,6], invariant under isometric transformations[12] and
though not being invariant under projective or affine transformations, SSMs are
heuristically shown to be stable under 3d view changes[7]. In Fig. 1, a robot dog
performing a stand kickright action was captured from two viewpoints with
different illumination conditions. Apparently, atomic action primitives induce
similar structures within the corresponding SSM. It can further be observed,
that the local structure of these SSMs reflects the temporal relations between
different system configurations over time, as summarized in Tab. 1.

2.1 Image Features

The choice for low-level image features f(·) is of inherent importance and has to
suit the given scenario. In the following, we will discuss some possible alternatives.

Intensity Values. The simplest way to convert an image into a descriptive fea-
ture vector fint(I) ∈ R

M·N is to append its intensities, as proposed for human
gait analysis[2]. While this is suitable for sequences with a single stationary ac-
tor, it yields large feature vectors and is very sensitive to noise and illumination
changes.

Landmark Positions. Assuming to be able to track anatomical or artificial
landmarks of the actor over time, their positions fpos(I) = (x0, x1, . . .) , xi =
(xi, yi, zi) , can be used to represent the current system configuration[7]. This is
sufficient, as long as the tracked points are distributed over moving body parts,
but it demands points to be able to be tracked continuously.
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Table 2. Exemplary SSMs extracted
from recordings of actions from the Aibo
dataset using different low-level image
features

Feature Action (perfomed in greeting pose)

greeting scoot
right

stretch dance1

Intensity

HoG

HoF

Fourier

Table 3. Exemplary SSMs extracted
from the same stand dance1 action from
the Aibo dataset using different similarity
measures

Similarity
Measure

Feature

HoG HoF Fourier

Euclidean
Distance

Normalized
Cross-
Correlation

Histogram
Intersection

Histograms of Oriented Gradients have been shown to give good repre-
sentations of shape for object detection. For this purpose, the image is sub-
divided into overlapping cells, where the distribution of gradient directions is
approximated by a fixed-bin discretization. These certain local orientation his-
tograms are normalized to the direction of the strongest gradient in order to ob-
tain local rotation invariance. Appending those local gradient histograms gives
the final descriptor fHoG(I) = (h0,h1, . . .) ,hi = (n0

i , n
1
i , . . .)[7].

Histograms of Optical Flows. When analyzing the displacements of each
pixel between two succeeding frames, this optical flow field represents an early
fusion of temporal dynamics. Building a global histogram over discretized flow
orientations or appending histograms obtained from smaller subimages yield the
HoF descriptor fHOF(I).

Fourier Coefficients. When computing the 2-dimensional discrete Fourier

transform âk,l =
∑M−1

m=0

∑N−1
n=0 Im,n · e−2πi(mk

M +nl
N ), 0 ≤ k ≤ M − 1, 0 ≤ l ≤

N−1, âk,l ∈ C of an image patch I, the series of Fourier coefficients [âk,l] contains
spectral information up to a given cutoff frequency 0 ≤ k ≤ Mc−1, 0 ≤ l ≤ Nc−1
and inherently provides invariance against translation. Since the first Fourier co-
efficient â0,0 represents the mean intensity of the transformed image patch I, the
Fourier coefficient descriptor fFourier = (â0,1, â0,2, . . . , â1,Nc−1, . . . , âMc−1,NC−1)
is further invariant wrt. global illumination changes. By tuning the cutoff fre-
quenciesMc, Nc, statistical noise can be suppressed as it is represented by higher-
order frequencies. Since DFT can be implemented in parallel on modern GPU
environments, these features can be computed very efficiently.

A qualitative comparison of these features extracted from different action
classes is given in Tab. 2. It can be seen that the HoF feature shows many
abrupt changes, while the other SSMs contain more smooth transitions between
the certain similarity values. The HoG feature seems to be more sensitive so
temporal changes at small time scale, which could be explained by image noise
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Fig. 2. Outline of the training and testing phase of our approach

and might harm the further processing. Hence, we further concentrate on using
the proposed Fourier coefficients, since they are easily and fast to compute and
provide some handy invariants by design.

2.2 Similarity Measures

Beside the choice for a suitable image representation f(·), the distance measure
d(·, ·) plays an important role when computing self-similarities, as qualitatively
compared in Tab. 3.

Euclidean Distances. The euclidean distance deucl(f1, f2) = ‖f1 − f2‖2 serves
as a straightforward way to quantify the similarity between two image feature
descriptors f1 = f(I1) and f2 = f(I2) of equal length, as proposed by [7]. While
this is easy to compute, it might be unsuited for histogram data[10], since false
bin assignments would cause large errors in the euclidean distance.

Normalized Cross-Correlation. From a signal-theoretical point of view, the
image feature descriptors f1, f2 can be regarded asD-dimensional discrete signals
of equal size. Then, the normalized cross-correlation coefficient dNCC(f1, f2) =〈

f1
‖f1‖ ,

f2
‖f2‖

〉
∈ [−1, 1] measures the cosine of the angle between the signal vectors

f1 and f2. Hence, this distance measure is independent from their lengths.

Histogram Intersection. The intersection dHI(h1,h2) =
∑D−1

i=0 min (h1,i,h2,i)
of two histograms h1,h2 ∈ R

D was shown to perform better for codebook gen-
eration and image classification tasks[13]. In case of comparing normalized his-
tograms, the histogram intersection distance is bounded by [0,+1].

3 MVSSM Feature Extraction and Action Topic Model
Learning and Classification

As mentioned before, SSMs obtained from videos capturing the identical action
from different viewpoints share common patterns. Hence, local feature descrip-
tors suitable for monitoring the structure of those patterns have to be developed
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in order to use Multi-View SSM (MVSSM) representations for action recogni-
tion purposes in multi-view environments. Hooked on on the choice for features
and the similarity measure used to create the SSM, self-similarity values are ex-
pected to become less reliable when moving away from the diagonal, as measur-
ing the similarity gets more difficult. Junejo et al.[7] proposed to use a log-polar
histogram of intensity gradients extracted on discrete positions at the main diag-
onal of the SSM to be analyzed, which yields a descriptor of dimension 88. The
radius of this histogram, i.e. the temporal extend of interest, controls the amount
of temporal information taken into account. As an extension, they constructed
these histograms at different time scales to catch variations in executions.

Alternatively, we propose to extract 128-dimensional SIFT descriptors at key-
points equally distributed along the diagonal of fused multi-view SSMs.These are
scale-invariant by design, as they examine and aggregate the image information
on different scale spaces. To reduce the number of dimensions, we further apply
PCA to the matrix of descriptor vectors.

Since the number of feature descriptors varies with the size of the SSM, i.e. the
length of the sequence, and the density of keypoints used for extracting these
features, we need to transform this set of features into a fixed-size representation.
We used the widely popular Bag of Visual Words approach to assign the given
action descriptors to representative prototypes identified by a custom cluster
algorithm. Choosing an appropriate value for the number of prototypes, the ob-
tained feature histograms are sparse and thus easy to distinguish. Fig. 2 outlines
the training and testing phase of our system.

4 Experimental Evaluation

In order to evaluate our multi-view action recognition system, we firstly per-
formed experiments on our own dataset. This dataset contains 10 sequences of
each 56 predefined actions performed by Sony AIBO robot dogs simultaneously
captured by six cameras.1

In our general setup, the dimension of SIFT descriptors extracted along the
SSM diagonal was reduced from 128 to 32 by applying PCA. Subsequently, all
descriptors from all train sequences were clustered into a mixture of 512 Gaus-
sians to create a Bag of Self-Similarity Words (BOSS Words). This is further
used to represent each training sequence by a histogram of relative frequencies.
These parameters heuristically show best results. While Junejo et al.[7] propose
to employ a multiclass SVM, this yield a very high complexity in our case, as
the AIBO dataset covers a relatively large number of classes to be distinguished.
Hence, we use a Gaussian Process (GP) classifier combined with a Histogram

Intersection Kernel κHIK(h ,h ′) =
∑D

i=0 min (hi, h
′
i) ,h ,h

′ ∈ R
D, which can be

evaluated efficiently, as recently shown by Rodner et al.[16] and Freytag et al.[4].
Recognition rates were obtained after 10-fold cross validation.

One of the most important questions concerning multi-view action recogni-
tion is the influence of the training and testing camera setup on the overall

1 The complete dataset including labels, calibration data and background images is
available at http://www.inf-cv.uni-jena.de/JAR-Aibo .

http://www.inf-cv.uni-jena.de/JAR-Aibo
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Fig. 3. Results obtained on Aibo dataset:
average recognition rates for different
ntraining/ntesting view partitions

Table 4. Results obtained on IXMAS
dataset (cross-view evaluation)

Approach Description Rec.

our approach 79%

Junejo et al.[7] HoG1 63%
Junejo et al.[7] HOF1 67%
Junejo et al.[7] HoG+HoF1 74%

Junejo et al.[7] HoG+HoF2 80%
Weinland et al.[17] 2d Silhouettes 58%
Farhadi et al.[3] 2d Silhouettes+OF 69%

Weinland et al.[18] 3d HoG3 84%

1Multi-Scale SSM, 2Space-Time Interest Points[8]
3all views used for training and testing

accuracy. In order to preserve generality, we evaluated our method on disjoint
sets for training and testing views. Fig. 3 shows averaged results of experiments,
where all 62 possible partitions of views for training and testing where used. As
expected, the maximum performance was obtained when dividing the available
views into equally-sized subsets. Confusions between semantically related classes
only appeared occasionally. In general, we were even able to distinguish identical
actions performed in different poses, which argues for the discriminativeness of
our modeling scheme. For our experiments we used a standard desktop computer
equipped with a Intel(R) Core(TM)2 Quad CPU 2.50GHz and 8GB of RAM.
Some algorithms were parallelized, e.g. the Fourier Transform, SIFT extraction,
or GMM modeling. While learning an action model for the whole dataset took
about 3 hours, the SSM computation, feature extraction, and classification per-
formed in real-time. Most of the approaches presented before concerning the
recognition of actions in multi-view environments focus on cross-view setups,
i.e. the system is trained on one single view and evaluated on another view.
Hence, we adopted the evaluation method of Junejo et al.[7] in order to do a fair
comparison. We did no further adaptions, especially we did not tune the process
parameters to obtain optimal results for this scenario. Tab. 4 shows the resulting
recognition rates compared to other not model-based approaches. While Junejo
et al.[7] used a combination of HoF and HoG features, we can reach similar re-
sults using our proposed Fourier descriptors, which are assumed to be computed
more efficiently. Furthermore, they enabled their approach to show time-scale
invariance by extracting their SSM features on different scales, i.e.with distinct
radii, while the SIFT features we used for representing SSMs are (time-) scale-
invariant by design. By estimating 3d optical flow, Weinland et al.[18] obtained
slightly higher recognition rates.

5 Summary and Outlook

We presented a framework for creating and evaluation temporal self-similarity
maps to employ them for multi-view action recognition. It was pointed out, that
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the invariance and stability properties of SSMs support our demands on a action
recognition system.

We made three contributions: (i) we further extended the method originally
presented in [7] by new low-level features and distance metrics, (ii) we applied
a Gaussian Process (GP) classifier combined with histogram intersection ker-
nel, which have been shown to be more suitable and efficient for comparing
histograms[16,4], and (iii) we used a new extensive dataset for evaluating multi-
view action recognition systems, which will be made publicly available.

It is straightforward to augment the Bag of Self-Similarity Words modeling
scheme by histograms of co-occurrences of vocabulary words in order to improve
the descriptive power of this representation. Another important aspect is the
direct integration of calibration knowledge into our framework.
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7. Junejo, I.N., Dexter, E., Laptev, I., Pérez, P.: View-independent action recognition
from temporal self-similarities. TPAMI 33(1), 172–185 (2011)

8. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human
actions from movies. In: CVPR, pp. 1–8 (2008)

9. Liu, J., Shah, M., Kuipers, B., Savarese, S.: Cross-view action recognition via view
knowledge transfer. In: CVPR, pp. 3209–3216 (2011)

10. Maji, S., Berg, A.C., Malik, J.: Classification using intersection kernel support
vector machines is efficient. In: CVPR, pp. 1–8 (2008)

11. Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis
of complex systems. Physics Reports 438(5-6), 237–329 (2007)

12. McGuire, G., Azar, N.B., Shelhamer, M.: Recurrence matrices and the preservation
of dynamical properties. Physics Letters A 237(1-2), 43–47 (1997)

13. Odone, F., Barla, A., Verri, A.: Building kernels from binary strings for image
matching. IP 14(2), 169–180 (2005)

14. Poppe, R.: A survey on vision-based human action recognition. IVC 28(6), 976–990
(2010)

15. Rao, C., Yilmaz, A., Shah, M.: View-invariant representation and recognition of
actions. IJCV 50(2), 203–226 (2002)



Temporal Self-Similarity for Multi-View Action Recognition 171

16. Rodner, E., Freytag, A., Bodesheim, P., Denzler, J.: Large-scale gaussian process
classification with flexible adaptive histogram kernels. In: Fitzgibbon, A., Lazebnik,
S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575,
pp. 85–98. Springer, Heidelberg (2012)

17. Weinland, D., Boyer, E., Ronfard, R.: Action recognition from arbitrary views
using 3D exemplars. In: ICCV, pp. 1–7 (2007)
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